
Abstract
Clustering is a common technique to overcome the wire delay
problem incurred by the evolution of technology. Fully-distributed
architectures, where the register file, the functional units and the
data cache are partitioned, are particularly effective to deal with
these constraints and besides they are very scalable. In this paper
effective instruction scheduling techniques for a clustered VLIW
processor with a word-interleaved cache are proposed. Such
scheduling techniques rely on: (i) loop unrolling and variable
alignment to increase the percentage of local accesses, (ii) a
latency assignment process to schedule memory operations with
an appropriate latency and (iii) different heuristics to assign
instructions to clusters. In particular, the number of local
accesses is increased by more than 25% if these techniques are
used and the ratio of stall time over compute time is small.

Next, the main source of remote accesses and stall time is
investigated. Stall time is mainly due to remote hits, and Attrac-
tion Buffers are used to increase local accesses and reduce stall
time. Stall time is reduced by 29% and 34% depending on the
scheduling heuristic. IPC results for a word-interleaved cache
clustered VLIW processor are similar to those of the multiVLIW
(a cache-coherent clustered processor with a more complex hard-
ware design), and are 10% and 5% better (depending on the
scheduling heuristic) than the IPC for a clustered processor with
a unified cache.

1. Introduction

As technology evolves, processors are moving from capacity-
bound to communication bound due to the increasing impact of
wire delays [1]. One approach to deal with this problem is to par-
tition some resources of the processor into semi-independent
units, while others remain centralized [17]. Each of these units is
commonly referred to as a cluster. Normally a cluster consists of
a local register file and a subset of the functional units. Commu-
nications within a cluster are fast, while inter-cluster communica-
tions are slow. Clustering has been used in superscalar processors
[10], but this trend is even more noticeable in embedded/DSP
VLIW processors [7][8].

Even though the distribution of the register file and functional
units is common in some commercial microprocessors, some

recent works advocate for clustering other resources like the
memory hierarchy [2][20]. In this work we focus on this kind of
microarchitectures. In particular, a word-interleaved clustered
VLIW processor is proposed along with effective instruction
scheduling techniques. Such scheduling techniques are targeted to
cyclic code and rely on loop unrolling and variable alignment to
increase the ratio of local accesses over remote accesses. In addi-
tion, a novel latency assignment process is introduced in order to
schedule memory instructions with the appropriate latency, and
two heuristics to assign memory instructions to clusters are pro-
posed.

The main factors that generate remote accesses and stall time
are evaluated. It has been observed that stall time is mainly due to
remote hits. The use of Attraction Buffers, that permit some data
replication, is an efficient enhancement to reduce such remote
accesses and stall time. Memory correctness is guaranteed by the
construction of what we call memory dependent chains and by
flushing the contents of the buffers between loops.

Results show the effectiveness of the proposed scheduling
techniques for the Mediabench benchmark suite [12]. Cycle count
results for such an architecture demonstrate that the obtained IPC
is similar or better to that of a clustered processor with a unified
data cache depending on the configuration. In addition, the IPC is
also similar to that of the state-of-the-art multiVLIW architecture
(a cache-coherent clustered VLIW processor).

The rest of the paper is organized as follows. In Section 2
related work on distributing the data cache in statically scheduled
processors is discussed. Next, in Section 3, the main characteris-
tics of a word-interleaved data cache processor are introduced. In
Section 4 the proposed scheduling algorithms are presented.
Finally, Section 5 describes the experimental framework and the
obtained results, while conclusions are presented in Section 6.

2. Related Work

Clustering has been used in statically and dynamically scheduled
processors. While several proposals exist in the literature for clus-
tering the register file and functional units in statically scheduled
processors ([15][16][19][11][6] among others), few works have
explored the use of a partitioned data cache.

Barua et al. [2] proposed scheduling techniques for the Raw
machine. A Raw machine consists of different identical units

Effective Instruction Scheduling Techniques for
an Interleaved Cache Clustered VLIW Processor

✣ Department of Computer Architecture
Universitat Politècnica de Catalunya

Barcelona - SPAIN

✝ Intel Barcelona Research Center
Intel Labs - Universitat Politècnica de Catalunya

Barcelona - SPAIN

Enric Gibert✣ , Jesús Sánchez✣✝ , Antonio González✣✝

E-mail: egibertc@ac.upc.es, jesusx.sanchez@intel.com, antonio@ac.upc.es

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

(referred to as tiles) interconnected through a 2-dimensional mesh.
In such an architecture, memory is distributed in a word-interleaved
manner as in this paper. Scheduling techniques as static promotion,
modulo unrolling and software serial ordering are introduced to
generate high quality code for such a processor. The main differ-
ences between this approach and the techniques proposed in this
paper are: (i) our target architecture has a traditional VLIW design,
(ii) memory serialization is guaranteed in RAWCC (the compiler
used for Raw machines) by a technique called software serial
ordering while we use the construction of memory dependent
chains, and (iii) our scheduling techniques focus on cyclic code
(software pipelining).

On the other hand, Sánchez et al. [20] proposed to divide the L1
data cache in a cache coherent manner and used a snoopy coherence
protocol to guarantee memory correctness. Such a similarity with a
multiprocessor led the authors use the term multiVLIW to describe
such an architecture. The multiVLIW has the advantage that it tends
to move data near the clusters that make use of them. However, the
effective capacity of the cache is limited by data replication and the
coherence protocol adds additional complexity to the bus and cache
designs.

In this paper, effective scheduling techniques are introduced for
a clustered VLIW architecture with a word-interleaved data cache.
These techniques rely on loop unrolling, padding, a latency assign-
ment step, and some heuristics to assign instructions to clusters.

3. An Interleaved Cache Clustered VLIW Pro-
cessor

In this paper we propose scheduling techniques for an interleaved
cache clustered VLIW processor such as the one shown in Figure 1.
In such an architecture, a cache block is distributed among the dif-
ferent clusters and each line of a cache bank holds some words of
the block, depending on the interleaving factor. The mapping of
words to clusters is fixed and the term subblock is used to identify
the words of a given block that are mapped to the same cluster. For
example, given a 4-cluster architecture like the one in Figure 1, a
cache block of 8 words and an interleaving factor of one word,
words 0 and 4 of the block form subblock 1 and are mapped into

cluster 1. The term cache module is used to identify the local por-
tion of the data cache in each cluster. Note that each subblock
resides in only one cache module so there is no data replication at
all. However, tags must be replicated in all cache modules so that
the cache system has local identifiers for its contents.

In an interleaved cache clustered architecture, a memory access
can be classified into four different types:

1) local hit: when the address of the access references the local
cache module and the requested data is present in it. The access is
satisfied with a local access latency.

2) remote hit: when the address of the access references a
remote cache module and the requested data is present there. The
latency of the access is the sum of sending the request over a mem-
ory bus, performing a cache access in the remote cache module and
sending the reply back to the original cluster.

3) local miss: when the address of the access references the
local cache module and the requested data is not present in it. The
latency of such an access is the sum of a local access, the time to
send the request to the next memory level, a next memory level
access and the time to send the reply back from the next memory
level.

4) remote miss: when the address of the access references a
remote cache module and the requested data is not present there.
This is the most costly operation since it requires a remote access
plus a next memory level access.

Additionally, small buffers can be provided in each cluster to
hold some remote data (data mapped in another cluster), which are
an effective way to increase the percentage of local accesses. The
idea is to bring the whole subblock when performing a remote
access and not just the requested word. The subblock is then stored
in the local buffer and the next access to it may be satisfied locally.
We will refer to these buffers as Attraction Buffers, since the whole
subblock is attracted to the cluster. Coherence is kept by constrain-
ing the assignment of instructions to clusters (see Section 4.3.2) and
by flushing the contents of the buffers when a loop finishes. For
example, recalling the architecture in Figure 1, a load scheduled in
cluster 1 that references word 3 (W3) of a cache line will attract
words 3 and 7 (W3 and W7) of that line into cluster 1’s Attraction
Buffer (the subblock is replicated). If this data is not replaced from
the Attraction Buffer, the next access to it performed by cluster 1
will be satisfied locally.

Finally, register-to-register buses are used to communicate reg-
ister values between clusters. The compiler is then responsible to
add explicit copy instructions if it schedules two register-flow
dependent instructions in different clusters. On the other hand,
memory buses are used to communicate cache modules and the next
memory level.

This paper focuses on the scheduling techniques rather than on
the architecture. For further details on the architecture, refer to [9].

4. Proposed Scheduling Techniques

In this section the proposed scheduling techniques are described.
First, a short introduction to modulo scheduling is given. After that,
the BASE scheduling algorithm used for a unified cache clustered
architecture is shown. Finally, scheduling techniques for a word-
interleaved cache clustered VLIW processor are introduced.

TAG T W4W0

Cache Module

Functional
Un its

Register
File

TAG T W5W1

Cache Module

Functional
Un its

Register
File

TAG T W6W2

Cache Module

Functional
Un its

Register
File

TAG T W7W3

Cache Module

Functional
Un its

Register
File

W0 W1 W2 W3 W4 W5 W6 W7
an arbitrary
cache block

Next memory level

Subblock 1 Memory buses

Cluster 4Cluster 3Cluster 2Cluster 1

Register-to-register communication buses

Figure 1. A word-interleaved clustered VLIW processor.

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

4.1. Background on Modulo Scheduling

Modulo scheduling is an effective technique to extract instruction-
level parallelism (ILP) on loops by overlapping the execution of
successive iterations of the original loop without the need to unroll
it [4]. It is a well-understood technique used by many current com-
pilers.

The parameters that most affect the performance of a modulo
scheduled loop are the Initiation Interval (II), the Stage Count (SC)
and the register pressure. The II is the number of cycles between the
initiation of consecutive iterations. For loops with a high trip count,
the execution time is almost proportional to the II. The Stage Count
specifies the number of overlapped iterations. The register pressure
can have an important effect on performance in those cases that the
schedule requires more registers than the available ones. This may
require the insertion of spill code or the increase of the II, which in
both cases may reduce performance.

Another important factor in static scheduling techniques is the
scheduling of memory operations. Memory operations have a vari-
able latency which makes them more difficult to schedule. If they
are scheduled too late, they may unnecessarily increase the register
pressure, the II or the SC. On the other hand, if they are scheduled
too early, they may cause pipeline stalls [18].

4.2. Scheduling Algorithm for a Unified Cache
Clustered Architecture

A diagram of the steps of the algorithm for a clustered architecture
with a unified cache can be seen in Figure 2. The main goal of the
algorithm is to end up with a compromise between balancing the
workload and minimizing the number of register-to-register com-
munications. The algorithm is similar to the one proposed in [19].

The algorithm orders the nodes (operations) of a given loop fol-
lowing the approach presented in [13]. We use such an approach
because it has good results in terms of II and register pressure. Once
the nodes are ordered, the algorithm schedules nodes one at a time.
For each node, it computes the set of possible clusters where this
node can be scheduled in according to resource usage (buses, regis-
ters and functional units). Then, this set is ordered so that clusters
that minimize register-to-register communications and that balance
the workload are selected first. Finally, the algorithm schedules the
node in the first cluster of the set where a valid slot is found. Mem-
ory nodes are scheduled with the cache hit or miss latency based on
their hit rate in order to reduce stall time. The hit rate is obtained
through profiling. The process of this selective latency assignment
to memory instructions is best described in Section 4.3.1. Note that

no backtracking is used: whenever a node is scheduled it is not
reconsidered until the II is increased.

This algorithm is also the base algorithm for an interleaved
cache clustered VLIW processor, so we call it BASE algorithm.
Note, however, that this algorithm does not take into account the
distribution of the data cache.

4.3. Scheduling Algorithm for an Interleaved
Cache Clustered Architecture

In this subsection, the proposed scheduling techniques for a word-
interleaved clustered VLIW processor are described. First, the algo-
rithm is presented. Next, the concept of memory dependent chains
is introduced in Section 4.3.2, while a short example is discussed in
Section 4.3.3. Finally the use of variable alignment is presented in
Section 4.3.4.

4.3.1. Scheduling Algorithm
The algorithm we propose for an interleaved cache clustered VLIW
processor has some similarities with the BASE algorithm proposed
in Section 4.2. However, there are main differences in each individ-
ual step that are covered in deeper detail in the following subsec-
tions. The proposed algorithm is divided in the following steps:

1) compute the unrolling factor and unroll the loop

2) assign latencies to memory instructions

3) order the instructions

4) assign clusters and schedule the instructions

Step 1: Unrolling the Loop

Unrolling helps improve performance of modulo scheduled loops
for unified and clustered architectures [19]. For an interleaved
cache scheme, unrolling has an important additional advantage: it
can help maximize local accesses to a cache module. For example,
assume the following loop:

for (i=0; i<MAX; i++) {

ld r3,a[i]

r4 = do some computations on r3

st r4, b[i]

}

where elements of arrays a and b are 4 bytes long and the inter-
leaving factor of the cache is also 4 bytes. If no unrolling is per-
formed, 3 out of every 4 accesses will be remote no matter which
cluster the memory instructions are scheduled in.

In order to maximize local accesses, the loop is unrolled four
times (for simplicity, imagine MAX is multiple of four):

How
many?

Sort nodes START Next node Schedule it

II=II+1

Order set regarding
best profit in
output edges

How
many?

Order set regarding balance

0

>0
possible clusters

Select set of 1

>1

not succeeded

succeeded

Figure 2. BASE scheduling algorithm used for a unified cache clustered architecture.

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

for (i=0; i<MAX; i=i+4) {

 ld r31, a[i]

 ld r32, a[i+1]

 ld r33, a[i+2]

 ld r34, a[i+3]

 r41,r42,r43,r44 = do some computations

on r31,r32,r33,r34

 st r41, b[i]

 st r42, b[i+1]

 st r43, b[i+2]

 st r44, b[i+3]

}

In this case, each memory instruction accesses one and only one
cache module because its stride is multiple of NxI, where N is the
number of clusters and I is the interleaving factor.

In order to compute the optimum minimum unrolling factor for
a loop, the algorithm takes into account the strides of its memory
instructions and their hit rate. The hit rate is obtained through pro-
filing while strides are computed statically by the compiler.

For each memory instruction i that has a known stride, a hit rate
greater than 0, and an access granularity (the size of the accessed
data element) not larger than the interleaving factor, its individual
unrolling factor is defined as follows:

where N is the number of clusters, Si is the stride of the instruc-
tion in bytes, and I is the interleaving factor in bytes. The maximum
unrolling factor is NxI. Instructions that do not meet the previous
conditions are not considered for computing the unrolling factor.

Once the individual unrolling factors have been computed for
each memory instruction, the unrolling factor of the loop (UF) is
computed by taking into account all its individual unrolling factors:

This unrolling factor (which we call OUF - optimal unrolling
factor) guarantees that all memory instructions (except those not
considered by the analysis) have strides multiples of NxI, and thus,
they access the same cluster in all iterations of a loop.

However, unrolling is not always beneficial, since it may imply:
(i) an increment in code size which can impact the performance of
the instruction cache, (ii) the generation of longer memory depen-
dent chains (see Section 4.3.2), and (ii) loops that iterate fewer
times which may not be suitable for software pipelining. Hence, the
algorithm performs selective unrolling, which is based on defining
three unrolling factors for each loop: no unrolling, unrollxN (each
loop is unrolled N times, where N is the number of clusters), and
OUF-unrolling (where each loop is unrolled OUF times). Once
these unrolling factors of a loop are computed, the unrolling factor
that minimizes execution time is used. Execution time of a loop L
is estimated using the following formula:

where the average number of iterations is obtained through pro-
filing. This selective unrolling process is also used in the BASE
scheduling algorithm for a unified cache clustered processor.

Step 2: Assigning Latencies to Memory Instructions

The next step is to assign latencies to memory instructions to meet
the best trade-off between stall time and compute time. Effective
techniques for this problem were proposed in [18], but a different
approach is used in this paper.

Since a memory access in an interleaved clustered VLIW pro-
cessor can be classified into four groups (local hit, remote hit, local
miss, remote miss), four different latencies will be defined and used
by the scheduling algorithm. At the beginning, all memory instruc-
tions are assigned the largest latency: the remote miss latency. After
this initial assignment, the latency of some memory instructions is
changed in order to minimize their impact on the II. In particular,
the latency of some selectively chosen instructions in recurrences
are changed from larger latencies to smaller latencies so that the
minimum initiation interval of the loop (MII) is the same as if all
memory instructions were scheduled with a local hit latency.

The process of this reduction works one recurrence at a time
starting with the recurrence that has the highest II value. For each
memory instruction M in a recurrence and each latency L’ (local
miss, remote hit or local hit) smaller that the latency L already
assigned to M, a benefit function is used to quantify how good the
change from L to L’ will be. The benefit function is computed as the
ratio between the decrease in the II and an estimation of the increase
in stall time incurred by the change of latencies. B is defined by the
following formula:

newSTALL and oldSTALL are estimations of the generated stall
time each time M is executed after and before the reduction is done
(if the denominator is 0, the benefit is maximum). These values are
computed using the hit rate, the number of local and remote
accesses, the granularity (the size of the accessed data element) and
the stride of memory instructions.

The latency of the instruction with the best value of B is
changed from L to L’ and the process iterates until the initiation
interval of the recurrence (II) is less than or equal to the minimum
initiation interval (MII).

Finally, once this value is reached for a particular recurrence,
there may still be some slack between the new computed II in that
recurrence and the MII if the recurrence is not the most restrictive
one. In particular, there will be some slack if the achieved II is less
than MII. Thus, the last memory instruction whose latency has been
changed is increased so that the II of the recurrence is equal to the
MII and not less.

The same scheme has been used by the BASE scheduling algo-
rithm for a unified cache clustered processor in order to reduce the
impact of memory instruction latencies on the II. However, only
two different latencies have been considered in this case: the hit
latency and the miss latency, since there are no remote memories.

Step 3: Ordering the Nodes

The next step of the algorithm is to order the nodes. We have used
the ordering proposed in [13] because it has a good performance in

Ui
N I×

gcd N I Si mod N I×,×()
---=

UF lcm Ui() i∀=

TexecL avgiterL SCL 1–+() II×
L

=

B M L L ′, ,() oldII newII–
newSTALL oldSTALL–
---=

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

terms of II and register pressure. This ordering gives priority to
recurrences according to the constraints they impose on the II, from
most to least constraining. Besides, most nodes (all excepting one
per recurrence) have only predecessors or successors placed prior to
them in the ordered list. This is beneficial for reducing register pres-
sure. More details on the ordering can be found in [13].

Step 4: Cluster Assignment and Scheduling

The proposed scheduling algorithm performs cluster assignment
and instruction scheduling in a single step as in [16]. Each instruc-
tion is considered in the order given by the ordering phase and it is
inserted in the partial schedule and never unscheduled (no back-
tracking is performed).

A non-memory instruction is treated the same way as the BASE
algorithm does: the set of possible clusters where the instruction
can be scheduled in (based on resources) is ordered, so that clusters
that minimize register-to-register communications and that maxi-
mize the workload balance are selected first. Then, the algorithm
schedules the instruction in the first cluster of the set where a valid
slot is found.

On the other hand, memory instructions are scheduled using
two different heuristics. The first heuristic, called IBC (Interleaved
Build Chains, see Section 4.3.2), treats memory instructions like
any other instruction: it schedules them in the cluster with the best
trade-off between register-to-register communications and work-
load balance. The second heuristic, called IPBC (Interleaved Pre-
Build Chains, see Section 4.3.2), schedules memory instructions in
their preferred cluster (the cluster they access most1). The ‘P’ in
IPBC can also be understood as ‘Preferred’ since memory instruc-
tions are scheduled in their preferred cluster. Note that the IBC heu-
ristic tends to reduce compute time by reducing the amount of
register-to-register communications, while the IPBC heuristic tends
to reduce stall time by increasing the amount of local accesses.

Finally, it should be pointed out that some scheduling restric-
tions apply to memory dependent instructions for both IPBC and
IBC. These restrictions are based on building groups of memory
dependent instructions (Chains), which are best described in the
following section.

4.3.2. Handling Memory Dependent Instructions
Care must be taken when scheduling memory dependent instruc-
tions in an interleaved cache clustered architecture because the
latency of such instructions is unknown. For example, a load may
read a stale value from memory if a previous dependent store sched-
uled in another cluster is still sending the updated value through the
memory bus when the load is issued. Hence, a mechanism must be
used to ensure program correctness. Our solution to this problem is
conservative, but very easy to implement. In particular, the pro-
posed scheduling algorithm for an interleaved cache clustered
architecture guarantees that memory dependent operations are
scheduled in the same cluster because serialization of memory
accesses is guaranteed within a cluster. Thus, one step of the algo-
rithm is to identify what we call memory dependent chains and
schedule all memory instructions in the same memory dependent
chain in the same cluster. We use the memory dependence analysis
implemented in the IMPACT environment tool to perform memory
disambiguation [5]. Note that when the compiler is not able to dis-
ambiguate memory references it always stays on the conservative
side: it adds dependences between unresolved memory accesses.
Thus, memory dependences in the Data Dependence Graph indi-
cate true dependences and false unresolved dependences.

The scheduling algorithm using the IBC (Interleaved Build
Chains) heuristic builds a memory dependent chain while it is about
to schedule the first instruction of it. It then chooses the cluster
where register-to-register communications are minimized for that
instruction and marks all other instructions in the chain to be sched-
uled in the same cluster. On the other hand, the scheduling algo-
rithm using the IPBC (Interleaved Pre-Build Chains) heuristic
computes the memory dependent chains prior to scheduling (thus
the name Pre-Build) and marks all instructions in the same memory
dependent chain to be scheduled in the average preferred cluster.

4.3.3. An Example
Assume the Data Dependence Graph (DDG) in Figure 3 and a 2-
cluster word-interleaved cache processor with 15 cycle, 10 cycle, 5
cycle and 1 cycle latencies for remote misses, local misses, remote
hits and local hits respectively.

There are two recurrences in the graph, labeled REC1 and
REC2. If we assume that two register anti-dependent instructions
can be scheduled in the same cycle, the MII of REC1 is 5 (if all
memory instructions are scheduled with a 1-cycle latency, the
latency of a local hit) and the MII of REC2 is 8. Hence the MII of
the loop is 8 assuming that the II is bounded by recurrences and not
by resources. Initially, the algorithm assigns the remote miss
latency (15 cycles) to all memory instructions (basically to all load
instructions since stores are scheduled with a 1-cycle latency) lead-
ing to an II of 33 for REC1 and 22 for REC2. In order to achieve the
MII of the loop, the latency of loads is decreased one recurrence at
a time.

1. The preferred cluster is computed through profiling.

load
n1

n2

add
n3

n4

n5
sub

RF

RF

RF

d=0

d=0

d=0

d=0

MA

MA

d=0

d=0

Lat=?

Lat=?

Lat=1

RA

preferred=1
hit rate=0.6

ratio of local accesses=0.5

hit rate=0.9
preferred=1
ratio of local acc.=0.5

preferred=2

REC1

RF is register-flow dependence

RA is register-anti dependence

MA is memory-anti dependence

d is distance of dependence

RF

RF

Lat=?

d=1

d=0

d=0
Lat=6

R
E

C
2

Lat=2

d=1

RF

RF

n6
load

store

preferred=2

add
n8

div
n7

load

Lat=1

Figure 3. Example of a Data Dependence Graph (DDG).

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

In REC1, the benefit function is computed for instructions n1
and n2 in order to change their latencies from remote miss (RM) to
either local miss (LM), remote hit (RH) or local hit (LH). For each
of these potential changes the estimated decrease in the II and the
estimated increase in stall time is computed and the ratio between
them is defined as the benefit function B. In particular, the benefit
function for all possible changes is shown in STEP 1 in the next
table1:

As it can be seen, changing the latency of instruction n2 from
remote miss (RM) to local miss (LM) gets the largest benefit (in this
case 20), so the algorithm performs such a change. However, the
new II of REC1 (which is now 28) is still above the loop MII (which
is 8). Again, the algorithm computes the benefit function and
decides to change the latency of instruction n2 from local miss to
remote hit (STEP 2 in the previous table)2. The algorithm iterates
until the MII of REC1 is below or equal to 8, which is achieved after
assigning the local hit latency to instruction n2 and a latency of 4
cycles to instruction n13.

The same process is repeated for REC2. REC2 has only one
memory instruction and an II of 8 is achieved after changing the
latency of instruction n6 from remote miss to local hit.

After the latency assignment, instructions are ordered in the fol-
lowing way: {n5, n4, n3, n2, n1, n8, n7, n6}. Note that instructions
n1, n2 and n4 form a memory dependent chain and they will be
scheduled in the same cluster in order to guarantee their serializa-
tion.

With IBC, all instructions are scheduled in the cluster where
register-to-register communications are minimized and workload
balance is maximized. Assume that instruction n5 (the first instruc-
tion to be scheduled) is scheduled in cluster 2. Then, IBC will end
up scheduling all instructions of REC1 in cluster 2 and all instruc-
tions of REC2 in cluster 1.

On the other hand, IPBC will force memory instructions to be
scheduled in their preferred cluster. Hence, instruction n6 will be
scheduled in cluster 2, while instructions n1, n2 and n4 that form a
memory dependent chain will be scheduled in cluster 1 (their aver-
age preferred cluster). If instruction n5 (the first instruction to be
scheduled) is scheduled in cluster 2, a register-to-register commu-
nication operation will have to be added and scheduled to propagate

the register value from instruction n5 scheduled in cluster 2 to
instruction n1 scheduled in cluster 1.

4.3.4. Variable Alignment
An operation’s preferred cluster information may differ when using
different input data files. These differences may have an impact on
the ratio between local accesses and remote accesses. For example,
a given memory operation of gsmdec accesses a dynamically allo-
cated 2-byte element array of 120 elements. Such an operation has
a stride of 16 bytes and accesses byte offsets 0, 16, 32, and so on of
the array when OUF unrolling is used. Since its preferred cluster is
cluster 1, this operation is scheduled in that cluster when the IPBC
heuristic is used. However, we have observed that when a different
input file is used, the dynamically allocated array is mapped in
another address and the preferred cluster changes to cluster 3. Thus,
the local hit ratio (the ratio between local hits versus remote hits)
drops to 0%.

In order to mitigate these differences between inputs, padding
has been used. In particular, local variables and dynamic allocated
data have been aligned to a NxI boundary, where N is the number of
clusters and I is the interleaving factor. Local variables (and incom-
ing and outcoming parameters) have been aligned by aligning all
stack frames to a NxI boundary. On the contrary, dynamic allocated
data has been aligned by modifying the malloc family of routines to
return pointers to addresses multiple of NxI. Finally, no padding has
been used for global variables since they are always mapped to the
same position no matter which data input file is used.

5. Performance Evaluation

In this section the evaluation methodology and results are pre-
sented. First, the benchmarks and the configuration parameters are
discussed. Next, results for the proposed scheduling algorithms are
presented and compared to the performance of a unified cache clus-
tered processor and a multiVLIW processor. Finally, some ongoing
work is also introduced.

5.1. Tools and Configurations

The IMPACT compiler [3] has been used as the base infrastructure
to compile the benchmarks, optimize them, and build hyperblocks
[14]. The benchmarks we have used are a subset of the Mediabench
suite [12]. They represent real workloads that can be found in media
or embedded processors such as DSPs. The benchmarks and their
inputs are summarized in Table 1. All these benchmarks have been
simulated completely.

The IPC of a clustered architecture with a unified cache, a clus-
tered architecture with a word-interleaved distributed data cache
with and without Attraction Buffers and the multiVLIW has been
evaluated. For a clustered processor with a unified cache, the BASE
scheduling algorithm has been used to modulo schedule loops.
These loops account for 80% of the dynamic instruction stream
approximately (depending on the benchmark). For a word-inter-
leaved cache clustered processor, the scheduling algorithm pro-
posed in Section 4.3 has been used to modulo schedule the same
loops. Both heuristics (IPBC and IBC) of this algorithm have been
evaluated. Finally, the IBC heuristic has been used for the MultiV-
LIW. For all architectures, loops have been unrolled using the heu-

STEP 1 STEP 2

Load Latency
change

∇ II ∆stall B ∇ II ∆stall B

n1
to LM
to RH
to LH

5
10
14

1
3

6.8

5
3.3
2.06

5
10
14

1
3

6.8

5
3.3
2.06

n2
to LM
to RH
to LH

5
10
14

0.25
0.75
2.95

20
13.3
4.75

-
5
9

-
0.5
2.7

-
10
3.3

1. The formula to compute the estimated increase in stall time is not discussed due
to lack of space.

2. In fact, the latency of n2 can be reduced from remote miss to remote hit in a sin-
gle step and not in two different steps as shown in the example. However, we
have done it in such a way for clarity purposes.

3. The latency of n1 is actually reduced up to a local hit latency (1 cycle). However,
since the achieved II for REC1 is 5 if n1 is assigned such a latency and MII is 8,
there still exists some slack. Thus, n1 is finally assigned a latency of 4 cycles.

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

ristic described in Section 4.3 (where 4 unrolling factors are
defined: no unrolling, unrollx4, OUF unrolling and selective unroll-
ing). If not stated otherwise, selective unrolling has been used by
default. In addition, loops that iterate less than 8 times before
unrolling have not been considered in any case.

The basic configuration parameters we have used for all archi-
tectures are summarized in Table 2. In the case of an interleaved
cache, each cache module has two read/write ports: one for the local
memory functional unit and another for requests from the memory
buses. On the other hand, in the case of a unified cache, it has 5 read/
write ports. The size of a cache module in an interleaved cache clus-
tered architecture is smaller than the size of the unified cache lead-
ing to different access times. These issues may benefit the access
time of the clustered organization. Besides, a centralized cache can-
not necessarily be close to all clusters and thus, some wire delay
will be paid for each access.

In case of a clustered architecture with a unified cache, two con-
figurations have been simulated. The first configuration assumes an
optimistic 1-cycle total access to the unified cache. The second con-
figuration, on the other hand, assumes a more realistic scenario
where the propagation time between functional units and the cache
is equal to the propagation time between clusters in a word-inter-
leaved clustered processor (2 cycles), leading to a total cache access
time of 5 cycles (the same as a remote hit in case of a word-inter-
leaved clustered processor).

An interleaving factor of 4 bytes has been chosen for a word-
interleaved cache clustered processor. This is so since 4-byte words
are the most common data type found in the evaluated benchmarks

as can be seen in Table 1. The value in brackets represents the per-
centage of dynamic memory accesses to data of the most common
size. A different interleaving factor could be used if the processor is
targeted to a different type of applications. For instance, if a proces-
sor is to be built for the gsm family of applications, a 2-byte inter-
leaving factor would match better the applications’ characteristics.
Dynamically adjusting the interleaving factor could even be better
but this is left for future work.

5.2. Evaluation of the Proposed Scheduling Tech-
niques

In this section, the evaluation of the proposed scheduling tech-
niques is presented. The impact of these techniques on the local hit
ratio, on stall time and on workload balance is presented next in dif-
ferent subsections.

Local hit ratio

First of all, the impact of the proposed scheduling techniques on the
local ratio (the proportion of local versus remote accesses) is stud-
ied. In Figure 4, memory accesses have been classified into local
hits, remote hits, local misses, remote misses and combined
accesses for the IPBC scheduling heuristic. Combined accesses are
accesses to subblocks that have been already requested and are still
pending, and hence the second request is not issued. These com-
bined accesses can derive in hits or misses and they have just been
counted as a separate group. The y-axis represents the ratio of all
memory accesses. For each benchmark four bars are drawn. From
left to right, these bars represent the results of the proposed IPBC
scheduling algorithm with (i) no unrolling with variable alignment,
(ii) OUF unrolling without variable alignment, (iii) OUF unrolling
with variable alignment and (iv) OUF unrolling with variable align-
ment and no memory dependent chains (where instructions are
freely scheduled in their preferred cluster).

As it can be seen, loop unrolling and variable alignment help
increase the percentage of local hits. In particular, the local hit ratio

Profile data set Execution data set Main data size

epicdec test_image.pgm.E titanic3.pgm.E 4 bytes (84%)

epicenc test_image titanic3.pgm 4 bytes (89%)

g721dec clinton.g721 S_16_44.g721 2 bytes (89%)

g721enc clinton.pcm S_16_44.pcm 2 bytes (91.7%)

gsmdec clint.pcm.run.gsm S_16_44.pcm.gsm 2 bytes (99%)

gsmenc clinton.pcm S_16_44.pcm 2 bytes (99%)

jpegdec testimg.jpg monalisa.jpg 1 byte (53%)

jpegenc testimg.ppm monalisa.ppm 4 bytes (70%)

mpeg2dec mei16v2.m2v tek6.m2v 8 bytes (49%)

pegwitdec pegwit.enc tech_rep.txt.enc 2 bytes (75.8%)

pegwitenc pgptest.plain tech_rep.txt 2 bytes (83.6%)

pgpdec pgptext.pgp tech_rep.txt.enc 4 bytes (92.1%)

pgpenc pgptest.plain tech_rep.txt 4 bytes (73.2%)

rasta ex5_c1.wav ex5_c1.wav 4 bytes (95%)

Table 1. Benchmarks and inputs used in simulations.
‘tech_rep.txt’ is a text version of a technical report sim-
ilar to this paper.

Number of clusters 4

Functional Units
1 FP / cluster

1 Integer / cluster
1 Memory / cluster

Cache parameters
8KB total (four 2KB cache modules
in case of a multiVLIW and a word-

interleaved clustered processor)
32 byte blocks, 2-way set-associative

1 and 5 cycle latency

Register-to-register
communication buses

4 buses that
run at 1/2 of the core frequency

Memory buses 4 buses that
run at 1/2 of the core frequency

Next Memory Level
parameters

4 ports
10 cycle total latency

always hit

Interleaving factor for
interleaved cache

4 bytes

Table 2. Configuration parameters.

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

is increased by 20% on average when variable alignment is used for
OUF unrolling, while it is increased by 27% on average between no
unrolling and OUF unrolling both with variable alignment. This
indicates that the proposed strategies work very well. Results for
the IBC scheduling heuristic are not shown. The local hit ratio
achieved with this heuristic is around 25% since it does not take into
account the preferred cluster information to assign instructions to
clusters.

Remote accesses happen due to a variety of factors when OUF
unrolling is used. Such factors are not exclusive one from the other
and are enumerated and quantified next:

• Double precision accesses. Memory instructions that access
data elements bigger than the interleaving factor always gen-
erate remote accesses. This is the case of mpeg2dec, where
approximately 50% of all dynamic memory references are to
double precision elements.

• Indirect accesses (of the form a[b[i]]). They are also a
common source of remote accesses. In particular we have
gathered statistics about memory instructions whose address
is computed using a previously loaded value. Benchmarks
with an important number of these accesses are jpegdec, jpe-
genc, pegwitdec, and pegwitenc where 40%, 23%, 93% and
13% of their memory accesses are of this type.

• “Unclear” preferred cluster information (where references of
an instruction are not concentrated in only one cluster, but
spread among them). This “unclear” preferred cluster infor-
mation is due to indirect accesses (as discussed above) and to
memory instructions that reference different data aligned at
different clusters. For the latter group we have computed the
distribution of the preferred cluster information. Such distri-
bution is a value that ranges from 1 (the preferred cluster
information is concentrated in only one cluster) and 0.25
(where the information is equally distributed among clusters)
for a 4-cluster architecture. This factor is important in bench-
marks epicenc, jpegdec, and jpegenc where the overall distri-
bution is 0.57, 0.81 and 0.78 respectively.

• Memory dependent chains. Memory instructions in a memory
dependent chain are not scheduled in their preferred cluster,
but in the average preferred cluster of the whole chain. Such
chains generate an important number of remote accesses in
epicdec, pgpdec, pgpenc and rasta benchmarks, where the

local hit ratio is reduced by 37%, 25%, 20% and 29% respec-
tively due to this cause.

Remote accesses are increased when selective unrolling is used
instead of OUF unrolling, since fewer memory instructions have
strides multiple of NxI (where N is the number of clusters and I is
the interleaving factor).

Stall time

Stall time is mainly due to memory instructions that have been
scheduled too close to their consumers. Remote accesses (and espe-
cially remote hits) are the biggest source of stall time as it can be
seen in Figure 6. For each benchmark (except for g721dec and
g721enc where stall time is negligible), four bars are shown for
selective unrolling which correspond to: (i) stall time generated
when IBC is used without Attraction Buffers, (ii) stall time gener-
ated when IBC is used along with 16-entry 2-way set-associative
Attraction Buffers, (iii) stall time generated when IPBC is used
without Attraction Buffers, and (iv) stall time generated when IPBC
is used along with Attraction Buffers, all normalized to the first bar.
Stall time has been divided in stall time generated by remote hits,
local misses, remote misses and combined accesses (local hits never
cause stalls). As it can be observed, stall time is mainly due to
remote hits which are responsible for 76% and 72% of stall time on
average for IBC and IPBC respectively without Attraction Buffers.

In addition, Attraction Buffers are an effective way to reduce
stall time, which is reduced by 34% and 29% on average for IBC
and IPBC respectively. However, Attraction Buffers can be used
more efficiently in the epicdec benchmark. In particular one loop in
epicdec has 19 memory instructions scheduled in the same cluster
that overflow the capacity of the Attraction Buffer and stall time is
not reduced much. Hints can be provided by the compiler to mark
as “attractable” those instructions that will benefit most by the use
of the buffer. The compiler then computes a benefit function for
each memory instruction and marks K instructions as attractable
starting by the ones with the highest benefit value. K is chosen so
that memory instructions do not overflow the capacity of the Attrac-
tion Buffer. While such technique has almost no impact on any
other benchmark since the buffers are not often overflown, stall
time is reduced by 20% and 32% in this loop of epicdec when this
strategy is used for 8-entry, 2-way set-associative Attraction Buff-
ers with IPBC and IBC respectively, and by 13% and 6% for 16-
entry, 2-way set-associative Attraction Buffers.

ep
ic

de
c

ep
ic

en
c

g7
21

de
c

g7
21

en
c

gs
m

de
c

gs
m

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc

pg
pd

ec

pg
pe

nc

ra
st

a

A
M

E
A

N

0.0

0.5

1.0
ac

ce
ss

es

combined

remote misses

local misses

remote hits

local hits

Figure 4. Memory accesses statistics. Each bar from left to right represents the classification of memory accesses with IPBC and:
(i) no unrolling with variable alignment, (ii) OUF unrolling without variable alignment, (iii) OUF unrolling with variable
alignment, and (iv) OUF unrolling with variable alignment and without memory dependent chains. AMEAN stands for
arithmetic mean.

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

Different factors cause stall time due to remote hits. In Figure
5, the weight of each factor has been quantified approximately
(since these factors are not mutually exclusive), where epicenc has
been excluded because stall time due to remote hits is negligible for
IPBC. In particular we have counted the number of remote hits that
generate stalls due to: (i) they access more than one cluster because
they are indirect accesses or because they do not have a stride mul-
tiple of NxI, (ii) they have an “unclear” preferred cluster informa-
tion, (iii) they have not been scheduled in their preferred cluster,
and/or (iv) they access elements bigger than the interleaving factor
(granularity). Note that these factors are similar to the ones exposed
previously, but here we focus on stall time and not on remote
accesses. Remote hits that satisfy more than one of the previous
conditions have been counted more than once. Numbers have been
gathered with selective unrolling.

The main point from this figure is that no factor alone is respon-
sible for a large portion of stall time. However, note some interest-
ing points. First, instructions that access more than one cluster are
common since selective unrolling generates fewer memory instruc-
tions with a stride multiple of NxI. Second, there are more stalls for

IBC due to instructions not scheduled in their preferred cluster than
for IPBC, since profile information is not used to assign instructions
to clusters in the former. In addition, double precision accesses in
mpeg2dec are a big source of remote accesses but are not responsi-
ble for any stall time at all since the scheduling algorithm is able to
schedule them with larger latencies.

Workload balance

Another important factor pursued by the proposed scheduling algo-
rithms is workload balance. In Figure 7, the workload balance
achieved is depicted for each benchmark when the IPBC scheduling
heuristic is used with (i) no unrolling, (ii) OUF unrolling, and (iii)
OUF unrolling and no memory dependent chains (where memory
instructions are freely scheduled in any cluster). Workload balance
for a loop L has been computed using the following formula:

where NumInstsMaxCluster is the number of instructions
scheduled in the most loaded cluster of L. Note that in case of four
clusters, the workload balance of a loop is a value that ranges from
0.25 (perfect balance, all clusters have the same amount of instruc-
tions assigned) up to 1 (completely unbalanced, all instructions are
scheduled in one cluster). The workload balance of the whole

ep
ic

de
c

gs
m

de
c

gs
m

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc

pg
pd

ec

pg
pe

nc

ra
st

a

0.0

0.5

1.0

st
al

lin
g

ti
m

e
ac

ce
ss

es

granularity
not in preferred

unclear preferred info
more than one cluster

Figure 5. Classification of accesses that generate stall time.
The left and right bars show results for IBC and
IPBC respectively.

ep
ic

de
c

ep
ic

en
c

gs
m

de
c

gs
m

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc

pg
pd

ec

pg
pe

nc

ra
st

a

A
M

E
A

N

0.0

0.5

1.0

st
al

l t
im

e combined

remote miss

local miss

remote hit

Figure 6. Stall time due to different types of accesses. From left to right, each bar shows stall time for: (i) IBC without Attraction
Buffers, (ii) IBC with Attraction Buffers, (iii) IPBC without Attraction Buffers, and (iv) IPBC with Attraction Buffers.
AMEAN stands for arithmetic mean.

ep
ic

de
c

ep
ic

en
c

g7
21

de
c

g7
21

en
c

gs
m

de
c

gs
m

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc

pg
pd

ec

pg
pe

nc

ra
st

a

0.00

0.25

0.50

0.75

1.00

IPBC no unrolling
IPBC OUF unrolling
IPBC OUF unrolling no chains

Figure 7. Workload balance.

WB L() NumInstsInMaxCluster
TotalNumInstsInL

---=

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

benchmark is computed by the weighted arithmetic mean of all its
loop workload balances.

As it can be seen, the workload balance achieved by the pro-
posed scheduling techniques is near 0.25 for almost all bench-
marks. In addition we have observed that loop unrolling helps in
increasing this balance, while the construction of memory depen-
dent chains is only responsible for some unbalance in epicdec, pgp-
dec, pgpenc and rasta.

5.3. Comparison with a Unified Cache Clustered
Architecture and the MultiVLIW

The next step in our experiments was to compare the performance
of a word-interleaved clustered VLIW processor with a clustered
processor with a unified data cache and with a multiVLIW proces-
sor.

In Figure 8, the y-axis represents cycle count results for differ-
ent configurations. In particular, four bars are depicted for each
benchmark. These are, from left to right: (i) cycle count results for
a word-interleaved data cache using IPBC and 16-entry Attraction
Buffers, (ii) cycle count results for a word-interleaved data cache
using IBC and 16-entry Attraction Buffers, (iii) cycle count results
for a multiVLIW architecture, and (iv) cycle count results for a
clustered architecture with a unified cache with 5 read/write ports
and a 5-cycle latency. All results are normalized to results for a clus-
tered architecture with a unified cache with 5 read/write ports and a
1-cycle latency. Cycles have been divided in compute cycles (com-
pute time) and stall cycles (stall time). Stall time is basically due to
memory instructions that have been scheduled too close to their
consumers.

The main conclusion that can be extracted from this figure is
that the proposed scheduling algorithms do a very good job in
assigning the “appropriate” latency to memory instructions, since
the proportion of stall time over compute time is small.

Comparing both heuristics for a word-interleaved cache clus-
tered architecture, it can be observed that compute time is bigger
when IPBC is used while stall time is bigger for IBC instead. How-
ever, for the latter, the small replication capacity of the Attraction
Buffers is enough to reduce stall time and outperform the results
obtained by IPBC. If no Attraction Buffers are used, performance
for both heuristics are similar.

For example, loop 67 of jpegenc is scheduled with an II of 9 by
IBC with unrollx4. After simulation, compute time for such a loop

is around 4.8M cycles and stall time is somewhat above 220K
cycles. However, if IPBC is used, the loop is scheduled with an II
of 10 since it uses 8 additional register-to-register communication
operations. After simulation, compute time is increase up to 5.6M
cycles but stall time is reduced to 1K cycles.

In addition, it can be observed that cycle count results of a
word-interleaved data cache are similar to that of the multiVLIW
(7% cycle count degradation), whereas the former has a lower hard-
ware complexity. The working sets of the simulated benchmarks fit
very well in a small cache and data replication does not penalize
much the multiVLIW. However, performance in the multiVLIW is
much more dependent on the cache size and the interleaved
approach may have additional advantages for programs with bigger
working sets. Finally, it should be pointed out that a word-inter-
leaved cache clustered processor outperforms a processor with a
unified cache with a 5-cycle latency and 5 read/write ports. In par-
ticular, the average speedup is 5% and 10% when IPBC and IBC
heuristics are used respectively, while an average slowdown of 18%
and 11% has been observed compared to an optimistic clustered
processor with a unified cache of 1-cycle latency for IPBC and IBC
respectively.

5.4. Further Work

Some experiments have been done to improve the IPC for the epic-
dec benchmark, since this is the benchmark where IPC degradation
is bigger with respect to the multiVLIW and a clustered architecture
with a unified cache. Detailed results are not shown in this paper
due to lack of space and we briefly outline them.

IPC degradation in such a benchmark is mainly due to memory
dependent chains. Such restrictions in the scheduler not only gen-
erate some workload unbalance as we have seen, but they also
increase the number of remote accesses and, in consequence, stall
time. Memory dependent chains can be broken by providing differ-
ent versions of a loop (one with chains and another without chains
or even with smaller chains) and execute one or the other according
to some check code. We have measured that the version with no
chains or with smaller chains: (i) has a tighter schedule (for exam-
ple, compute time is reduced by 67% in one of the main loops of
epicdec) (ii) generates less remote accesses, and (iii) uses Attrac-
tion Buffers more efficiently. In addition, in Section 5.2 we have
mentioned a technique in which hints are added to memory instruc-
tions to decide whether they should attract data to the local Attrac-
tion Buffer or not. All these mechanisms are beyond the scope of

ep
ic

de
c

ep
ic

en
c

g7
21

de
c

g7
21

en
c

gs
m

de
c

gs
m

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc

pg
pd

ec

pg
pe

nc

ra
st

a

A
M

E
A

N

0.0

0.5

1.0

1.5

cy
cl

es

stall time
IPBC
IBC
MultiVLIW
Unified(L=5)

Figure 8. Cycle count results for different architecture configurations. The shaded part of the bars represents compute time. AMEAN
stands for arithmetic mean.

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

this paper, but they significally improve the results for epicdec and
hence, they advocate for future research in this area.

6. Conclusions

In this paper effective instruction scheduling techniques have been
proposed and evaluated for a word-interleaved cache clustered
VLIW processor. Such techniques use selective loop unrolling,
smart assignment of latencies to memory instructions, variable
alignment and two different heuristics (IBC and IPBC) to assign
memory instructions to clusters. Selective unrolling is used to
achieve a good trade-off between local accesses and execution time,
while smart assignment of latencies to memory instructions is used
to get a good compromise between compute time and stall time.
Finally, memory correctness is guaranteed by constraining the
assignment of memory instructions to clusters. The proposed tech-
niques are effective in increasing the ratio of local hits over remote
hits. In particular, the local hit ratio is increased by 20% and 27%
with variable alignment and loop unrolling respectively.

The main source of stall time has also been investigated. Stall
time is mainly due to remote hits which, at the same time, are due
to different factors: (i) double precision accesses, (ii) indirect
accesses, (iii) accesses with an “unclear” preferred cluster and/or
(iv) memory dependent chains. Attraction Buffers (small buffers to
hold some remote data) are used to reduce the number of remote
hits and to decrease stall time. In particular, stall time is reduced by
34% and 29% on average for both scheduling heuristics (IBC and
IPBC).

Finally, IPC results for a word-interleaved cache clustered
VLIW processor with Attraction Buffers are similar to those for the
multiVLIW, a cache-coherent clustered VLIW processor (a 7%
cycle count degradation is observed). However, the multiVLIW has
a more complex cache and bus design. In addition, IPC results for a
word-interleaved cache clustered VLIW processor are 5% and 10%
better for IPBC and IBC than those for a clustered processor with a
unified cache.

Acknowledgements

This work has been partially supported by El Ministerio de Ciencia
y Tecnologia and the European Union (FEDER funds) reference
TIC2001-0995-C02-01 and it has been developed using the
resources of CESCA and CEPBA. Enric Gibert would like to thank
all IMPACT group members at University of Illinois for their help.

References

[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler and D. Burger,
“Clock Rate versus IPC: The End of the Road For Conven-
tional Microarchitectures”, in Procs. of the 27th Int. Symp. on
Computer Architecture, pp. 248-259, June 2000

[2] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal, “Maps:
A Compiler-Managed Memory System for Raw Machines”,
Procs. of the 26th Int. Symp. on Computer Architecture, June
1999

[3] P.P. Chang, S.A. Mahlke, W.Y. Chen, N.J. Water, and W.W.
Hwu, "IMPACT: An Architectural Framework for Multiple-
Instruction-Issue Processors", in Procs. of the 18th Int. Symp.
on Computer Architecture, pp. 266-275, May 1991

[4] A. Charlesworth, “An Approach to Scientific Array Process-
ing: The Architectural Design of the AP120B/FPS-164 Fam-
ily”, in Computer, 14(9), pp.18-27, 1981

[5] B. Cheng, “Compile-Time Memory Disambiguation for C
Programs”, PhD thesis, Department of Computer Science,
University of Illinois, May 2000

[6] J. M. Codina, J. Sánchez and A. González, “A Unified Mod-
ulo Scheduling and Register Allocation Technique for Clus-
tered Processors”, in Procs. of Int. Conf. on Parallel
Architectures and Compilation Techniques, Sept. 2001

[7] P. Faraboschi, G. Brown, J. Fisher, G. Desoli and F. Home-
wood, “Lx: A Technology Platform for Customizable VLIW
Embedded Processing”, in Procs. of the 27th Int. Symp. on
Computer Architecture, pp. 203-213, June 2000

[8] J. Fridman and Zvi Greefield, “The TigerSharc DSP Architec-
ture”, IEEE Micro, pp. 66-76, Jan-Feb. 2000

[9] E. Gibert, J. Sánchez and A. González, “An Interleaved Cache
Clustered VLIW Processor”, in Procs. of Int. Conf. on Super-
computing (ICS), pp. 210-219, June 2002.

[10] L. Gwennap, “Digital 21264 Sets New Standard”, Micropro-
cessor Report, 10(14), Oct. 1996

[11] K. Kailas, K. Ebcioglu and A. Agrawala, “CARS: A New
Code Generation Framework for Clustered ILP Processors”,
in Procs. of the 7th Int. Symp. on High-Performance Com-
puter Architecture, Jan. 2001

[12] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “Media-
Bench: a Tool for Evaluating and Synthesizing Multimedia
and Communication Systems”, in Procs. of Int. Symp. on
Microarchitecture, pp. 330-335, Dec. 1997

[13] J. Llosa, A. González, E. Ayguadé and M. Valero, “Swing
Modulo Scheduling”, in Procs. of Int. Conf. on Parallel Archi-
tectures and Compilation Techniques (PACT’96), pp.80-86,
Oct. 1996

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective Compiler Support for Predicated Exe-
cution Using the Hyperblock “, in Procs. of 25th Int. Symp. on
Microarchitecture, pp. 45-54, Dec. 1992

[15] E. Nystrom and A. E. Eichenberger, “Effective Cluster
Assignment for Modulo Scheduling”, in Procs. of the 31st Int.
Symp. on Microarchitecture, pp. 103-114, 1998

[16] E. Ozer, S. Banerjia, T.M. Conte, “Unified Assign and Sched-
ule: A New Approach to Scheduling for Clustered Register
File Microarchitectures”, in Procs. of 31st Symp. on Microar-
chitecture, Nov. 1998

[17] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-
Effective Superscalar Processors”, in Procs. of the 24th Int.
Symp. on Computer Architecture, pp. 1-13, June 1997

[18] J. Sánchez and A. González, “Cache Sensitive Modulo Sched-
uling”, in Procs. of 30th Int. Symp. on Microarchitecture, pp.
338-348, Dec. 1997

[19] J. Sánchez and A. González, “The Effectiveness of Loop
Unrolling for Modulo Scheduling in Clustered VLIW Archi-
tectures”, in Procs. of the 29th Int. Conf. on Parallel Process-
ing, Aug. 2000

[20] J. Sánchez, and A. González, “Modulo Scheduling for a
Fully-Distributed Clustered VLIW Architecture”, in Procs. of
33rd Int. Symp. on Microarchitecture, Dec. 2000

Proceedings of the 35 th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-35)
1072-4451/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

