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Abstract

Vector processors have good performance, cost and
adaptability when targeting multimedia applications. How-
ever, for a significant number of media programs, conven-
tional memory configurations fail to deliver enough memory
references per cycle to feed the SIMD functional units. This
paper addresses the problem of the memory bandwidth.

We propose a novel mechanism suitable for 2-
dimensional vector architectures and targeted at providing
high effective bandwidth for SIMD memory instructions.
The basis of this mechanism is the extension of the scope
of vectorization at the memory level, so that 3-dimensional
memory patterns can be fetched into a second-level register
file.

By fetching long blocks of data and by reusing 2-
dimensional memory streams at this second-level register
file, we obtain a significant increase in the effective memory
bandwidth. As side benefits, the new 3-dimensional load in-
structions provide a high robustness to memory latency and
a significant reduction of the cache activity, thus reducing
power and energy requirements. At the investment of a 50%
more area than a regular SIMD register file, we have mea-
sured and average speed-up of 13% and the potential for
power savings in the L2 cache of a 30%.

1 Introduction

Multimedia applications have become one of the most
important types of workloads in current microprocessor de-
sign [1]. Most new general purpose and embedded proces-
sors include SIMD ISA extensions to increase the perfor-
mance of future media protocols and killer applications such
as MPEG-4 [2]. These new instruction extensions focus on
exploiting data-level parallelism over small data-types (thus
sometimes called�-SIMD parallelism) inside a single reg-
ister (64-128 bits typically). Examples of these new ISA ex-
tensions are INTELís MMX [3] and SSE[4], SUNís VIS[5],
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AMDís 3DNow! [6], MIPSís MDMX [7] and Motorolaís
AltiVec [8].

Ranganathan et.al. [9] presented an in-depth study of
the characteristics of�-SIMD enhanced applications. They
showed that after including software prefetching, most me-
dia applications were compute bound. Performance was,
then, ultimately limited by fetch and issue bandwidth. In or-
der to address this problem, several authors have proposed
2-dimensional vector architectures [10, 11, 12]. These ar-
chitectures adapt to typical multimedia memory patterns by
extending the scope of vectorization to two dimensions (or
parallel loops). The main advantage of these 2-dimensional
vector architectures is that they are able to signiÝcantly in-
crease the number of operations per instruction, thus, break-
ing the fetch/issue barrier of most media programs.

In this paper, we study the behavior of several media ap-
plications using one of these 2D media extensions. We will
show that several applications experience a signiÝcant per-
formance degradation due to the the memory system. While
data caches show an extremely high hit rate (as already high-
lighted by Slingerland et.al. [13]), they are, however, unable
to deliver enough memory bandwidth for the vector func-
tional units.

The design of high bandwidth cache memory systems
is not trivial due to the complex memory layouts typically
found in most media applications. In order to address this
problem, we came to the observation that high amounts of
spatial and temporal locality exist at extra dimensions of the
memory pattern layout, even though there are computational
dependences that do not allow straight-forward vectoriza-
tion. This locality, if properly exploited, may enable high
memory bandwidth with a feasible cache hierarchy based
on widening the cache memory ports.

We propose a new extension to a 2D vector architecture
targeted at implementing high bandwidth vector memory
systems. The basis of this mechanism is a second-level vec-
tor register Ýle where 3-dimensional memory patterns can
be fetched from the memory thanks to a new 3D vector
load instruction. By doing this, we take advantage of higher
amounts of spatial and temporal locality that translate into
higher effective bandwidth and register reuse.
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int fullsearch(blk1, blk2, length, i0, j0, int win)
unsigned char *blk, *blk2;
int length, i0, j0, win;
{
int l, d, i, j, k, min, pos;
unsigned char *a,*b;
...

 ...

for (k=0; k<l; k++) {
a = blk1 + k;
b = blk2;
d = 0;

for(j=0; j<8; j++) {
for(i=0; i<8; i++) {

d += abs(a[i]-b[i]);
}
a += length;
b += length;

}

if (d<dmin) {
min = d;
pos = k; ;

         }
}

  ...
  ...
}

Figure 1. Comparison between (a) a conventional MMX-like �-SIMD instruction and (b) a Matrix (MOM-
like) 2D SIMD instruction.

We will show that our proposed mechanism is able
to provide high performance gains for those applications
where memory bandwidth is the main bottleneck. Even for
the rest of the benchmarks, our proposal provides two signif-
icant side beneÝts: a sensible reduction of the cache activity
and a prefetching effect. The former translates into lower
power/energy consumption in the memory sub-system while
the latter provides high robustness to the latency when the
memory is far away.

2 A brief overview of a 2D vector ISA

In this paper, we are going to use MOM [10] as our base-
line 2D vector ISA. MOM stands forMatrix Oriented Multi-
media extension and is a hybrid between a traditional vector
and a�-SIMD ISA. MOM is able to exploit up to two differ-
ent dimensions of parallelism by using a different paradigm
(either vector or�-SIMD ) to vectorize one of two available
parallel nested loops.

MOM can be viewed as a conventional vector ISA where
each of its computation operations are�-SIMD MMX-like
instructions. The execution of a MOM instruction is dic-
tated by two different parameters. TheVector Length deter-
mines how many 64-bit elements of the MOM register are
operated (out of 16). TheVector Stride determines the dis-
tance between two consecutive MOM vector elements when
performing memory operations.

In order to help understand the differences between a
conventional�-SIMD approach and a 2D approach such as

MOM, Ýgure 1 shows a simpliÝed fragment of code ex-
tracted from a MPEG-2 encoder. The algorithm shown is
doing themotion estimation stage of the encoding, which
detects movement of objects along different video frames.
In order to do so, it searches across the reference image for
the image block which matches better with the block being
compressed. This is accomplished by Ýnding the minimal
sum of absolute differences between the pixels of the two
blocks. This search is performed, in the code, over several
matrices laid out on the image x-axis. Note thatlength
may be arbitrarily long, as it stands for the horizontal size of
the frame.

Analyzing the code shown in the Ýgure we can see that
there are up to two different dimensions of data-level paral-
lelism to be exploited: nested loopsi andj. The calculation
of the sum of absolute differences between pairs of pixels
�i� j� can be done in parallel fairly easily. Note, however,
that loopk does not show the same property, as we have
data and control dependencies in theif clause (clause that
determines if we have found a local minimum) which avoid
vectorization.

As shown in Ýgure 1, MOM is able to take advantage of
the parallelism implicit in both loopsi andj. First, it gen-
erates a MMX-like instruction for loopi, and then extends
an additional vectorization of this instruction, replicating it
across loopj. As a result, each patterna andb are loaded
into a single MOM register. In other words, each MOM
register element (a 64-bit�-SIMD register) corresponds to
a row of a matrix.
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Figure 2. Cache designs for SIMD memory
ports: (a) Multi-banking, (b) Port Widening.

3 Rationale for 3-dimensional vectorization

In this section we will show that 2D SIMD media pro-
grams can experience severe performance degradations due
to the bandwidth constraints of realistic cache implementa-
tions. In order to address the problem, we will introduce
two new instructions to perform 3D memory accesses and
will discuss why they allow exploiting a higher amount of
temporal and spatial locality.

3.1 The problem of the bandwidth

A traditional problem of SIMD architectures is the design
of a memory system able to provide enough memory refer-
ences per cycle to keep the SIMD functional units busy. As
shown by Toni Juan et. al. [14], true multi-ported caches
are not feasible due to their high cost. Alternative cache de-
signs to true multi-ported caches are several, each with its
drawbacks: time-multiplexing (as in the Alpha 21264 [15]),
multi-banking, port widening, etc.

Multi-banking consists of implementingB memory ports
connected with a set of cache memory banks by means of a
crossbar (see Ýgure 2-a). A vector memory instruction can
distribute its different memory references among all avail-
able memory ports. While this conÝguration presents the
advantage of performing well for different strides, scalabil-
ity is compromised because of bank contention and imple-
mentation issues of the crossbar for an elevated number of
memory ports.

Port widening is a more restrictive (but cheaper) alterna-
tive, based on increasing the granularity of the memory ac-
cesses. Given a vector memory instruction whose elements
are consecutively arranged in memory, we can fetch several
elements in a single access provided that they are located
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Figure 3. Performance slowdown for realistic
memory system configurations.

in the same cache line. The vector cache [16] is a straight-
forward implementation of this concept. As shown in Ýg-
ure 2-b, the vector cache is based on loading two whole
cache lines (one per interleaved bank) instead of individu-
ally loading each vector element. Additional logic (an inter-
change switch, a shifter and a mask logic) allows selecting a
chunk of up toB consecutive words, being the upper bound
of B the size of a single cache line. Its main drawbacks are:
Ýrst, it may add extra latency due to the shift&mask logic,
and second, it is not able to provide more than one reference
per cycle when the vector stride in different than one.

In order to evaluate the efÝciency of the two different
cache designs, we have measured the performance degrada-
tion of a 8-way issue processor able to execute MOM in-
structions, for a set of benchmarks fromMediabench [17].
Figure 3 shows the processor performance slowdown for
two different cache designs: (a) a 4-port multi-banked cache
(with 8 memory banks), and (b) a vector cache with one
single port of width 4�64 bits. Performance degradation
is given relative to performance of an idealistic memory
system (perfect cache, 1-cycle of latency, unbounded band-
width). Details about the architecture conÝguration can be
found in section 5.3.

Results show that some of the benchmarks have signif-
icant performance degradations when taking into account
a realistic memory implementation (ranging from 8% to
58%). As the cache hit rates are relatively high (from 90%
to 99%), the reason that explains such decreases in perfor-
mance is no other than the effective bandwidth provided by
the memory ports. Results also show that the vector cache
obtains slowdowns reasonably similar to those of the multi-
banked conÝguration, while being much easier to imple-
ment.

3.2 Identifying the potential of a third dimension

As seen in the previous subsection, some media bench-
marks have severe performance shortcomings due to the
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int fullsearch(blk1, blk2, length, i0, j0, int win)
unsigned char *blk, *blk2;
int length, i0, j0, win;
{
int l, d, i, j, k, min, pos;
unsigned char *a,*b;
...

 ...

for (k=0; k<l; k++) {
a = blk1 + k;
b = blk2;
d = 0;

for(j=0; j<8; j++) {
for(i=0; i<8; i++) {

d += abs(a[i]-b[i]);
}
a += length;
b += length;

}

if (d<dmin) {
min = d;
pos = k;

         }
}

  ...
  ...
}

Figure 4. N-dimensional memory patterns in a MPEG2 kernel.

inability of any of the proposed vector memory systems
to provide the required bandwidth. A way to identify the
sources of the problem may come from a closer observation
of MOM 2-dimensional memory pattern characteristics.

If we turn back at the example shown if Ýgure 1, we real-
ize that there is a long distance between consecutive MOM
elements (as the stride between two different MOM regis-
ter elements corresponds to the horizontal size of the im-
age). Therefore, a vector memory system such as the vector
cache is unable to fetch more than one MOM register ele-
ment per cycle, as two consecutive elements are placed in
non-consecutive cache lines

Indeed, as already shown in [10, 11], strided matrices are
a very common data structure in multimedia. These matri-
ces are laid out in memory in such a way that, while the
elements in a single row of one matrix are consecutively
arranged in memory, elements beyond the Ýrst dimension
are distributed across far away cache lines. From the set of
benchmarks, onlyjpeg decode andgsm encode own
memory patterns characterized for wide blocks of consecu-
tive data along a single dimension. To solve this problem,
some authors propose simply rearranging the data to Ýt a
better layout. We have found that most of the times is either
not possible (due to the way the benchmarks are written) or
counterproductive (since it may produce even worse mem-
ory behavior in other stages of the applications).

Our claim is that the solution for this problem may reside
in the exploitation of more dimensions of the media mem-
ory layout than those already exploited by 2D vectors ISAs.
More dimensions bring more opportunities to Ýnd longer

sets of data consecutively arranged in memory, and hence,
more opportunities to fully exploit the peak bandwidth of a
wider memory port.

If we look further into the n-dimensional structure of me-
dia data, we can realize that a set of MOM 2-dimensional
streams as a whole shows a higher level of spatial and tem-
poral locality than every stream in isolation. If we reorder
the way we access the streams, we can take advantage of
the existence of longer chunks of data and from the redun-
dancy intrinsic to the overlapping of different 2-dimensional
streams.

In the previous example (see Ýgure 4), the row elements
of matricesa andb are extremely sparse. Therefore, if we
use a vector cache, we are only able to gather the eight 8-bit
elements of one row with a single access.

Nevertheless, when looking at the third dimension of
the algorithm (corresponding to loopk), we can observe
a 3-dimensional memory pattern composed of a set of 2-
dimensional matrices. These 2D matrices are laid out on the
x-axis of the image (the loopi) with an address offset (or
stride) of one single byte. The overall structure is a rectan-
gular matrix of length��� l� ��� �. The interesting point
of this structure is that it exposes several elements consec-
utively arranged in memory and that it determines a high
amount of potential MOM 2D memory streams inside, as
there is a high amount of overlapping between them.

The main point is that, even thoughk loop cannot be
fully vectorized, we can vectorize the memory access to this
3-dimensional memory pattern, as there are no memory de-
pendences between the matrices of every instance of loopk.
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By doing so, we are able to increase the effective memory
bandwidth (as we are exposing longer chunks of data), and
we are able to reduce the memory trafÝc (as we can avoid
fetching repeatedly redundant data when streams overlap).

4 3D memory vectorization

We propose a novel vector memory access technique
based on implementing a new set of3D vector registers.
These 3D vector registers will be used as temporal storage
for 3D memory streams fetched from memory. By doing
sequential accesses to these second-level registers, we will
be able to conveniently rearrange the 3D memory pattern to
accommodate 2D MOM memory accesses.

A 3D vector register is basically a widened version of a
common MOM register. A3D vector load instruction al-
lows to transfer multiple cache lines inside the different ele-
ments of a single 3D vector register. Afterwards, the data in
the 3D register Ýle can be transferred to the MOM register
Ýle using a3D vector move instruction. In the same vein
that the MOM register Ýle, the 3D register Ýle is organized
in lanes (or clusters). This organization enables very high
bandwidth transfers with low hardware complexity.

It is very important to note that from a com-
piler/programmer point of view, 3D memory instructions
can be used even if the third outer loop is not strictly vector-
izable. We are using these instructions to strictly fetch data
from memory and to rearrange the data later on. Therefore,
those computational dependences not related to read/write
conÐicts between the 2D memory streams can be ignored.

Our proposed 3-dimensional memory vectorization tech-
nique provides three signiÝcant advantages:

� longer chunks of data accessed every cycle
� reduction of cache trafÝc by means of register reuse
� more elements packed per vector memory instruction

In this paper, we will quantify how well the 3D memory
instructions do improve the length of the chunks of data to
be accessed, reduce the cache trafÝc and increase the num-
ber of elements packed per memory instruction. Finally, we
will evaluate the impact of these factor over performance,
power and robustness to the latency.

4.1 Semantics of the 3D memory instructions

We have used the MOM Instruction Set Architecture [18]
as a representative example of a 2D media vector ISA. Our
objective is to evaluate the potential of extending a 2D
instruction repertoire with 3D memory instructions. The
MOM Instruction Set Architecture contains 121 instructions
and 16 logical 2D vector registers. Each 2D vector register
is composed of 16 MMX-like elements of 64-bit each. The
ISA includes aVector Length register that keeps track of
the number of MOM elements to be operated. Additionally,

MOM memory instructions include an extra Ýeld containing
theVector Stride to control the load and store of 2D memory
patterns.

We have made two modiÝcations to the basic MOM ar-
chitecture: the set of logical registers has been expanded
with the inclusion of two3D vector registers, and the in-
struction repertoire includes two new instructions designed
to transfer data to/from these new registers.

A 3D vector register is a widened version of a regular
MOM register (see Ýgure 5 for a comparison of both kinds
of registers). Instead of 16 elements of 8 bytes, a 3D vec-
tor register contains 16 elements of 128 bytes (16 x 64 bits),
enough to Ýt a typical L2 cache line. Every 3D vector reg-
ister has also a 7-bitpointer register, which maintains the
current offset within the 3D vector register. This offset de-
termines which slice of data is going to be transferred to a
2D MOM vector register.

The two new instructions have the following syntax and
semantics:

3D Vector Load. This instruction has the form
Dvload �DRi �� Rj, Rk, W, b. �DRi is one of the two 3D logical
vector registers.Rj is the base address where the load starts.
Rk is thevector stride. W is an 4-bit immediate value which
indicates the width of each 3D-register element. Finally,b

is a Ðag that indicates the initial value of the 3D-register
pointer.

The semantics of the instruction are as follows (see Ýg-
ure 5-a): starting at addressRj , load a block ofW����bit
into the Ýrst position of 3D registeri. Repeat the process,
adding the stride registerRk to the current base address, for
the nextV L� � elements of the 3D register (beingV L the
contents of theVector Length register). The value of the
register pointer is either the beginning or the end of the reg-
ister, according to the value of the Ðagb (this allows to move
along the two ways of the third dimension).

3D Vector Move. This instruction allows to move one
subset of the 3D logical vector register into a 2D MOM reg-
ister and has the form3dvmov MRi �� �DRj, Ps .MRi stands for
the MOM destination register.�DRj is the 3D logical vec-
tor register from where the data is going to be transferred.
Ps is the pointer stride.

The semantics of the instruction are as follows (see Ýg-
ure 5-b): starting atoffset (offset being the contents, in
bytes, of thepointer register associated with�DRj), move
a 64-bit sub-block from 3D-registerj to the MOM regis-
ter Ýlei. This process is repeatedV L times (V L being the
contents of theVector Length register). Finally, update the
current value of the 3D register pointer by addingPs.

5 Evaluation background

In this section we present the methodology we have fol-
lowed to evaluate the beneÝts of the 3D memory vector ex-
tensions to the MOM ISA, and we quantify the improve-
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(b) 3D vector move (from one 3D register to one MOM register).

ments of the new 3D memory instructions compared with
the original 2D memory instructions.

5.1 Benchmarks and Code Generation

We have used the set of modiÝed benchmarks described
in [10]. From the Mediabench suite [17], the authors
rewrote a set of representative examples of video, image
and audio applications, using two versions of media ISA
extensions: a 1D�-SIMD ISA (similar to MMX) and
MOM. We have selected those with the highest vector-
ization percentage:mpeg2 encode, mpeg2 decode,
jpeg encode, jpeg decode andgsm encode. The
benchmarks show a wide selection of types of media mem-
ory streams, thus being suitable for evaluating the generality
of our 3D memory instructions.

We have modiÝed the emulation libraries and traces ob-
tained using ATOM [19], so that we are able to include 3D
memory instructions to the MOM versions of the bench-
marks. The 3D memory instructions were added to those
loops that fulÝlled either of the following conditions: (a)
there was potential to fetch more that one MOM stream
by loading a whole cache line, and (b) there was potential
for reuse at the 3D register Ýle level due to overlapping be-
tween two or more MOM memory streams. From the set of
benchmarks, onlyjpeg decode did not have suitable 3-

dimensional memory patterns to be exploited with our tech-
nique.

For our initial evaluation, the 3D enhanced code has been
hand-written after a careful study of the algorithms. We be-
lieve, however, that the compiler support needed for generat-
ing such instructions is relatively feasible to implement, due
to the nature of the analysis. Since we are only vectorizing
memory references, we do not need to check dependences
beyond those related to conÐicting reading and writing 2D
memory streams. As media kernels usually have lots of 2D
loads and no 2D stores, the analysis is commonly trivial (de-
tecting the stride between the 2D load instructions to pack
them together into a single 3D load and replacing the origi-
nal 2D load instructions with 3D vector moves).

5.2 Characteristics of the new instructions

In the previous section, we claimed that the performance
beneÝts from the new 3D memory instructions would come
from three main factors. In this section we will brieÐy quan-
tify them and discuss their beneÝcial impact over the archi-
tecture.

A. Longer data chunks accessed per cycle. Our 3D
memory instructions focus on fetching wider blocks of data
to capture slices from different MOM memory streams. As
a result, they exhibit the potential to obtain more effective
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bandwidth from a vector cache conÝguration, that is able to
access as many elements as the width of a cache line. To
show this property, Ýgure 6 shows the effective bandwidth
of different cache implementations with and without 3D in-
structions. We consider the effective bandwidth to be the
average number of words that can be obtained with a single
access to the cache (or to several banks concurrently in the
case of the multi-banked cache).

As shown in the Ýgure, 3D memory vectorization makes
very good use of the simple vector cache implementa-
tion, increasing the effective memory bandwidth for several
benchmarks and being even better than the expensive multi-
banked conÝguration.

Having longer consecutive sets of data to access each cy-
cle will translate into two main beneÝts. First, we will in-
crease the effective bandwidth of the vector memory sys-
tem, thus reducing performance slowdown. Second, we will
gather more data every time we access the cache, thus re-
ducing the cache activity (and as a direct consequence, the
power consumption).

B. Reduction of the cache traffic. As we have a second-
level register Ýle that is aware of the behavior of the memory
references at the third dimension, we have opportunities to
reduce the trafÝc to the cache by means of reusing (totally or
partially) streams at the 3D register Ýle level. For instance,
we may have 2D streams with data overlapping (as in the
example of section 2), or sets of 2D streams that become
invariant at the third dimension of the nested loops.

In order to realize the impact of register reuse over trafÝc
reduction, we may look at Ýgure 7. In the Ýgure, we present
the vector cache trafÝc reduction when including a 3D vec-
tor register Ýle, measured as the reduction of 64-bit words
transferred from or to the vector cache sub-system.

Reusing data at the register Ýle level has a clear impact
on the power consumption of the system (as the accesses to
the 3D register Ýle are cheaper, in energy terms, than the
accesses to the cache banks). Additionally, the latency of
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MOM MOM + 3D
1st 2nd 3rd 1st 2nd 3rd (max)

mpeg2encode 7.2 10.1 ñ 7.2 9.3 1.5 (5)
mpeg2decode 4.2 7.4 ñ 4.2 6.2 1.7 (3)
jpeg encode 4.1 8.2 ñ 4.1 7.8 1.9 (16)
jpeg decode 5.5 15.9 ñ 5.5 15.9 ñ

gsm 4.0 10.0 ñ 4.0 10.0 7.7 (16)

Table 1. Memory instruction vector length for
each of the three dimensions.

the 3D register Ýle is much shorter than the cache, thus pro-
viding a way to alleviate the processor-memory speed gap
impact.

C. Longer vector memory instructions. It is widely
known that the longer the vectors of a given architecture, the
better the ability to tolerate memory latency. Our 3D mem-
ory architecture extension provides two main beneÝts that
have the potential to better tolerate increases in the latency
of the memory instructions. First, we are actually doing a
sort of software prefetching, as a 3D memory instruction
triggers the fetching of streams of data several cycles before
they will be really needed. Second, we pack more elements
per memory instruction, thus taking advantage of the rela-
tion between the vector length and the tolerance to memory
latency.

Table 1 presents the average vector length along each di-
mension in every memory instruction (two dimensions for
plain MOM memory instructions, three dimensions when
including 3D memory instructions). Taking into account
that the 3D memory instructions are typically less predomi-
nant than the 2D memory instructions (as they are around 4
times longer, and hence, fewer 3D loads are required when
taking advantage of the 3D register reuse), we may realize
how the third dimension is contributing to the amount of
data read by each instruction.
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MMX MOM

Fetch rate 8 8
graduation window 128 128
Load/Store queue 32 32
INTEGER issue 4 4
INTEGER FUs 4 4

SIMD issue 4 1
SIMD FUs 4 1x4

memory issue 4 2
L1 memory ports 4 2

L2 vector memory ports n/a 1x4

Table 2. Processor configurations.

5.3 Modeled architecture

We have used theJinks simulator [10] to model an ag-
gressive 8-way out-of-order superscalar processor. The pro-
cessor is enhanced with its own independent multimedia
pipeline and SIMD register Ýle. We have two versions of
the same model, able to execute either MMX-style or MOM
instructions. Architectural parameters are summarized in
table 2. As seen, the MMX conÝguration is aggressive in
number of registers and functional units to avoid an unfair
comparison with MOM.

Note that the MOM processor has one SIMD functional
unit with four lanes or clusters. Every cluster is able to per-
form one MOM operation/cycle from the same MOM in-
struction, thus providing overall the same FU bandwidth
than the MMX processor (Ýgure 8-b illustrates the MOM
lane conÝguration).

In order to implement the combined 2D/3D memory
mechanism in the MOM architecture, we need to include
two new register Ýles: the3D Vector Register File, that con-
tains 4 physical 3D vector registers and the3D Pointer Reg-
ister File which keeps the coherent values of the pointers
for each logical 3D vector register. Note that the renaming
process of the 3D physical vector registers and the physical
pointer registers is not the same. For instance, a3dvmov
operation (which moves a slice from a 3D vector register to
a MOM register) causes the pointer register to be renamed,
as its value is updated using the pointer stride. Table 3 sum-
marizes the different register Ýle conÝgurations. We have
assumed 3 cycles of latency for the 3D vector register Ýle
(but 1 cycle per transfer).

We have estimated the area cost of the different register
Ýles using the models described in [20]. Estimated regis-
ter Ýle areas (in square wire tracks) and overall normalized
areas (relative to the MMX-like processor) are included in
table 3.

Figure 8 shows the vector memory sub-system imple-
mentation. Our basic cache hierarchy model is similar to
the Alpha 21364 [21] one, where both L1 and L2 caches
are located on-chip. The L1 cache is a 64 KB, 2-way set
associative, write-through cache with 32-byte lines. The
L2 cache is a 2MB, 4-way set associative, write-back cache

MMX MOM MOM + 3D

MMX/MOM Register File
register size 64 b 16x64b 16x64b

logical/physical registers 32/80 16/36 16/36
read ports (per lane) 12 3 3
write ports (per lane) 8 2 2

max memory bandwidth 4 4 4
estimated area (wt�) 2,826,240 2,654,208 2,654,208

cache buses (wt�) 262,144 262,144 n/a

Accumulator Register File
register size n/a 192b 192b

logical/physical registers n/a 2/4 2/4
read ports n/a 1 1
write ports n/a 1 1

estimated area (wt�) n/a 23,040 23,040

3D Vector Register File
register size n/a n/a 16x16x64b

logical/physical registers n/a n/a 2/4
read ports (per lane) n/a n/a 1
write ports (per lane) n/a n/a 1

max memory bandwidth n/a n/a 16
estimated area (wt�) n/a n/a 1,966,080

3D Pointer Register File
register size n/a n/a 7b

logical/physical registers n/a n/a 2/8
read ports n/a n/a 2
write ports n/a n/a 2

estimated area (wt�) n/a n/a 3,136

Estimated RF area 3,088,384 2,939,392 4,646,464
Overall normalized area 1.00 0.95 1.50

Table 3. Multimedia register file configura-
tions.

with 128-byte lines. L1 data cache latency is 1 cycle while
L2 cache latency is 20 cycles. The instruction cache has
not been simulated given the extremely low instruction miss
rates measured.

We have decided to adopt the same cache hierarchy con-
Ýguration proposed for the original MOM architecture [16,
22]. In this architecture, the MOM memory accesses bypass
the L1 cache and go straight to the L2 cache. As interfer-
ence between vector and scalar data might occur, a simple-
coherence protocol, based on an exclusive-bit policy, was
proposed.

Several reasons explain why is worth paying the extra
latency and implementing the vector memory sub-system
over the second level of cache. First, we avoid jeopardizing
the L1 cycle time and latency, thus not compromising scalar
performance, which is paramount for the target architecture.
Second, the L2 cache has longer cache lines than the L1 data
cache, hence increasing the potential performance of the al-
ready cost-efÝcient vector cache implementation.

Looking at Ýgure 8-a and 8-b , we can compare the im-
plementation of a 4-port multi-banked cache and a vector
cache for the original MOM architecture. The interconnec-
tion logic of the vector cache is signiÝcantly simpler than
its multi-banked counterpart. Note, however, that the vector
cache peak bandwidth is limited by the number of lanes of
the MOM pipeline (4 for our conÝguration). Even though
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Figure 8. Vector memory sub-system imple-
mentations: (a) multi-banked cache, (b) vec-
tor cache, and (c) vector cache and second-
level 3D vector register file.

the 4x8 crossbar required for the multi-banked cache is not
simple, we have not considered any extra latency to the
cache access pipeline.

Figure 8-c shows the vector memory system implementa-
tion, but this time for the MOM architecture with 3D mem-
ory instructions. Note that the 3D vector register Ýle is dis-
tributed over as many lanes as the MOM register Ýle. The
different widened elements of the 3D physical vector reg-
isters are distributed within these lanes. All the different
3D vector lanes are connected to the same array of bitlines.
So, every cycle, a chunk of up to 128 bytes of data can be
fetched from the L2 cache and can be directly written in par-
allel to one of the 3D vector register Ýle lanes. Therefore,
the effective memory bandwidth may be as large as the size
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1.0

1.2

1.4

1.6

P
er

fo
rm

an
ce

 s
lo

w
do

w
n

MMX-like multi-banked cache

MMX-like ideal memory

MOM multi-banked cache

MOM vector cache

MOM+3D vector cache

Figure 9. Performance slowdown for the dif-
ferent ISA and memory sub-system configu-
rations.

of a whole L2 cache line. While large chunks of data are
written in one of the 3D vector lanes, one 64-bit element
can be read from each of these lanes. As a result, we have a
peak transfer rate of four 64 bits elements per cycle between
the 3D vector register Ýle and the MOM register Ýle. Note
that the 3D register Ýle allows byte-aligned accesses. From
the point of view of implementation, we would typically re-
quire a mechanism that fetches two consecutive quadword-
aligned elements and that is able to use a shift&mask logic
block to extract the required 64-bit element.

6 Performance and power benefits of 3D
memory vectorization

In this section we will evaluate the beneÝts provided by
3D memory vectorization in terms of performance slow-
down relative to an idealistic memory system and will an-
alyze the impact of increasing the cache latency. Finally, we
will roughly estimate the power savings leveraged by the
reduction of the cache activity.

6.1 Performance slowdown with realistic memory

Figure 9 shows the performance slowdown of different
ISA and memory sub-system conÝgurations, relative to the
performance of a MOM processor with an idealistic mem-
ory system (single cycle of latency, effective bandwidth
equal to the peak bandwidth). The Ýgure allows us to de-
termine how well a given memory system performs over a
speciÝc ISA style.

First, Ýgure 9 allows us to see the effect of a realis-
tic memory implementation over the performance of the
MMX-like conÝguration processor. As seen in the Ýgure,
software prefetching combined with a way of avoiding bank
collisions would approximate the performance of the MMX-
like system to the one of an idealistic memory system, but
it would still be far from the performance of the idealistic
MOM system (1.31X of performance slowdown in average).
The reason is that the MMX-style processor is limited by is-
sue bandwidth and not by memory bandwidth.
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On the other hand, the realistic memory conÝgurations
of the MOM processor do not behave much better than
their MMX-style idealistic counterpart. The vector cache
presents performance slowdowns ranging from 1.07X to
1.58X (1.22X in average), while the much more expen-
sive multi-banked cache improves very slightly those re-
sults, with slowdowns ranging from 1.09X to 1.52X (1.19X
in average).

While 3D memory vectorization is not the panacea for all
media benchmarks (as some of them are clearly not limited
by memory bandwidth), results show that is an ideal can-
didate for solving the memory problem of the most critical
ones. Using the simple vector cache implementation as a
basic core, the 3D memory vectorization achieves high per-
formance increases in those benchmarks where the memory
impact is higher (such as inmpeg2encode, where perfor-
mance is improved by a 55%). Overall, performance slow-
down ranges only from 1.005X to 1.16X (1.08X in average),
clearly demonstrating the capability to overcome the mem-
ory barrier of our proposed technique.

6.2 Robustness to increases in the memory latency

As mentioned previously, our 3D memory vectorization
mechanism resembles a software prefetching technique in
certain aspects. We are able to tolerate high increases in the
memory latency since: (a) we are fetching to the 3D reg-
ister Ýle several 2D memory streams before they are really
needed, (b) we have longer memory streams and (c) we are
reusing data at the 3D register Ýle, which is considerably
faster than the memory.

We have evaluated the performance of the architecture
with and without 3D memory extensions in the scenario of
40-60 cycles of L2 cache latency. Such an experiment is
interesting, given the current technology trends, where L2
latency is bound to rise due to the increasing predominance
of wire delays. Moreover, this experiment allows us to ex-
tend the scope of our architecture to in-memory processors
such as VIRAM [23], where DRAM main memory is lo-
cated on-chip and no SRAM L2 cache is implemented.

Figure 10 shows normalized execution time for MOM
and MOM with 3D memory extensions, when we increase
the L2 cache latency. Results show that the 3D memory ar-
chitecture is much more latency tolerant than its basic MOM
counterpart. MOM average slowdown is 1.27X when in-
creasing L2 latency from 20 cycles to 40, while MOM + 3D
memory extensions slowdown is only 1.18X. At 60 cycles,
relative speed-up between MOM and MOM + 3D mem-
ory extensions rises to 11% forjpeg encode, 10% for
mpeg2decode and 16% forgsm encode.

6.3 Power Estimations

The use of 3D memory vectorization may have interest-
ing potential from the point of view of the power consump-

multi-banked vector cache vector cache + 3D reg. Ýle

jpeg encode 6.30 4.23 2.53
jpeg decode 3.82 2.46 2.46

mpeg2 decode 3.39 2.59 2.08
mpeg2 encode 39.88 38.48 21.00
gsm encode 6.21 2.31 0.32

Table 4. L2 cache activity (in Millions of ac-
cesses to L2).

tion of the memory system. As already seen in previous
sections, 3D memory vectorization reduces the activity of
the cache subsystem by: (a) increasing the number of ele-
ments fetched per access, and (b) reducing the overall trafÝc
via register reuse.

Table 4 shows the L2 cache activity for the three different
memory sub-system implementations (multi-banked, vector
cache and vector cache with a 3D register Ýle). Results show
that the multi-banked cache, being an already high cost im-
plementation, consumes much more energy than the vec-
tor cache implementation, as it does not take beneÝt from
fetching more than one data element from the same cache
line every cycle. As a result, the vector cache conÝgura-
tion reduces an average of 31% in the number of overall
accesses (relative to its multi-banked counterpart). On the
other hand, introducing 3D memory vectorization reduces
activity an additional 38% (relative to the raw vector cache).

While cache activity is a good measurement for evalu-
ating potential power savings, the cost of accessing the 3D
register Ýle could offset the overall power consumption. In
order to present a rough estimation of potential, we have
used the power models described by Rixner et.al. [20] to
evaluate the power consumption of the L2 cache and the 3D
register Ýle for the multi-banked conÝguration, the vector
cache conÝguration, and the vector cache plus 3D register
Ýle conÝguration (assuming a 0.18�m CMOS 1 GHz pro-
cessor). The model is an approximation, as some optimiza-
tions (such as the use of hierarchical or differential bit lines)
have not been considered. We have assumed that the L2
cache is physically distributed across 32 memory sub-arrays

Figure 11 shows average power consumption in watts of
the L2 cache combined with the 3D register Ýle (for our
3D enhanced architecture). Result shows that our 3D vector
register Ýle consumes a negligible amount of power com-
pared to the savings we obtain in the L2 cache. As a result,
our 3D enhanced processor appears as an energy-efÝcient
architecture, as we are reducing the execution time by 13%
in average while reducing at the same time the power con-
sumption of the L2 cache by 30%.
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7 Related Work

There are several vector/SIMD architectures that could
beneÝt from the 3D memory vectorization philosophy pre-
sented in this paper, due to their utilization, up to a certain
extent, of 2-dimensional memory patterns. Some examples
are the VIRAM processor [23], the CSI architecture [11],
the Imagine processor [24], or the PlayStationísEmotion
Engine [25]. Even more general n-dimensional architec-
tures such asMediaBreeze [26] could generalize the concept
to implement feasible high-bandwidth memory ports.

In the DSP domain, there is extensive work dealing with
n-dimensional prefetching or data reorganization for mul-
timedia applications [27, 28]. Zhang et. al. [29] use the
Impulse memory controller to gather sparse media streams
into dense cache lines for a set of image processing appli-
cations. Additionally, the distribution of our 3D register Ýle
in clusters to provide high bandwidth at low cost is similar
to the Rake cache proposed by Asanovic [30], which is a
distributed cache for each vector lane. Our proposal is fo-
cused on read-only memory streams and does not have the
coherency issues of the Rake cache.

There have been several works related to the idea of sec-
ond level vector register Ýles and vector features to increase
the percentage of register reuse. The NEC SX-3 vector ar-

chitecture [31] featured a second level vector register Ýle
with longer register Ýles than the regular ones. That idea
was to have a binding prefetch mechanism targeted to hide
memory latency with longer vector lengths. From the point
of view of vector register reuse, the CONVEX C4000 pro-
cessor features thevector first instruction, which al-
lows skewing a whole vector by a single position, and reuses
them for the next iteration of the related vector instruction.

Even from the point of view of basic vector coding tech-
niques, several tricks can be used to mimic, in a limited way,
what 3D memory vectorization does. A combination of vec-
tor shift and mask instructions could be used to take advan-
tage of overlapping 2D streams, but at the cost of a high
instruction overhead, and an increase in pressure over the
2D register Ýle. Moreover, these kind of techniques take
advantage of the overlap between streams but cannot take
advantage of the fetching of wide blocks of cache in a sin-
gle access, as our technique does.

8 Summary

This paper has shown that several media applications
suffer severe performance degradations due to the memory
bandwidth. We have seen that caches focused on fetching
wide blocks of data are cost/effective but fails sometimes to
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provide enough memory bandwidth due to the sparse behav-
ior of common 2D multimedia memory patterns.

We have proposed a combined 2D/3D memory vectoriza-
tion mechanism that can be adapted to a general 2D SIMD
architecture such as MOM. The mechanism is based of
fetching long 3D streams of data into a second level register
Ýle, used only for load memory transfers. This 3D streams
can be accessed by slices efÝciently with a simple clustered
distribution of the register Ýle, providing high bandwidth to
feed the 2D SIMD functional units.

This 3D memory vectorization mechanism leverages two
main advantages. We increase the effective memory band-
width by fetching wider blocks of data that will be con-
veniently reorganized, and we reduce the overall trafÝc by
reusing data inside the 3D registers due to overlap between
2D streams.

Our mechanism, implemented on a 8-way superscalar
processor with 2D vector extensions, reduces signiÝcantly
the performance degradation of memory-bound bench-
marks. Additionally, the associated reduction of the cache
activity shows the potential of power savings at the level of
the cache sub-system. Therefore, at the cost of a 50% more
area than a regular MMX-style register Ýle, we provide a
mechanism that leverages a 13% of performance speed-up
and achieves a 30% of power savings in the L2 cache.
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