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Abstract improvement despite the faster clock and wider pipeline. To
address this problem, a lot of research has been done for
With faster CPU clocks and wider pipelines, all relevant scaling the issue queue, register file, and cache hierarchy; yet
microarchitecture components should scale accordingly. nothing has been done for scaling the load/store queue. In
There have been many proposals for scaling the issue queuefact, the technigues proposed for scaling the issue queue,
register file, and cache hierarchy. However, nothing has beenregister file, and cache hierarchy increase not only the num-
done for scaling the load/store queue, despite the increasingber of in-flight instructions but also the overlap among
pressure on the load/store queue in terms of capacity andinstructions [8,7,5]. These techniques greatly increase the
search bandwidth. The load/store queue is a CAM structure demand for botthigher capacityand higher search band-
which holds in-flight memory instructions and supports widthin the load/store queue.
simultaneous searches to honor memory dependencies and  The load/store queue is a CAM structure that supports
memory consistency models. Therefore, it is difficult to scalesimultaneous associative searches to honor memory depen-
the load/store queue. dencies and memory consistency models. Consequently, it is
In this study, we introduce novel techniques to scale the extremely difficult to scale the capacity and bandwidth of the
load/store queue. We propose two techniques, store-loadload/store queue. Brute-force approaches to scaling the load/
pair predictor and load buffer, to reduce the search band- store queue are not likely to work.
width requirement; and one technique, segmentation, to In a modern processor, the load/store queue is imple-
scale the size. We show that a load/store queue using oummented as two separate queues and has three functions: (1)
predictor and load buffer needs only one port to outperform The load/store queue buffers and maintains all in-flight
a conventional two-ported load/store queue. Compared to memory instructions in program order. (2) The load/store
the same base case, segmentation alone achieves speedugseue supports associative searches to honor memory
of 5% for integer benchmarks and 19% for floating point dependence. A load searches #tere queueo obtain the
benchmarks. A one-ported load/store queue using all of our most recent store value, and a store searche#tkequeue
techniques improves performance on average by 6% andto find any premature loadstpre-load order violatioh (3)
23%, and up to 15% and 59%, for integer and floating-point In some processors, the load/store queue supports associa-
benchmarks, respectively, over a two-ported conventionaltive searches to enforce memory consistency (in shared-

load/store queue. memory multiprocessors). Specifically, the ordering among
) loads that access the same address is an important special
1 Introduction case. If this ordering is relaxed, subtle correctness problems

arise: if two loads to the same address are issued out of order

In a modgrn out-of-order microproceSSOf, the load/store 54 the value is changed by another processor in between the
queue is designed to absorb bursts in cache accesses and {Q |0ads [1], the later load will obtain an earlier value

maintain the order of memory operations by keeping all in- \yhereas the earlier load will obtain a later value. To avoid
flight memory instructions in program order. As CPU clocks g problem, some processors (e.g., Alpha [3] and POWERA4
become faster, wire delays to the cache hierarchy WOISer10]) guarantee load-load ordering for loads to the same

and the processor-memory performance gap widens. As &,qqress. For this guarantee, a load searches the load queue to

result, there are more in-flight memory instructions in the ¢4 any out-of-order-issued load#ogd-load order viola-
pipeline, increasing the pressure on the load/store queueign).

Therefore, we neefligher capacityin the load/store queue. In this paper, we propose three techniques to scale the
In addition, modern microprocessors employ wider issue for o5 4/store queue; two of these techniques reduce the search

higher performance, requiringigher search bandwidtin bandwidth demand on the load/store queue, and the other
the load/store queue to allow more memory instructions to technique increases the capacity of the load/store queue.
overlap. We use two key observations to reduce the search band-

With faster processor clocks and wider pipelines, all rél- yigih demand. First, previous studies show that store-load
evant microarchitecture components should scale accordyger yiplations are highly predictable and infrequent [6, 2].
ingly. Otherwise, the processor performance will show little They use this observation to reduce the number of pipeline
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squashes due to store-load order violations, while allowing  Store queue Load queue

out-of-order memory operations as much as possible. While SO A by store A

they show that store-load order violations are rare, we ‘ 5ad B 1 | by load B
observe that not only are the violations rare but a majority of Store T | |

stores and loads do not even access the same address. We use load D

this observation to reduce the search bandwidth demand on ' by load D v

the store queueWe use the store-set predictor from [2] to - — —» Search for the latest store value
predict store-load dependencies. If a load is predicted to be ———> Search for a store-load order violation
independent of any preceding stores, the load will not search —® Search for a load-load order violation

the store queue. If there is a dependent earlier store, then the Figure 1: Searches in the Id/st queue.
prediction is wrong. Consequently, when the store completes,
it will squash the load and subsequent instructions. perform a two-ported, conventional load/store queue. Com-

Second, we observe that in order to detect a load-loadpared to the same base case, segmentation in isolation
order violation, any given load needs to search only thoseachieves speedups of 5% for integer benchmarks and 19%
loads that were issued out of order with respect to the loadfor floating point benchmarks. A one-ported load/store queue
and that out-of-order-issued loads are far fewer in numberusing all our techniques improves performance on average by
than all in-flight loads. Across the SPEC2K benchmarks, the6% and 23%, and up to 15% and 59% for integer and float-
average number of out-of-order-issued loads is less than 3ng-point benchmarks, respectively, over a two-ported con-
while the number of in-flight loads is 41. We use this obser- ventional load/store queue.
vation to reduce the search bandwidth demand oridad This paper is organized as follows. In Section 2 we
queue We introduce thédoad buffer which is a small buffer  introduce two techniques to reduce the search bandwidth
to hold loads that are issued out of order with respect to eardemand. In Section 3 we discuss the segmentation of the
lier yet-to-be-issued loads. When a load issues, it searche®ad/store queue and its impact on bandwidth and latency.
the much-smaller load buffer instead of searching the entiré/Ve present and analyze the results of these three techniques
load queue. Thus the load buffer moves the detection of loadin Section 4. Finally, we conclude in Section 5.
load order violations away from the load queue.

The contributions of the paper are as follows: 2 Reducing Search Bandwidth Demand

* Reducing the search bandwidth demand on the store
queue: While [2] uses the store-set predictor to avoid
store-load order violations, our novelty is in applying the

A modern processor performs three important searches
on the load/store queue which is implemented as two sepa-

predictor to the new problem of reducing the store queuerate queues. Figure 1 shows these searches in the load/store

bandwidth and appropriately changing the load/storedueue. First, when_ a load executes, it searchessthee
queue implementation. With this technique, we reducedueueto compare its load address to the addresses of all

the search bandwidth demand on the store queue by 720/%tores. If there is a match with an earlier store, then the load
on average for SPEC2K benchmarks obtains its value from the store queue and ignores the value

. - from the cache. Second, when a store has a valid address, it
* Reducing the search bandwidth demand on the load )
i . X searches thébad queueto compare its store address to the
gueue: Our novelty is in observing that out-of-order- X
. . . . __addresses of all loads. If the address matches with a younger,
issued loads are only a few in number and in proposing

the load buffer. With this technique, we reduce the speculatively-serviced load, thisemature loadand all sub-

search bandwidth demand on the load queue by 76% oﬁc,equent instructions are squashed and fetched again (store-

average for SPEC2K benchmarks. load order violation). Third, when a load executes, it searches

. ina the load/st it i the load queue to compare its address to the addresses of all
ncreasing the load/store queue capacitywe segmen loads, in some processors ([3, 10]). If the address matches

the Ioad/store.queue _|nto mgltlple smaller queues an%ith a younger out-of-order-issued load, this load and all
connect them in a chain. The idea of segmentation is not

. . subsequent instructions are squashed and fetched again
new—e.g., [4] [8] segment the issue queue. While [8] d S q g
. L (load-load order violation).
treats the segments as a hierarchy by moving instruc-
tions from §Iow to fa§t segments, gnq [4]' treats the seg-o 1 Reducing Store Queue Search: Store-Load
ments as discrete units of power dissipation, our noveltypair Predictor
is that we treat the segments as a pipeline. Such pipelin- _
ing essentially makes our load/store queue a variable- ~ As mentioned above, a load needs to search the store
latency structure, a design point not explored before.  queue to obtain the latest store value. While [6] shows that
store-load order violations are rare, we observe that not only
Using the SPEC2K benchmarks, we show that a load/are the violations rare, but a majority of stores and loads do
store queue using our techniques needs only one port to ouf20t even access the same address. Consequently, most of the
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Program order Issue order width, this change does increase the penalty of store-load

store® A loadl A < E: store-set order violations and store-load pair mispredictions. Previ-

load® A |:: 0 F ously, a store-load order violation was detected by the store
store” A 373 71 store-load when the store executed and computed the effective address.

load? A load? A <« - par Now, the store cannot detect the hazards until it commits.

Therefore, our store-load pair prediction must be conserva-
tive enough to avoid the performance degradation due to this

time the search fails, and the load ends up using the valugxtra misprediction penalty; however, it should not be too

from the cache hierarchy. Our study confirms that only aboutconservatwe tp kill all the opportunity for reducing the
14% of searches find a matching store. If we can tell ahead O§earch bandwidth demand on the store queue.

time that a load will not find any matching store, we will 2 1 1 Implementing the Store-Load Pair Predictor
avoid performing useless store queue searches. Thus, we can

reduce the search bandwidth in the store queue by 86% inthe The store-load pair predictor uses structures similar to
ideal case. the store-set predictor, including the Store Set ID Table

The store-set study shows that the store-load order viola{SSIT) and the Last Fetched Store Table (LFST). Each store
tion is highly predictable by using a reasonably simple pre-set is a collection of a load and one or more potentially-
dictor [2]. We extend the store-set predictor to predict the matching stores. The SSIT is indexed by the program counter
matches between loads and stores. We call our scheme thend maintains the store-sets using a tag for each load and the
store-load pair predictarA load will search the store queue stores in its store-set. The LFST is indexed by the store-set
only when the store-load pair predictor predicts that there is adentifier obtained from the SSIT entry and maintains the
potentially-dependent store in the queue and tells the load tanformation about the most-recently fetched store for each
obtain its value from the store queue. Otherwise, the loadstore-set [2]. While the store-set’s LFST has a valid bit in
simply obtains its value from the cache hierarchy without each entry, the store-load pair predictor uses an extra counter
searching the store queue. in each LFST entry instead of the valid bit.

While the store-set predictor detects only those store- In the store-set predictor, the valid bit of an LFST entry
load pairs that cause dependence violations, our store-loag set when a store relevant to the entry is fetched. The valid
pair predictor detectall matching pairs of loads and stores bit is reset when the store issues, because there is no possibil-
regardless of whether they cause violations. Figure 2 illus-ity for the store to violate store-load order after that point in
trates this point. The store-set predictor will need to detecttime. When a load is fetched, it accesses the SSID and LFST
only the stor&load! pair, while our store-load pair predictor to determine whether the load is potentially dependent on
will detect both the stofeload! pair and the stofeload®  any store in flight. A load that is predicted to be dependent
pair. monitors the valid bit of the LFST entry relevant to the load

In the case of a misprediction of a store-load pair underwhen it is ready to issue. If the valid bit is set, the load has to
our predictor, the load will not search the store queue andwait until the valid bit is cleared.
instead will use a stale value from the cache, without know- A single valid bit is not sufficient for the store-load pair
ing that there is a matching store in the store queue. Therepredictor. As mentioned earlier, a store searches the load
fore it is up to the store to detect this problem. The store mustjueue to detect store-load order violations when the store
handle two cases: the load is issued either before (e.g1)load commits. From the store-load pair predictor’s point of view,
or after (e.g., load) the store. The store detects the first casethe LFST entry is valid from the time the store is fetched to
when it executes and searches the load queue for prematutbe time the store commits. As a result, the time interval for
loads. However, the store cannot detect the second casthe LFST entry to be valid from the store-load pair predic-
because the load has not been issued when the store searchess point of view—from fetch to commit—is much longer

Figure 2: Store-set vs. store-load pair prediction.

the load queue. than that from the store-set predictor’s point of view—from
To handle this conditionwithout increasing the search fetch to issue.
bandwidth we change the timing for the detection of the This longer time interval causes the store-load pair pre-

store-load order violation; now, a store searches the loadlictor to have a higher probability of encountering multiple
queue for a matching load when the store commits (writes toin-flight stores with the same program counter. If there are
the cache) and removes the entry from the store queue, nanultiple stores with the same program counter and we were
when the store executes. Thus, all loads with stale or premato use a single valid bit, then the first store would invalidate
ture values will be detected when the store commits. Thisthe LFST entry at commit without waiting for the remaining
change further reduces the number of stores to search thm-flight stores. Subsequent loads would assume incorrectly
load queue because the number of stores committed is signithat there are no more dependent stores in the pipeline.
icantly less than the number of stores executed. While this  To solve this problem, we introduce a multi-bit counter
change does not incur more searches, and hence higher banfibr each LFST entry. By using the multi-bit counter, we can
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Fetch Issue Commit Commit stores
Valid = true; L )
store update LFST Valid = false; update SSID
store-set only -
load access SSID&LFST read Valid update SSID
Valid = true;
store Counter++; Valid = false; update SSID Counter--;
stori—set update LFST
tore-load pai read Valid
stor pair load access SSID&LFST read Counter update SSID

Figure 3: Combining the store-load pair predictor with the store-set predictor.

correctly infer when all of the in-flight stores commit without the store-set prediction, leading to false alarms. We use a 4K-
being affected by just one of the stores’ retirement. entry SSIT as was used in the previous work [2], and our
The store-load pair predictor’s counter increments whenexperiments show that a 4K-entry table is large enough to
a store is fetched and decrements when the store commitsbsorb this extra pressure on the SSIT.
When a load that is predicted to be dependent is ready to  Second, having the unnecessary Stdoad? pair in the
issue, it accesses both the valid bit and the counter. If theprediction table causes the store-set predictor to find a valid
counter is larger than zero, the load is predicted as beingentry for load, even though loafdhas not incurred any store-
dependent on the stores in flight, and the load must search thiead order violation. However, stdtéssues and invalidates

store queue. the entry of the stofload? pair before loadlissues. There-
) fore, load issues without waiting for stofe Hence, such
2.1.2 Low Cost Implementation unnecessary store-load pairs do not affect performance.

. . . Figure 3 summarizes the duties of the store-set predictor and
In the simplest design, the store-set predictor and store- . . . - .
. . . store-load pair predictor in the pipeline. Statements in bold
load pair predictor may be implemented separately. However, ) .
) . . are performed by the store-load pair predictor

because the two predictors use identical structures, we com-

bine thg two so that the predictprs share the same p.hysicaélz Reducing Load Queue Search: Load Buffer

tables (i.e., SSIT and LFST). This strategy lowers the imple-

mentation cost. The only change is that each LFST entry = Modern processors send stores to the cache in program
includes both a valid bit and a counter. From the store-loadorder. However, loads are handled differently. Because load
pair predictor’s point of view, the LFST entry is valid when values are needed for the computation to proceed, most pro-
the counter is non-zero; whereas from the store-set prediceessors allow loads to access the cache out of program order.
tor's point of view, the same LFST entry is valid when the Servicing loads out of order causes correctness problems in
valid bit is set. Therefore, the same LFST entry has twothe context of memory consistency models for shared-mem-
meanings of validity (or invalidity) depending on which pre- ory multiprocessors. Some processors use the load/store
dictor is accessing the entry. gueue to avoid the correctness problems.

In the event of recovery from misspeculations such as Specifically, there is a special case of load-load ordering
branch mispredictions or memory-dependence violations, thavhen the loads go to the same address. If this ordering is
SSIT and LFST do not need to be modified during roll-back. relaxed, subtle correctness problems arise: if two loads to the
However, squashed stores should roll back each countesame address are issued out of order and the value is changed
properly for accuracy of future prediction. To model this by another processor in between the two loads [1], the later
extra work in recovery, we charge an extra cycle to ourload will obtain an earlier value whereas the earlier load will
misprediction penalty. Our study shows that a three-bitobtain a later value. Note that this problem cannot happen if
counter is large enough to achieve high prediction accuracy.the value is changed by a store from the same processor,

By definition, store-load pair prediction subsumes store-because the store would detect the later load to be premature
set prediction. Therefore, only the store-load pair predictorand squash the load along with all subsequent instructions.
updates the prediction tables, causing two problems for store-  This load-load ordering problem may be handled by
set prediction. either software or hardware. We explain the software option

First, as shown in Figure 2, the store-load pair predictorfirst. If the consistency model supported is a relaxed one, pro-
has to keep the pairing information for not only the stere cessors provide a “memory barrier” instruction to allow the
load! pair but also the stofdoad® pair in the prediction  programmer to enforce ordering among memory operations
table. However, from the store-set predictor’s point of view, wherever needed. The details depend on the specifics of the
keeping the stoftload? pair in the prediction table is not particular relaxed model implemented. The programmer is
necessary and would reduce the effective size of the tableexpected to use the instruction to prevent the problem.

Such unnecessary store-load pairs may increase aliasing in
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However, extensive use of memory barriers is an overkill Load queue LIV Load buffer

and hurts performance. To spare the programmer from using
too many memory barriers, some processors provide hard- g LR <—Top IT] load E
ware support to prevent this problem by guaranteeing load- S oad B 1%/4 load G
load ordering for loads to the same address (.e.g., Alpha[3]). £ |°a§ 8 ~<—NILP —>0
a oa 0
This guarantee is typically provided by using one of two 5 load E T7‘
schemes. (1)Any load violating load-load ordering is 09_ :gggg 271
squashed regardless of whether an intervening store (from <— Tall 1
another processor) occurs or not. (2) Squash is dorg Y
whenan intervening store is detected. B program-order issued load
In the first scheme, the load queue is searchedvayy [ ] non-issued load
load to ensure that no later load to the same address executes [_] out-of-order-issued load

out of order and obtains an old value. When a load executes,
it searches the load queue to compare its address to the
addresses of all loads. If there is a match with a younger loadyueue, it searches the load buffer, which is much smaller than
issued out of program order, then the out-of-order-issueche load queue.
load and subsequent instructions are squashed and fetched Figure 4 shows the basic idea of how the load buffer
again. While this search reduces the burden on programmergorks. Whenload E andload Gissue, there are older non-
and improves performance, the search bandwidth pressure agsued loads, namelpad C andload D. Therefore load E
the load queue greatly increases. Therefore, we target thesgndload G are out-of-order-issued loads. Whiead E and
searches and optimize them. load G execute, they put their addresses in the load buffer.
The second scheme does not significantly increase thgyhen load E does not have any older non-issued load, it
load queue search bandwidth. The invalidation signal frominvalidates its relevant load buffer entry. To find out-of-order-
the other processor’s store is used to detect ordering violaissued loadsload E searches the load buffer and compares
tions. For example, the MIPS R10000 uses the invalidationjts address against the addresslafd G. When load C
signal to findall outstanding loads (including premature jssues, there is no older non-issued load. Therefoss C
loads) when a shared value is changed by another processe@bes not put itself in the load buffer. Whéwad C executes
[9]. The invalidation searches the load queue an@ri§ |ater, it searches the load buffer for out-of-order-issued loads
matching outstanding load (premature or otherwise) is foundand compares its address against the load buffer (i.e., only
the load and the subsequent instructions are squashed. Theéad E andload G) instead of comparing against the entire
fact that the Alpha supports a relaxed consistency model angbad queue.
the MIPS supports sequential consistency does not matter
here; load-load ordering causes problems in all models2.2.1 Implementing the Load Buffer
Because invalidations are significantly less frequent than out-
of-order loads, and because invalidations may be filtered fur-
ther by L2 or L3 caches, the load queue searches caused l:p

invalidations may not need any special bandwidth-reduction” ™" .
technique. Therefore, we do not address this invalidation-pOlnter (NILP) and Load Issue Vector (LIV) to handle this
caused search bandwidth concern. The NILP points to the oldest non-issued load entry.

To maximize performance, some recently-announcedTOp points to the oldest load entry, and Tail points to the next

processors (e.g., POWERA4 [10]) implement a combination Ofavailable entry for a new-coming Ioa(_JI. The pointer starts
the two schemes. However, the POWER4 also searches thféom Top and cannot go beyond Tail. The NILP moves

load queue to identify out-of-order-issued loads. Because théovyard Ta!I when the load to which it pomts issues, and the
industry trend is in the direction of performing load queue pointer skips over loads that are already issued, so that NILP

searches, we optimize these searches always points to the oldest non-issued load.

To that end, we observe that an issued load needs to To avoid accessing the load queue for updating the
search only those loads that were issued out of order befordILP, we employ the Loaq Issue Vector (LIV). The LIV has
previous non-issued loads. Across the SPEC2K benchmark ,he same ngmber of eptnes as the load gueue itself. In each
the average number of out-of-order-issued loads is small (<entry, there isa sm.gl.e issue bit and a pointer to a load 'buffer
3). We use this observation to reduce the search bandwidtf""Y- Eachissue b'|t.|n the LIV corresponds to an gntry in the
demand on the load queue. We employ an extra buffer withload gueue. The bit is set when the relevant load issues, and

fewer than four entries, called thead buffer to keep only :jhe ?j'td's reset yvhen tr;e _relevant load commits or is invali-
out-of-order-issued loads separate from the load queue: ated due to misspecu atl_on. . .
When a load issues, it checks where the NILP is point-

When a load executes, instead of searching the entire load . o .
ing. If the NILP is pointing to the LIV entry for the load, it
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Figure 4: Load buffer implementation.

The key implementation concern for the load buffer is
w to allocate and access entries in the load bufihiout
ccessinghe load queue. We employ the Non-Issued Load



means that the load is the oldest non-issued load. Hence, this —————— Program order

load searches the load buffer to detect the load-load order Head segment Tail segment

violation as soon as it has a valid address. Also, the load sets Segment #1 Segment #2 Segment #3

its LIV bit, which triggers the NILP to move toward Tail. The o 9] [o Ol (e o |5
NILP skips over any entry whose issue bit is already set, so 8 g g S| |8 E S 8
that the NILP will always stop at an LIV entry whose issue — . T

bit is cleared. If the NILP is not pointing to the LIV entry for . o >
the load, then the load is not the oldest load among non- . search to find the most recent store value
issued instructions. For this case, if there is an available entry <& - - -- search to detect load-load order violation
in the load buffer, the load copies its address to the load -~ - — search to detect store-load order violation
buffer entry as soon as it has a valid address. The pointer of Figure 5: Memory disambiguation in the

the LIV entry should point to this newly-allocated load buffer segmented load/store queue.

entry and the LIV bit is set.

If the load buffer is full, the load stalls until there is an completes the search. If the goal of the search is to detect a
available entry in the load buffer or until the NILP points to load-load order violation or a store-load order violation, the
the LIV entry for this load, which means that this load can be search continues to the next segment toward the tail segment
issued in program order and elides the load buffer. Such auntil it detects a violation or completes the search.
stall mechanism is similar to what the store-set predictor uses ~ However, such multiple searches through different seg-
to stall a load that has non-issued dependent stores in thgents cause two design challenges. First, searching multiple
pipeline. segments to find the latest store value requires extra cycles

Load buffer entries can be released and reused in the folthat impact load hit latency. This searching also makes the hit
lowing way. As the NILP moves toward Tail, if the NILP latency variable. For high performance, superscalar proces-
encounters an LIV entry with an issue bit that is already set,sors speculatively schedule instructions dependent on the
then the load corresponding to this LIV entry was issued outload with the assumption that the load is a cache hit. Variable
of order, and the load occupies an entry in the load buffer.hit latencies may complicate such a scheduling mechanism.
The load buffer entry that is pointed to by the LIV entry can To avoid complicating the scheduler, we forego early sched-
now be invalidated, because the corresponding load does natling for the instructions that are dependent on the load.
have any older non-issued load and cannot cause a load-loddowever, there is one important exception to this rule: if the
order violation after that point in time. Then, this load buffer load is in the head segment, it does not need to search any
entry can be used by later out-of-order-issued loads. At thigorevious segment because no previous segment exists, so the
time, the load relevant to the LIV entry has to search the loadhit latency for the load is constant. Therefore, we keep per-

buffer for an out-of-order-issued load. forming early scheduling for the load-dependent instructions
if the load is from the head segment.
3 Increasing Queue Capacity Second, unlike the conventional load/store queue which

limits the total number of searches to the number of ports, the

We apply segmentation to increase the size of the loadsegmented load/store queue may have more simultaneous
store queue by concatenating multiple smaller load/storesearches than the number of ports. As long as such searches
queues serially. We allocate a load/store queue entry for eachre distributed among the segments without any conflicts, the
memory instruction within a segment. If a segment runs outsegmented load/store queue can pipeline searches and can
of entries to allocate, we move on to the next segmenthandle more simultaneous searches than the conventional
Figure 5 illustrates the basic idea of the segmented load/storgyad/store queue.
queue. For brevity, we show load and store instructions For example, assuming a two-ported load/store queue,
together in the same queue. We call the segment with the oldthe conventional queue allows any combination of two mem-
est memory instruction theead segmenand the segment ory accessein total at one cycle, whereas the segmented
with the youngest memory instruction tteel segmentn this  queue allows any combination of two memory acce$ees
study. each segmerdt one cycle. In Figure Store Candstore Eof

A memory instruction first performs a memory depen- segment #1 are allowed to search the load queue to detect a
dence search on the segment corresponding to its load/stoigore-load order violation aj.tMeanwhile load D andload

queue entry, and the search extends to other segments &Sof segment #3 can search the load queue to detect a load-
needed. As shown in Figure ad C (or store G searches  |oad order violation in the same cycle.

its own segment first. If there is no match within the segment,
the search continues to other segments. If the goal of the3.1 Allocation

search is to find the most recent value from a matched store, i i )
the search goes to the previous segment and continues Strategies for allocation of a new entry in the segmented

searching toward the head segment until it finds a match OIload/store gueue allow a trade-off between the above issues
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of latency and bandwidth. We consider two such strategies.  Table 1: System configuration parameters.
One strategy imo-self-circular, which spreads out entries
across many segments, and the othesei-circular, which ROB size 256 entrigs
compacts entries into only a few segments. Spreading out|Issue queue 64 entries
entries provides higher aggregate bandwidth by using many ||ssue width
segments simultaneously, but it increases latency by having
to search more segments. Compaction has the opposite

Functional units 8 integer, 8 pipelined floating-point

effect Register file 356 INT/ 356 HP
' _calfri ; 2-port L1 i-cache & 64K 2-way, pipelined 2-cycle hit,
The no-self-circular treats all segments as a single 4-port L1 d-cache 32-byta bloc

gueue, and allocation of a new entry uses a single head and
tail. Allocation moves linearly from one segment to the next
even if the current segment has free entries at the top. The

L2 cache 2M 8-way, pipelined 12-cycle hit,
64-byte bloc

self-circulartreats the segmented load/store queue as ordered MeMo"Y 150 cycle
segments with a head and a tail for each segment. In this|Store-set predictor with 4K-entry SSIT
method, allocation of new entries is circular within each seg- |Store-load pair 128-entry LFS
ment. Allocation moves to the next segment only if there are |Branch predictor hybrid GAg & PAg 4K-entries each,

no free entries at the top of the current segment. Thus, no- | Mispredict penalty 14 cycle

self-circular spreads out allocation across many segments ) .
while self-circular tends to restrict allocation to fewer seg- Petween the issue stage and the memory stage until the port

ments. contention is resolved. Because our previous techniques sig-
nificantly reduce the load/store queue search bandwidth, the
3.2 Contention port contention rarely occurs when the segmented load/store

o _ ~queue is combined with the techniques.
Segmentation introduces a contention problem. Going

back to the example in Figure 5, there are two situations thayy Results

can cause port contention problems in cyglestore Cand

store Efrom segment #1 go to segment #2 to continue the We have built a cycle-accurate simulator of an out-of-
search for a store-load order violation at cyeleh one con-  order superscalar pipeline. Table 1 shows the base configura-
tention situation, segment #2 may initiattore Gto search  tion for the experiments. Because we vary the number of
for a store-load order violation. Then the total number of load/store queue ports from 1 to 4, we assume a four-ported
searches required in cyclgih segment #2 will exceed seg- d-cache so that the d-cache does not limit the number of
ment #2's search bandwidth. This situation is easily solvedrequests to the load/store queue. Because we vary the load/
by delaying the commit of the store, because the store is nostore queue size from 32 to 128, we assume a 256-entry

in the pipeline anymore. active list so that the active list does not limit the number of
The other contention situation occurs if segment #2 ini- in-flight memory instructions.
tiatesload Candload Ato search for a load-load order viola- We use the SPEC2K applications with the reference

tion while store Candstore Ereach segment #2 in cyclg.t  input set. We skip the first 3 billion instructions and then sim-
We cannot simply delay the searches because the loads atdate a total of 500 million instructions. Table 2 shows the
already in the memory stage of the pipeline. Fortunately, thisapplications we use in this study and their base IPCs.
situation can happen only when several conditionssareil- In Section 4.1, we examine the effect of the store-load
taneouslysatisfied: (1) more than one load is issued or a storepair predictor and the load buffer in isolation on the search
starts the search for a store-load order violation from a segbandwidth and performance. In Section 4.2, we examine the
ment #A at cycle and more than one load is issued out of impact of increasing the capacity of the load/store queue with
order from a segment #B at cycle (2) segment #A is closer segmentation. In Section 4.3, we combine the three tech-
to the head segment than segment #B, (3) the tifisedtarlier ~ niques and examine their impact on processor performance.
than the timeg, and (4) the distance between two segments is

the same as the time difference betwegantd {. However,

we found that the average number of out-of-order-issued load ~ 12ple 2: Applications and their base IPCs

instructions in the pipeline is small (< 3) (Section 4.1.2). INT INT FP FP
'I_'herefore, the prgbaplllty of all four conditions being satis- bzip 25| per 3.0 ammp | 1.2 mgrid b
fied at the same time is low. )
If contention does occur, we squalstad C andload A gee 2.1\ twolf | 15| applu | 2.6 sixrackl 2.9
along with all instructions between the issue stage and the |9zip | 2.0|vortex| 2.2} art 0.3 swim 10
execute stage, similar to a flush due to a load miss in conven- |mcf 0.3 | vpr 1.3| equake | 1.1 wupwise 29
tional pipelines. Alternatively, we can stall the pipeline parser | 1.9 mesa 3B
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Figure 6: Search bandwidth reduction in the store queue by using different predictors.
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4.1 Reducing Search Bandwidth Demand our predictor ends up being more conservative in predicting a
] ) load to be independent.

. In th!s section, we present the results of the store-load Figure 6 shows that the store queue with a perfect pre-
pair predictor and the load buffer separately. Then we presenfjicior (left bar) reduces the search bandwidth of the base
the results of combining these two techniques. case by 86% (demand is 14% of the base case). The aggres-
sive predictor (middle bar) manages to reduce the search
bandwidth by 81% for integer benchmarks, and by 84% for

In this subsection, we evaluate our technique for reduc-floating-point benchmarks. Our store-load pair predictor
ing the search bandwidth demand on the store queue. W&ight bar) manages to reduce the search bandwidth demand
apply the store-load pair predictor to predict whether a loadon the store queue by 67% for integer benchmarks and by
is dependent on any earlier store. A load that is predicted to/6% for floating-point benchmarks compared to the base
be independent does not search the store queue, thus reduease.
ing the search bandwidth demand on the store queue. In  InFigure 7, the Y axis shows the performance benefit of
Figure 6, the Y axis shows the search bandwidth demands ofhe predictors compared to the same base case as Figure 6.
the store queue of three different predictors (perfect, aggresVe see that the perfect predictor does not achieve much
sive and store-load pair) normalized to the search bandwidtimprovement, even though it reduces the search bandwidth
of the base case. The X axis shows our benchmarks and thdemand by 86%. Recall that the base case uses two store
average of the integer and the f|oating_point programs sepaqueue ports, which provide sufficient bandwidth. Therefore,
rately. The base case is a two-ported conventional load/storéeducing the demand does not translate to performance in
queue in which all loads search the store queue. We choostlis figure. The benefit of reducing the demand will be seen
two ports because that is a commonly-used design point in Section 4.1.3, where we show a 1-ported store queue.
current high-performance processors. The aggressive predictor perform®rsethan the base

The perfect predictor flags a search for only those loadscase in a few cases by as much as 19%, even though it
that are dependent on an in-flight store. The aggressive preceduces the search bandwidth demand by more than 80%.
dictor uses unrealistic hardware to emulate an alias-free verThe lack of aliasing in the aggressive predictor also implies
sion of our store-load pair predictor — i.e., store sets whichlack of constructive interference (a similar effect is reported
may conflict in our tables do not do so in the aggressive predn [2]). Consequently, the aggressive predictor is overly eager
dictor. Consequently, with the aggressive predictor, a loadto predict a load to be independent of earlier stores. The
avoids searching the store queue as much as possible. [fgsulting high misprediction rate causes a large number of
comparison, because our store-load pair predictor uses realigduashes that degrade performance, especiallyoftexand
tic hardware, as described in Section 2.1, it incurs aliasingWupwise.Our store-load pair predictor is more conservative

(only as much as the original store-set predictor). Therefore@nd does not incur misprediction squashes as frequently as
the aggressive predictor. As a result, our store-load pair pre-

4.1.1 Reducing Store Queue Search
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Figure 7: Performance benefit from the search bandwidth reduction in the store queue.
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Table 3: Accuracy of the store-load pair predictor. Table 4: Average number of loads issued out of
program order.

INT  [Mispred. | Squash FP Mispred.  Squash
bzip 17.3%| 7.3x10 [ammp 4.3%| 3.9x10 INT INT FP FP
gec 27.8%| 8.4x10¢ |applu 22.2%| 8.0x18 bzip | 3.4 |perl | 32/ ammp | 1.2 mgrid 2.9
gzip 9.0%| §.7x10° |art 0.0%| 36105 gcc 0.3| twolf | 1.0| applu 1.5 sixtrack] 1.0
mcf 8.1%| 1.1x10' |equake 0.9% 1.6x19 gzip | 08| vortex| 19 art 34 swm | 0p
parser | 123% 2.1x1b |mesa 1559 2.4x1h mef | 0.2 vpr | 15| equake | 2.5 wupwise 23
perl 155%| 7 gx105 |mgrid 8.6%| 7 gx108 parser | 0.8 mesa 0.p
twolf 5.0% | 2.8x10° |sixtrack 4.3%| 1.3x10% most benefit by reducing the search bandwidth demand by
| 0 gz o | 08| g | S5 T rn i e rstion et 1 o
vpr 22.3%| 1.2x1¢ |wupwise 24.7%|  6.6x18 stores.Vortex shows the least reduction in the search band-

width demand. This result is not a surprise when we consider
that just 18% of dynamic instructions are loads and 23% are
stores. Therefore, even though the load buffer removes the
Yearches required for detecting a load-load order violation
. from the queue, the load queue still has a significant number

point benchmarks. . .
. . of searches from stores for detecting store-load order viola-

Table 3 shows the accuracy of our store-load pair predic-

tion. The misprediction causes pipeline squashes or unn flons invortex
) P u pIp qu Orunneces-  raple 4 shows the average number of out-of-order-

sary_searches n fthﬁ" storg queue. r']rhe r_eﬁults shoy\_/ t_hat Osued loads in flight every cycle. This average indicates how
gredlcttor_fui:cess u by a\émql(i;quas es without sacrificing thefarge the load buffer needs to be (as mentioned in Section 2).
pportunity to save bandwidth. Even though these numbers are rather small across bench-
4.1.2 Reducing Load Queue Search marks, the performance impact of out-of-order-issued loads
is significant. We can see the impact of these loads when we
In this subsection, we evaluate our technique for reduc-look at the first two bars in Figure 9.
ing the search bandwidth demand on the load queue. The Figure 9 illustrates the performance benefit of using the
load buffer separates the search for detecting a load-loadbad buffer. An N-entry load buffer allows up to N loads to be
order violation from the load queue. Thus, the load queueissued out of program order. We vary N as 1,2 and 4. In addi-
only needs to support associative searches by stores to detetivon, we also show two designs that issue loads in order, to
store-load order violations. Therefore, we expect the loadjustify out-of-order issue of loads. Note that in these designs
buffer to reduce substantially the search bandwidth demandoads are in order only with respect to each other. In-order
on the load queue. issue of loads has two different impacts on performance: (1)
In Figure 8, the Y axis shows the search bandwidththe ILP reduces, but (2) the bandwidth pressure on the load
reduction in the load queue by using a load buffer with two queue also reduces (because there is no need to search the
entries. The base case is a conventional load queue withodbad queue for load-load order violations). Theorder-
the load buffer. In the figure, the search bandwidth in the loadalways-searchload queue (the leftmost bar) fruitlessly
queue with the load buffer is normalized to the search band-searches the load queue to incur not only the loss of ILP but
width in the load queue of the base case. The load bufferalso the bandwidth pressure of an out-of-order issue load
reduces the search bandwidth demand on the load queue lyueue. On the other hand, thero-entryload buffer (the next
an average of 74% for integer benchmarks and 77% for floatbar in white) does not search the load queue and therefore
ing-point benchmarks. Imgrid, the load buffer achieves the incurs only the loss of ILP without the bandwidth pressure.

1.0 1.0
0.8 0.8

0.6 0.6
0.4 0.4

0.2 0.2
0.0 0.0

dictor does not incur performance degradatiowantexand

wupwise Our store-load pair predictor performs comparably
to the perfect predictor, and it outperforms the base case o
average by 2% and up to 7% for both integer and floating-

Search demand relative to
a conventional load queue

; ; N Y
S @ &(’Q} & S PO

Q . - g
F & &S @

& & I O RAS
Figure 8: Search bandwidth reduction in the load queue by using the load buffer.
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Figure 9: Performance benefit from the search bandwidth reduction in the load queue.

The base case is a conventional load queue without the loadonventional two-ported load/store queue. This result says

buffer. that without our techniques, a one-ported load/store queue is
From the figure, the first two bars show that in-order not an option because of its poor performance. However, the

issue of loads performs poorly. The zero-entry load buffer'sone-ported load/store queue with our search bandwidth

bandwidth-pressure advantage allows it to perform bettereduction techniques achieves an average speedup of 2% and

than in-order-always-issue. However, the advantage is no¥7% with a maximum of 7% and 25% for integer and floating-

enough to overcome the ILP loss of in-order issue. We alsopoint benchmarks, respectively, over the base case, which is

see that by allowing only one load to be issued out of order,the conventionatwo-portedload/store queue. We can also

we can realize the significant benefit of the load buffer. A see that the two-ported load/store queue with our techniques

four-entry load buffer is close to an infinite load buffer in performs comparably to the conventional four-ported load/

terms of performance, but we can see most of the benefit wittstore queue.

just two entries. The figure shows that the load/store queue

with a two-entry load buffer improves performance by an 4.2 Increasing Queue Capacity

average of 3% and 7% with a maximum of 12% and 18% for

. . . . In thi ion, we show the result of menting th
integer and floating-point benchmarks, respectively. this section, we show the result of segmenting the

load/store queue to increase its capacity. Figure 11 shows the
4.1.3 Combining the Two Reduction Techniques effect of the segmented load/store queue. The base case has a
32-entry load queue and a 32-entry store queue. We segment
In this subsection, we combine the store-load pair pre-the load/store queue into four segments with 28 entries in
dictor with the load buffer to reduce the search bandwidtheach segment for a total size of 112. We keep the access
demand on both the store queue and the load queudatency of each segment the same as the base case, but we
Figure 10 shows the performance of a load/store queue withmake each segment smaller than the base case to compensate
our two reduction techniques relative to the base case, whiclior any potential overhead that segmentation would intro-
is a two-ported conventional load/store queue. duce. A search within one segment takes one cycle, and each
From left to right, the bars represent a one-ported con-additional segment takes an extra cycle.
ventional queue, a one-ported queue with our techniques, a In the figure, we show the results of our two methods for
two-ported queue with our techniques, and a four-ported con-allocation, no-self-circular and self-circular. Recall from
ventional queue. The leftmost bar represents the extrem&ection 3.1 that no-self-circular spreads out allocation across
case of low design complexity and low performance, and themany segments while self-circular tends to compact alloca-
rightmost bar represents the extreme case of high desigtion within fewer segments.
complexity and high performance. On average, the no-self-circular shows no speedup for
The figure shows that the performance of the conven-integer benchmarks and 16% speedup for floating-point
tional one-ported load/store queue drops by 24% from thebenchmarks. Five (bzip, gcc, gzip, parser, and twolf) of the
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Figure 10: Performance benefit from combining the two techniques to reduce the search bandwidth.
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Figure 11: Performance benefit from the segmentation of the load/store queue.

nine integer benchmarks actually perform worse than theone segment, 9.9% search two segments, 0.3% search three
base case. We explain this poor performance in Table 5 bysegments, and 5.4% search all four segments to find a latest
showing the average number of entries needed in the loadétore value from the store queue. For integer benchmarks,
store queue. We see that in the five benchmarks (shaded) tH&#0% of the load accesses search only one segment, while the
average number of entries needed in these benchmarks can iame is true for 79% of the load accesses for floating-point
within one segment. However, no-self-circular spreads theirbenchmarks. This table shows that the extra search cycle due
entries across two segments, incurring extra search overhead segmentation is not likely to hurt the average load hit
that does not exist in the base case. Therefore, no-self-circulatency (Section 3) because the majority of loads end their
lar does not perform as well as the base case when there isearches within one or two segments.

less demand for higher capacity of the load/store queue. On

the other hand, even thougbrtexdoes not need a large load 4.3 Combining Search Bandwidth Reduction and
queue, its high demand on the store queue explains itdligher Capacity

spee_lfihup uslflng th? segrrr:_ented load/store queu(ej. £ 501 In this section, we combine the segmented load/store
19% the -cireular ac |ev<(ajs an ?\gr;ge Sdpggcyu? ot 576 ang]ueue with the store-load pair predictor and the load buffer to
o with a maximum speedup of 15% an o for Integersyq the overall benefit from these techniques. Apart from the

and floating-point benchmarks, respectively. By restricting base processor configuration, we also show a scaled proces-

the entries within one segment as much as possible, SeIf'c'r{;or to see the benefit of our techniques in the future. To scale

cular reduces the possibility of spanning load/store qQuUeUGe processor, we increase the issue width from 8 to 12, the

entries across two segments. Therefore, self-circular manc.q e queue size from 64 to 96, and the L1 hit latency from 2

ages to outperform no-self-circular. Because segmentatioq0 3 cycles, while keeping the cache size the same. For both

provides higher banawidth by using many segments SIml"lt""'processors, we use a two-entry load buffer, self-circular allo-

neously, self-circular outperforms the unreali;tic 128'emrycation, and four 28-entry segments. Figure 12 shows the per-
unzegm.(ejntﬁd Iolild/store bquet;.e fas Wﬁ." h(SecnorEa)Jake .. formance of theone-portedoad/store queues with our three
andmgrid show the most benefit from Igher queue C.apac'tytechniques compared ta@o-portedconventional load/store
due to the fact that 42% and 51% of their dynamic mstruc-queue The white bar shows the speed up of our techniques

tions are loads.
. on the base processor, and the dark bar shows the speed up on
Table 6 shows the distribution of the number of searchedthe scaled processor.

':iegments lljy Ipadsf fg; tﬂ)/e Ia]:u:st sltorgs using the self-(;]lrcu:ar. The figure shows that with today’s processor, the one-
or example, iIrmcf, 62.4% ot he load accesses search only ported load/store queue with our techniques improves perfor-

Table 5: Average number of entries needed in the Table 6: Distribution of the number of searched
load and store queues. segments by loads for the latest stores.

INT Benchmarks| Avg.(ld/st) FP Benchmarks Avg.(ld/st) Bench. 1 2 3 4fBench 1 2 3 4

bzip 16 / 6lammp 65/28 bzip 978 14 00 04 ammp| 740 138 0.3 119
gce 7/ 6|applu 49/19 gcc 980 15 0.0 0.5 applu 781 114 0.0 1p5
gzip 14/ 7|art 49/ 17 gzip 977 18 0.0 0.5 art 89.1 59 01 49
mcf 40 /9 equake 72115 mcf 844 99 03 54 equake| 753 139 0.1 10.7
parser 21 /9 mesa 33/2p parser | 93.3 50 0.0 1} mesa 747 148 0.2 10.3
perl 34/2Q mgrid 90 /¢ perl 815 135 0.0 5.) mgrid 941 36 00 22
twolf 18 / 6| sixtrack 60/3 twolf {925 6.1 0.0 1.4 sixtrack] 71.8 17.0 0.2 11.0
vortex 13/18 swim 70/ 21 vortex |79.2 13.9 0.3 6.5 swim 813 96 00 91
vpr 41/ 15 wupwise 47 /31 vpr 84.0 139 0.0 2. wupwise 749 151 04 9.6

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) CSFI;/ITER

0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY



0.6~ [ 1-ported LSQ with techniques, 8-way issue, 64-entry issue queue, 2-cycle L1 —10.6

B 1-ported LSQ with techniques, 12-way issue, 96-entry issue queue, 3-cycle L1
04 -04

02+ —0.2

0.0 0.0

S @& & & N LSS W
@ TS T &I S TR

Figure 12: Performance of a one-ported Id/st queue with the three techniques combined.
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