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Abstract

In the modern era of wire-dominated architectures, spe-
cific effort must be made to reduce needless communica-
tion within out-of-order pipelines while still maintaining bi-
nary compatibility. To ease pressure on highly-connected
elements such as the issue logic and bypass network, we
propose the dynamic detection and speculative execution of
instruction strands–linear chains of dependent instructions
without intermediate fan-out. The hardware required for
detecting these chains is simple and resides off the criti-
cal path of the pipeline, and the execution targets are the
normal ALUs with a self-bypass mode. By collapsing these
strings of dependencies into atomic macro-instructions, the
efficiency of the issue queue and reorder buffer can be in-
creased. Our results show that over 25% of all dynamic
ALU instructions can be grouped, decreasing both the aver-
age reorder buffer occupancy and issue queue occupancy by
over a third. Additionally, these strands have several proper-
ties which make them amenable to simple performance op-
timizations. Our experiments show average IPC increases
of 17% on a four-wide machine and 20% on an eight-wide
machine in Spec2000int and Mediabench applications. Fi-
nally, strands ease the IPC penalties of multicycle issue and
bypass by reducing dependency pressures, providing oppor-
tunity for clock frequency gains as well.

1. Introduction

As architects strive for faster pipelines with decreasing
silicon feature size, they are faced with inevitable com-
munication issues. Minimum latency through critical path
code often requires dependent instructions execute on sub-
sequent clock cycles. Forwarding path delays, however, do
not scale with technology [23] and modern CPUs already
spend as much time bypassing the ALU result as computing

it [10]. Additionally, instruction scheduling (wakeup and se-
lect) gets substantially slower as pipelines get wider [23],
leading some architects to consider sacrificing back-to-back
issue of dependent instructions. In the end, the scalability
of modern architectures is hampered by the communication
between dependent instructions, not the actual computation.

The key insight of this work is that many dependent in-
structions produce operands which are transient; that is, they
have a single consumer of their value. Transient operands
allow RISC instruction set architectures (ISAs) to overcome
their dyadic nature. For instance, it is impossible to sum
three numbers in RISC assembly without using a temporary
register, which is probably only consumed by the second ad-
dition. CISC proponents might use this opportunity to argue
for more complex instructions, yet a dyadic ISA can effec-
tively describe any program. In fact, the processor is free
to construct more efficient, complex operations from these
simple instructions. We propose such a method.

To address the issue of dependent instruction communi-
cation, our mechanism identifies repetitive chains of instruc-
tions connected by transient operands. These are cached and
issued atomically in replacement of the original instructions
which are removed from the stream. Since a chain’s result is
computable as soon as its sources are ready, they are issued
speculatively before all of the original instructions have been
seen. Due to the special properties of these chains, this light-
weight speculation is easily maintained and recovered from
in the case of a mis-speculation. Small logic engines and a
cache, all of which lie off the critical path of the pipeline,
provide the hardware support for this mechanism. These
units prepare strands for execution on closed-loop functional
units-traditional arithmetic-logic units (ALUs) with a self-
bypass mode. These ALUs can operate at double frequency
because the intermediate values are not bypassed. The end
result is a significant reduction in the number of in-flight in-
structions and evident performance improvements (visible as
simple IPC increases or a reduction in the IPC penalty of
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multicycle issue [18, 31] and multicycle bypass [24, 29]).
This paper is organized as follows. Section 2 reviews pre-

vious research in related areas. Section 3 introduces tran-
sient operands, their grouping, and their relation to intercon-
nect issues. Section 4 describes the hardware and algorithm
for our grouping mechanism. Section 5 details the experi-
mental setup, coverage results, and performance results. Fi-
nally, Section 6 concludes and describes future work.

2. Related Work

Previous work has addressed functional unit clustering,
large-scale hyperblock enhancement, small-scale depen-
dence collapsing, and speculative data-driven microthread
creation. Our work gathers from all proposals, dynamically
creating and speculatively executing groups which can span
beyond the instruction window yet are small enough to con-
struct and manage easily.

The term strand was first introduced by Marquez in [21],
defined as an atomic group of instructions identified at com-
pile time. Kim and Smith later refined this definition to an
atomic dependence chain to illustrate the accumulation na-
ture of modern integer applications [16]. This corresponds
to his and others’ observation [17] that well over half of dy-
namic RISC instructions in modern benchmarks only require
one or zero register inputs. Though Kim and Smith proposed
a new ISA and architecture to expose such chains, and their
proposed accumulator architecture reduces communication
costs by collapsing them.

The most commonly suggested method of
communication-aware execution is clustering–dividing
a processor’s resources into logical groups and steering
the instructions between them based on dependencies.
This technique is implemented commercially on the Alpha
21264 and 21364 processors, which have two identical
pipelines with distinct register files, bypass networks, and
issue logic [13]. Implementations with more clever steering
techniques can be found in academic research, such as
Multicluster [9] and CTCP [3]. Parcerisa et al. [24] and
Baniasadi et al. [2] study various clustering techniques to
conclude that performance is very dependent on cluster
interconnection and steering logic. Our proposal achieves a
similar effect as clustering, but moves the steering burden
off the critical path and into a fill unit.

Many researchers have proposed using the trace cache
fill unit for this and other dynamic optimizations [11, 15].
RePLay [26] forms hyperblock regions (called frames) in
a similar fashion, but guarantees atomicity in its frames.
Though no firm estimates are made of fill unit latency, the
authors assume between 100 and 10,000 cycles are needed.
However, performance is not sensitive to this delay as up to
10,000 cycles produces a similar speedup [8]. The mecha-
nism we propose is far less complex than these proposals,

focusing only on grouping chains of dependent instructions
to be collapsed later on a closed-loop ALU.

Other researchers have studied dynamic collapsing on a
multi-input execution unit. Sazeides et al. [30] explore the
potential of instruction-dependence collapsing on 3-1 and
4-1 (three or four inputs respectively, one output) ALUs.
Speedups of 1.35 on Spec95int for an eight-wide machine
are stated as possible with collapsed ALUs, which were
proposed in [20] and [27] adding negligible latency over
two-input devices. Macro-op scheduling [18] uses no spe-
cial ALUs, but does issue dependent instruction pairs into a
single reorder buffer entry. Similarly, the Intel Pentium M
combines some dependent pairs of micro-ops which derived
from the same x86 instruction [12]. These approaches al-
low paired instructions to be scheduled atomically, but the
intermediate value is not quashed as with our mechanism.
Macro-op scheduling achieves roughly similar instruction
coverage as our strands, but does not produce speedup unless
pipelined scheduling is assumed. To address more than a sin-
gle dependency, Yehia and Temam [32] propose using the re-
PLay framework to create instruction “functions” which are
collapsed on a 10-input bit-sliced ALU. Unlike our mecha-
nism, these groups are tree-shaped, non-speculative, and not
limited to transient operands; thus it must duplicate instruc-
tions between functions to satisfy fan-out.

In other ways, our work resembles that of data-driven
multithreading. Chappell et al. first introduced subordinate
microthreads in [5], which Collins et al. [6] and Roth et
al. [28] use for speculatively computing specific critical val-
ues such as load addresses and branch predicates. These
mechanisms are effective value prefetchers, but assume a
machine with simultaneous multithreading support. Slice-
Processors [20, 22] create microthreads for similar data-
driven purposes but require no multithreading support. Our
strand execution also speculatively executes dataflow paths
to produce a single result, but picks the value for opportu-
nity, not criticality.

3. Transient Operands and Strands

Transient operands, produced values with only one con-
sumer, form the building blocks of our instruction groups.
We restrict the grouping algorithm to these values because,
once passed to the consumer, these operands need not be
committed to the architectural state of the machine. These
values often connect critical dependent instructions; in other
words, this producer-consumer communication is on the
critical path of the application.

Figure 1 shows an example of transient operands gener-
ated from four-input addition. In the top box, a simple C
function returning the sum of the four inputs is shown. We
used several modern compilers on this code with various op-
timization levels and all returned practically the same assem-
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Figure 1. Common compilation of four-way ad-
dition into accumulation dataflow.

Figure 2. Percent of all dynamic operands
which were groupable transients, broken
down by consumer type.

bly code, which is shown in the lower box with its dataflow
representation. Each instruction has a true data dependence
on the previous, creating a critical path of three instructions.
In this example, the intermediate R1’ and R1” values are
transient operands–they are produced, consumed once, and
discarded. The communication between add instructions is
also on the critical path of the computation, which in a tra-
ditional design would require the use of the bypass path and
back-to-back issue.

The arrangement in Figure 1 is what we term a strand. A
strand is a string of integer ALU instructions that are joined
by transient operands (thus have no fan-out). This defini-

tion is slightly different than the one introduced by Kim and
Smith [16] who did not preclude fan-out in their strands.
This restriction somewhat limits the number of instructions
eligible for incorporation in our strands, but allows us to
safely discard intermediate results. For our work, the com-
ponent instructions do not have to be subsequent, can span
basic block boundaries, and for this paper have a maximum
length of three instructions. Though the instructions in a
strand are stored in their original encoding, they can be ex-
pressed as macro-instructions for convenience:

R9 = ( ( R1 + R2 ) + R3 ) + R4

To cover as many instructions as possible in strands, our
mechanism separates the predicate evaluation from branch
instructions and the effective address computation from
memory instructions. The predicate and effective address
computations become simple ALU operations and are thus
includable within strands. Figure 2 shows the prevalence
of groupable transient operands in Spec2000int and Media-
Bench applications (experimental parameters defined in Sec-
tion 5.1). The height of each bar shows the percentage of
committed dynamic operands which had a single ALU pro-
ducer and consumer. The bars also show how many of these
transients were consumed by an effective address (ea) or
branch predicate (br) calculation. On average, about 38% of
Spec2000int operands and 39% of MediaBench operands are
groupable transients, showing a potential for exploitation.
As transient operands have such short lifetimes–on average
less than four instructions separate producer and consumer–
they are more likely to be communication-critical.

4. Hardware and Algorithms

The basic organization of our dynamic optimization
mechanism is similar to trace-cache techniques [8,11,15,26]
except for our use of a custom cache for grouped instruc-
tions. It should be noted there is nothing mutually exclusive
between our cache and a trace cache as they are accessed in
different stages and store somewhat different information.
Figure 3 shows our mechanism’s relation to a traditional
OOO pipeline. There are four main components added: the
fill unit, the strand cache, the dispatch engine, and closed-
loop ALUs. We discuss each in turn.

4.1. Strand Cache Fill Unit

The strand cache fill unit is similar in purpose to a trace
cache fill unit: to observe the instructions being commit-
ted and update a decoded cache. This unit finds transient
operands, connects them, and caches them for future use.
Results demonstrating the latency tolerance of the strand
cache fill unit (not shown for to brevity) closely resemble
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Figure 3. Overview of hardware requirements
for supporting strands. New additions are
shaded.

Table 1. Example entries in the operand table.

Last Producer Last Consumer Consumer
Reg Instruction Instruction Count

R5 PC 1440 - 0
R6 PC 1404 PC 1412 1
R7 PC 1408 PC 1480 8

that of other fill-unit-based dynamic optimization techniques
[8]. These results show that the iterative nature of integer
code allows a great deal of slack in optimizing instructions.
Thousands of cycles of fill unit delay shows no appreciable
performance effect in our mechanism as well.

Transient detection is achieved with a small structure in
the fill unit called the operand table. This structure has one
entry per architectural register, detailing the last committed
producer, last committed consumer, and the number of con-
sumers of this value. Table 1 shows example entries in an
operand table. In this example, R5 was produced by program
counter (PC) 1440 but not yet read, R6 was produced by PC
1404 and read only once by PC 1412, and R7 was produced
by PC 1408 and has been read eight times, most recently by
PC 1480. An operand is guaranteed dead when it is over-
written, so the fill unit is assured that any instruction writing
to R6 makes the previous R6 value (the one currently shown
in Table 1) dead. This operand has a consumer count of one,

so if the producer and consumer are both integer ALU op-
erations, this table entry (producer and consumer) has been
identified as transient.

This transient is then checked to see if it connects to an
existing strand. If it does, the fill unit appends the transient
to that strand; otherwise, a new strand is begun. However,
to prevent the cache from overflowing with small strands, we
prohibit transients ending in branch predicate or effective ad-
dress computations from beginning a new strand–they must
wait to be attached to an existing strand. It is important to
note that strands are stored using architectural registers, not
renamed physical registers. This means that the renaming
algorithm will not affect the detection of these instructions
in future iterations.

The strand cache fill unit also watches committing strands
to look for source value-prediction opportunities. If a source
strides predictably after a threshold number of strand execu-
tions (we use four, though this choice has negligible effect
on performance), the predicted next value will be computed
and stored in the strand cache. If the predicted stride is zero,
this value is a predicted constant and is treated in the same
way. Since only high-confidence strides are detected, value
prediction correctness is very high–over 99%–but the limited
use only increases performance by 1 to 2%. It is important to
note that the typical hazards of value-prediction are already
covered by other strand hazards, adding little complexity to
handling value mispredictions. This is discussed in more de-
tail in Section 4.3.

4.2. Strand Cache

The strand cache is a small content-addressable memory
(CAM) which stores connected transients as strands. Figure
4 shows its major contents. Though the strand in the fig-
ure has only left-side connections, strands can have left or
right (source 1 or source 2) connections. Each entry uses ap-
proximately 175 bytes and holds three sets of information–
bookkeeping data, the component instructions, and previous
reader information. Though each line is large, our results
show that very few entries are needed for effectiveness.

First, as with many architectural caches, the strand cache
has basic bookkeeping information such as a valid bit and
counters. These keep track of basic strand statistics such
as the number of times this strand’s instructions have been
seen. There is also a solid flag to indicate if this strand can
be issued by the dispatch engine and a least-recently used
(LRU) counter which is biased to keep taller strands longer.
This bias forces the most-significant bit of the counter low
for strands with three instructions, making it less likely to be
the highest value in the table (the entry to be replaced).

The next set of data in a strand cache entry holds three
instruction entries, one for each of the possible instructions
in the arrangement. Each instruction entry holds its PC, in-
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Figure 4. The strand cache stores bookkeep-
ing data, the component instruction informa-
tion, and previous reader data.

struction bits, and whether it has been seen by the dispatch
engine. It also contains information about the instructions’
two sources, such as their PCs and whether they have been
seen. The source PC is retrieved from the operand table by
the strand cache fill unit and stored in the strand cache when
the operand is committed. Finally, we store the source values
which were used for the previous strand execution. These
older values are needed if a strand recovery is necessary (ex-
plained in the next subsection).

As with an instruction cache, the strand cache references
architectural registers, not the physical registers assigned by
the renamer. Though the strand cache duplicates some in-
formation in the instruction cache, the strand cache more
importantly stores the metadata describing how operations
relate and the state of their sources. This replicated data does
not bloat the cache significantly as the strand cache can be
quite small for significant effect. Section 5.2 details the sen-
sitivity of our mechanism to the strand cache size.

Finally, the strand cache stores the previous reader infor-
mation, which is updated by the fill unit. This includes the
PC of the instruction which (we predict) reads the strand
output register before the strand writes to it. It also stores
the value that was previously there, so it can be recovered if
a strand is executed prematurely. This algorithm is further
discussed in the next subsection.

4.3. Dispatch Engine

Each instruction, after being decoded, is sent to the dis-
patch engine in parallel with the renamer. This component’s
purpose is to insert strands into the instruction stream and
remove the individual instructions from the stream. This is
hazardous if assumptions about the strands are incorrect, so

the dispatch engine is also responsible for maintaining a cor-
rect machine state with the architectural registers. To this
end, there are six basic tasks which need to be completed, the
first three of which are done in parallel. These major tasks
are illustrated in Figure 5, which shows a simple strand being
triggered for execution and a recovery strand being needed
afterward.

Setting the seen flags. The first tasks is setting the seen
flag in the strand instruction entries. This CAM lookup com-
pares all instruction PCs in all valid strands to the PC about
to be renamed. This should only result in zero or one hit
as an instruction can only exist in one strand at once. If all
the instruction seen flags for a strand are set, the strand has
completed a pass and the seen flags are reset. After a thresh-
old number of passes (we use four), the strand is labeled as
solid. If the seen flag is already set, this indicates that the
strand did not complete its last pass, and all seen flags are
reset.

Updating the source seen flags. This lookup on all
source PCs can result in multiple hits as the same instruc-
tion can be a source for multiple strands. The source seen
flag is also set if the input is an immediate, an input from
another instruction in the strand, the zero register, or has al-
ready been value-predicted by the fill unit.

As strands replace instructions outside of the safety of re-
named registers, the third task of the dispatch engine updates
the previous reader seen flag to prevent anti-dependence vio-
lations. A quintessential example is a strand of the following
macro-instruction:

R1 = ( ( R0 + 0x42 ) + 0x43 ) + 0x44

If R0 is the zero register, it is evident that this strand
can be executed at any time and produce the correct result
as it has no variable inputs. Speculative renaming of this
strand, however, could cause a write-after-read (WAR) haz-
ard if another consumer of the current R1 is later fetched.
It might also cause a write-after-write (WAW) hazard in a
similar manner. To prevent these anti-dependencies between
architectural registers, the strand cache fill unit notes the
previous reader PC for each strand, which is the program
counter of the last instruction that reads the value overwrit-
ten by the strand’s output. Only the bottom output has a
previous reader as it is the only value written out to the reg-
ister file. Strands terminating in branch predicate or effective
address computations overwrite no architectural register, so
no previous reader information is stored for these strands.

Removing instructions. If the dispatching instruction is
found in a solid strand, the pipeline is signaled to quash this
instruction. To assure recoverability, when an instruction is
removed, the dirty table is updated. The dirty table has a
pointer per register indicating the strand cache instruction
that creates it.
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Figure 5. Example of strand execution and fine-grain recovery.

Determine strand readiness. The dispatch engine also
checks the following conditions to determine which of the
strands in the cache are ready:

• The previous reader seen flag is set, so the strand’s out-
put should not overwrite a live value.

• Each instruction in the strand must have its seen flag
set or both of its source seen flags set. This assures all
values needed to compute the output have been seen.

• The strand must be solid.

• The strand is not already executing.

Any strands meeting the above conditions are queued for
dispatch in the ready strand queue. This queue is multi-
plexed with the decode-to-dispatch queue with higher prior-
ity, so on the next cycle the strand(s) will be dispatched be-
fore any normal instructions. The output register is marked
as dirty (pointing to the strand bottom) until all of the in-
structions in this strand are seen. Thus, strands can exe-
cute before some and after other component instructions–it
is only important that all component instructions are eventu-
ally seen and removed before the strand executes again. For
example, the strand in Figure 1 is ready to dispatch as soon
as the inputs a, b, c, and d have been seen as well as the pre-
vious reader of R9. As these inputs are often immediates or
highly predictable register values, strands usually dispatch
many cycles before all of their instructions have been seen.
Once in the dispatch stage, the strand will be allocated one
reorder buffer entry as if it were a single instruction. Of

course, since a strand is atomic, the whole strand must be
quashed if some of it’s instructions are quashed by a branch
misprediction. This is a rare occurrence, however, as strands
usually exist within a single basic block.

Anti-dependence checking. The final task of the dis-
patch engine is to detect consumption of dirty values. If
the dispatching instruction reads a register with a dirty ta-
ble entry pointing to a strand’s bottom instruction, this is a
previous reader violation–the previous value is being read
but a strand has overwritten it (write-after-write hazard). In
this case, the dispatch engine puts the offending instruc-
tion back into the decode-to-dispatch queue and dispatches
a load-immediate instruction in the ready strand queue to
replace the previous value. As this queue has a higher dis-
patch priority than the decode-to-dispatch queue, the strand
will replace the proper register value before the offending
instruction dispatches again.

Conveniently, this anti-dependence detection also cov-
ers all value-prediction errors. For instance, if an incorrect
source value is used in a speculative strand producing R7,
that register now has a corrupt value. However, the corrupt
value cannot be read before the entire strand is seen and any
value mispredictions are evident. Any attempt to read R7
before all the strand’s instruction have been seen is previous
reader violation, and a value recovery is initiated. And, by
the time all of the strand’s instructions have been seen, the
value prediction can be checked by the dispatch engine. If it
was erroneous, then the strand is re-inserted with the correct
inputs.

If the dispatching instruction reads from a register with
a valid dirty table entry not pointing to a strand bottom,
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this triggers a recovery strand. The offending instruction
is put back into the decode-to-dispatch queue and a sub-
strand consisting only of the instructions that produce the
dirty value is queued. Depending on the flags of each in-
struction, the source values from the last strand execution
might be used for execution instead of the current register
values. An example recovery is shown in Figure 5, where
the read of R2 would result in an incorrect value. The dis-
patch engine also notes when instructions write to a dirty
register, meaning it is no longer dirty thus the table entry is
cleared.

Recovery strands are also triggered at strand modifica-
tions and traps. The first keeps the dirty table consistent
with the strand cache by flushing any values dependent on
a strand about to grow or be evicted. Recovery strands are
issued at system calls and interrupts as they are assumed to
access all registers, thus any values marked as dirty must be
flushed to return the system to a consistent state. Since these
events are statistically infrequent and there are only a hand-
ful of dirty registers at any time, recoveries are not a signif-
icant source of slowdown. On the whole, recoveries are not
common–only about one per hundred strand executions.

It is important to note that recovery strands are dispatched
in a lazy manner; that is, they are only inserted into the in-
struction stream on-demand. For instance, if a strand crosses
a branch boundary but the branch mispredicts, the whole
strand is quashed and no recovery strand is dispatched.
Though the instructions before the branch are now effec-
tively missing from current instruction stream, the likelihood
that these results will be needed on the new path turns out to
be quite small. Thus, only if a future instruction requests
these dirty values will they be recovered. This property
of transients prevents excessive recoveries from impeding
speedup.

4.4. Closed-Loop ALUs

The execution target for strands are closed-loop ALUs,
which are normal single-cycle integer ALUs with the addi-
tion of a self-forwarding mode. In this mode, output val-
ues are sent directly back to the inputs of that ALU and
not written to the result bus. Thus the intermediate value
is lost upon usage and never committed to the architectural
state. As modern processors spend half of the execution cy-
cle on ALU execution and half on full bypass [10], an ALU
spinning on its own results can compute two internal values
per cycle. This closed-loop operation is similar to the low-
latency ALUs of the Intel Pentium 4 [14], which perform
two dependent integer instructions in the two halves of a cy-
cle. However, the Pentium 4 cycle time is relatively short
and there are two ALUs are on the double-speed bypass, so
these half-cycle operations are limited to 16 bits. Our closed-
loop ALU only bypasses to itself, and thus can complete two

full ‘single-cycle’ operations in one cycle.
When a strand is issued to a closed-loop ALU, it is pro-

vided with all necessary inputs and op-codes. It then spins
for 0.5 · H cycles to compute the final output of the strand,
where H is the height of the strand. Of course, the final re-
sult from a closed-loop operation must be bypassed (which
takes half a cycle), so the latency for the result to be ready
is �0.5 · H + 0.5� cycles. For example, a two-high strand
requires one cycles for execution, plus half a cycle to by-
pass the result. As the broadcast bypass does not operate at
this double-frequency, this rounds up to a two-cycle latency.
During this time, the ALU is busy and not available for issue.

To feed this modified ALU, some additional pipeline re-
sources are needed. As a strand of length N has N +1 possi-
ble register sources, our mechanism requires more CAMs in
the scheduler and more read ports for the register file. Both
of these resources are on the critical path of the pipeline [7]
and have the potential to increase cycle time and power.
However, there are several proposals for eliminating the
worst-case design of scheduler logic [7, 16] and unneces-
sary register ports [1,25]. Additionally, as strands place sev-
eral instructions into each issue queue entry, the number of
needed entries can be decreased.

5. Experimental Setup and Results

To determine the effect of dynamically created instruction
strands, we implemented our structures and algorithms on
the cycle-accurate SimpleScalar 3.0 simulator with the PISA
instruction set [4]. We focus on measuring the two benefits
of our work: the effectiveness of grouping instructions into
atomic entities, and the IPC gains from the speculative and
double-speed execution of strands. We also evaluate perfor-
mance sensitivity to the dispatch engine delay, confirming
that a strand-mechanism is latency tolerant.

5.1. Experimental Parameters

Table 2 enumerates the parameters common to all de-
signs evaluated in this section. Pipeline width (number of
simultaneous fetch, dispatch, issue, and commit slots per cy-
cle) and strand cache size are considered variables. Most of
the benchmarks from Spec2000int and MediaBench [19] are
used for analysis. Any benchmark omitted from these suites
did not compile cleanly using gcc 2.95.3 with O2 optimiza-
tions. Spec2000 inputs come from the test data set, and the
default MediaBench inputs were enlarged to lengthen their
execution.

For each simulation, we execute 500 million effective
committed instructions after skipping the first 100 million.
By using effective commits, we avoid the discrepancy in
number of committed instructions between the strand and
baseline models. To assure both are measuring the exact

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) 
1072-4451/04 $20.00 © 2004 IEEE 



Figure 6. Percent of dynamic ALU instructions which were incorporated into strands with various
strand cache sizes. For the 1024-entry case, the average change in reorder buffer occupancy is
shown in the white inset boxes, average change in issue queue occupancy in the gray inset boxes.

Table 2. Architectural parameters used for all
simulations.

Feature Value

Integer ALUs equal to width
Integer Multipliers 2 units
Reorder Buffer 128 entries
Issue Queue 32 entries
Load/Store Queue 32 entries
Memory Ports 2 ports
L1 I-cache 64 KB (2 way), 3 cycles
L1 D-cache 64 KB (2 way), 3 cycles
L2 Unified 1024 KB (16 way), 8 cycles
Memory infinite size, 160 cycles
Branch Predictor combining bimodal/gshare
Branch History Table 4096 entries
Branch Target Buffer 2048 entries (4 way)
Branch Penalty 10 cycles

same piece of the application, we also verify by hand that the
number of loads, stores, and branches committed is identical
between models.

5.2. Coverage Results

As stated earlier, as more instructions are replaced with
strands, the pressure on the issue queue, bypass path, and re-
order buffer are reduced. This allows architects to pipeline
these structures to reduce cycle time without impacting
performance drastically. The bars of Figure 6 show the
percent of dynamic ALU instructions (including branch-

predicate and effective-address computations) in our bench-
marks which were replaced by strands with various strand
cache sizes on a four-wide machine using the parameters
described earlier. These coverage numbers cannot be com-
pared directly to the rate of transient operands committed in
Figure 2 as instructions do not correspond one-to-one with
operands, and the coverage results are for dispatched instruc-
tions, not committed instructions. The white inset boxes in
the figure display the percent change in the average reorder
buffer occupancy with the 1024-entry strand cache. In other
words, this is the change in average in-flight instructions.
For instance, the average number of in-flight instructions for
pegwit-encode goes from 96 to 17, or a change of -82%.
Similarly, the grey inset boxes show the reduction in issue
queue occupancy for the 1024-entry case.

On average, about 12% of all dynamic ALU instructions
are replaced with strands using 16 strand cache entries, and
about 27% are replaced using 1024 entries. The saturation
point for the cache size, however, occurs at very different
points for each application. For instance, mpeg2-encode
finds almost all of the transients it will find with 16 entries.
The pegwit benchmarks have so many transient operands
that the replacement rate is too quick with smaller caches
for strands to solidify. With over a thousand strand cache
entries, however, our mechanism replaces over half of all
pegwit’s dynamic instructions with strands.

Across all benchmarks with the 1024-entry cache, strands
reduce the average number of in-flight instructions at any
time by 37% and the issue queue by 34%. With few ex-
ceptions, these results are closely correlated to the coverage
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Figure 7. IPC speedup results for four- and
eight-wide machines using a 16-entry strand
cache (3KB). The harmonic mean across all
benchmarks is shown on the right.

rates. Interestingly, a few benchmarks such as adpcm show
increases in occupancies; however, these are applications
with low occupancies (10 or less) that have increased slightly
due to increased parallelism. Most applications see a re-
duction in the number of in-flight instructions, allowing the
reorder buffer and issue queue to be smaller while observ-
ing the same window of instructions. These changes pro-
duce potential for frequency improvements as these access-
ing these structures requires slow atomic operations [23].

If even higher coverage rates are desired, the restriction
prohibiting effective-address or branch-predicate transient
operands from beginning new strands can be removed. As
this creates many small strands, a large cache is required
or replacement rates will be too high and coverage will de-
crease. In general, architects must weigh the coverage rates
of their important benchmarks versus the access time for the
strand cache when picking a target size.

5.3. IPC Results

Though strand cache size has a significant impact on in-
struction coverage, IPC speedup is not nearly as sensitive.
Figure 7 shows the IPC speedup when adding a strand mech-
anism to a four-wide and eight-wide pipeline across various
benchmarks. The right-most bar show the harmonic mean of
speedup for each configuration across all benchmarks. For
these experiments, the strand cache has 16 entries, occupy-
ing roughly 3KB of SRAM. On average, IPC increases 17%
on the four-wide machine and 20% on an eight-wide ma-

chine across the benchmarks.
Interestingly, most of this speedup is from the aggres-

sive speculative execution of strands, not the double-speed
ALUs. When executing strands on traditional 1-cycle ALUs,
average speedup only drops to 14% on the four-wide ma-
chine and 17% on the eight-wide. Though individual in-
structions could also be cached and speculatively executed
in the same manner, the atomicity and limited number of ex-
ternal inputs makes strands more amenable to this type of
precomputation–on average strands have less than two reg-
ister inputs.

These IPC increases can directly translate to an instruc-
tions per second (IPS) improvement as a strand mechanism
does nothing to lengthen cycle time. Alternatively, these IPC
gains can be used to offset the penalties of multicycle is-
sue [18, 31] and multicycle bypass [24, 29] which affect de-
pendent instructions most severely. Though we do not quan-
tify cycle time benefits in this work, previous research has
shown that fused dual-instructions are effective at recouping
the IPC costs of multicycle issue [12, 18]. We would ex-
pect better results for strand execution which collapses up to
three dependent instructions, not just two. The more con-
tention there is for each issue queue slot, the more benefit
can be achieved from instruction grouping. This cycle-time
improvement is orthogonal to the potential afforded by re-
ducing the size of the issue queue and reorder buffer, dis-
cussed in the previous subsection.

The figure shows that some applications such as adpcm
are very amenable to strands and show significant speedup.
More surprisingly, some applications such as pegwit, epic-
decode, and vortex show little to no speedup. In the latter
two cases, a simple lack of connected transient operands and
thus effective strands causes this effect. Pegwit, as discussed
earlier, has so many transients that the cache lifetime rate
is too short. In fact, the strand cache size must be at least
200 entries before a significant number of pegwit strands are
retained long enough to be solidified. Finally, it should be
noted that, even in the worst case, performance does not de-
crease below the baseline processor.

In general, increasing the number of entries in the strand
cache beyond 16 has little effect on speedup. The four-wide
machine’s IPC increases an additional 1% with an infinite
number of entries, and the eight-wide increases an additional
4%. These low saturation points demonstrate the temporal
locality of useful strands and the effectiveness of the strand
cache replacement algorithm, which strives to keep taller
strands longer. When a simple LRU policy is used instead,
speedups drop by about half on the 16-entry configuration.

5.4. Dispatch Engine Delay Sensitivity

There are two possible sources for delay caused by
adding a strand mechanism–the strand cache fill-unit and the
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Figure 8. IPC speedup of a four-wide strand-enabled machine as the dispatch engine delay is varied
from zero to three cycles. The harmonic mean across all benchmarks is shown on the right.

dispatch engine. Related work in fill-unit dynamic optimiza-
tion has shown that performance is insensitive to thousands
of cycles of fill-unit delay [8]. Our experiments confirm this,
as strand cache fill unit delays of thousands of cycles show
no appreciable effect on coverage or performance either. As
our fill unit is far simpler than that proposed in [8], we feel
this range is more than sufficient to cover possible design
delays.

The latency of the dispatch engine is less predictable,
however. To analyze the performance sensitivity to this de-
lay, we vary the latency of the unit from zero to three cy-
cles, within the expected range considering the parallel na-
ture of the tasks to be performed. Figure 8 shows these
results as the IPC speedup of the four-wide strand-enabled
machine for each of these conditions. For this experiment
the strand model uses 16 strand cache entries, thus the zero-
cycle speedup is identical to the four-wide speedup shown in
Figure 7.

Despite the additional latency required by the dispatch
engine, the average IPC speedup drops only from 17% to
16% with three cycles of delay. This is primarily due to
the aggressive nature of the unit, which speculatively inserts
strands into the stream many cycles before the component
instructions would be dispatched, and thus often sooner than
the result is needed. Extending the delay of this unit serves
only to lessen the aggressiveness, producing slightly less
speedup and very little effect on coverage. In some interest-
ing cases, performance actually increases with longer delays
due to errant strands being cancelled before insertion, thus
avoiding recovery penalties.

6. Conclusion

We have shown that linear chains of dependent instruc-
tions are common in integer application code, requiring un-
necessary communication traffic within issue and bypass. In
a conventional machine, these communication-intensive re-
sources are designed for the worst case, reside within the
critical path, and must operate atomically for full perfor-
mance. As a result, they are often primary determiners of
processor cycle time [23]. Additionally, managing an in-
creasingly large number of in-flight instructions increases
power and delay for out-of-order pipelines, possibly pro-
tracting cycle time as well.

However, our dynamic mechanism effectively collapses
dependence chains into atomic entities, reducing the need
for fast issue, quick bypass, and large instruction windows.
The key to its success lies exploiting the characteristics of
transient operands, the plentiful temporary register values
needed in RISC instruction sets. These transients form
strands with only a small number of unpredictable live in-
puts, which are easily speculated upon to generate noticeable
IPC speedup.

On-going strand research focuses on the content-
addressed nature of the strand cache and devising more effi-
cient methods of addressing this structure. A related goal
is to quantify the power effects of a strand mechanism–
whether the decreased communication traffic and number of
in-flight instructions offsets the power demands of strand
cache lookups. We also continue to refine the replace-
ment algorithm for the strand cache, as previous refinements
yielded significant efficiency improvements.
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