
Hardware and Binary Modification Support for Code
Pointer Protection From Buffer Overflow

Nathan Tuck Brad Calder George Varghese

Department of Computer Science and Engineering
University of California, San Diego

{ntuck,calder,varghese}@cs.ucsd.edu

Abstract

Buffer overflow vulnerabilities are currently the most preva-
lent security vulnerability; they are responsible for over half
of the CERT advisories issued in the last three years. Since
many attacks exploit buffer overflow vulnerabilities, techniques
that prevent buffer overflow attacks would greatly increase the
difficulty of writing a new worm.

This paper examines both software and hardware solutions
for protecting code pointers from buffer overflow attacks. We
first evaluate the performance overhead of the existing Point-
Guard software solution for protecting code pointers, and
show that it can be applied using binary modification to pro-
tect return pointers on the stack. These software techniques
guard against write attacks, but not read attacks, where an
attacker is attempting to gain information about the pointer
protection mechanism in order to later mount a write buffer
attack. To address this, we examine encryption hardware to
provide security for code pointers from read and write at-
tacks. In addition, we show that pure software solutions can
degrade program performance, and the light-weight encryp-
tion hardware techniques we examine can be used to provide
protection with little performance overhead.

1. INTRODUCTION
This paper focuses on protecting code pointers against

buffer overflow attacks. A buffer overflow occurs when an
intruder passes data to the victim that is longer than the
buffer the victim has allocated for the data. If the victim
does not do bounds checking, the attacker can read or write
data which he or she is not intended to have access to, and
can cause the victim program to execute in an unintended
manner. In the worst case, the attacker can cause the victim
machine to run code sent by the attacker, and can potentially
even gain administrative control over the machine.

Even the simple ability to run arbitrary user-level code
allows the attack to unleash a worm wherein the victim is
now enlisted in the task of attacking other randomly chosen
victims. If the attacker can go further and gain adminis-
trative control, arbitrary damage can be done to the victim
machine(s).

Three fairly recent worms provide good examples of re-
mote buffer overflow attacks. First, Code Red exploited a
buffer overflow in Microsoft’s Internet Information Services
(IIS). Next, the Slammer worm exploited a buffer overflow
in SQL network messages. Recently, the Blaster worm ex-
ploited a buffer overflow in DCOM. Each of these attacks
only required a machine to be hooked up to a network with
the available port open. While these worms only ran at nor-
mal user privileges, the resulting denial-of-service due to the

Year Advisories Advisories of Percent
Buffer Overflows Overflow

1996 27 5 19%
1997 28 15 54%
1998 13 7 54%
1999 17 8 47%
2000 22 3 14%
2001 37 19 51%
2002 37 21 57%
2003 28 18 64%
2004 9 7 78%
Total 218 103 47%

Table 1: Summary of recent CERT advisories

computation and bandwidth used by the worm had a very
high cost.

Given the cost of these worms and the fact that they ex-
ploit buffer overflows, buffer overflow vulnerabilities are rec-
ognized [27] as one of the most prevalent security vulnerabil-
ities. In Table 1 (derived from the recent data on the CERT
website and [13]) we summarize the number of buffer over-
flows over the last eight years and the fraction which have
been buffer overflow related. The table shows that for the
last four years, buffer overflow accounts for over 50% of the
CERT advisories per year. The one exceptionally low year is
2000, for which a disproportionate number of the advisories
came from browser-related vulnerabilities.

Unfortunately, buffer overflow vulnerabilities are exceed-
ingly easy to generate in C code, either through the use
of unsafe library functions or through sloppy programming
practices. As such, C is particularly prone to a range of static
and dynamic buffer overflows, even in well audited code.

An attacker can take control of a machine with a buffer
overflow attack by overflowing the buffer and overwriting a
function pointer. Then when the function pointer is invoked
via a return instruction or a jump, the overwritten value
will jump to the attacker’s code (which was written into the
buffer), or to a valid routine (e.g., system/shell routine) in
the existing binary with parameters supplied by the attacker.

Because new buffer overflow vulnerabilities are constantly
being found and because buffer overflows can cause serious
damage, companies that provide Internet services are in a
costly arms race with criminals and delinquents from around
the world who seek to subvert their systems.

The standard approach, exemplified by Norton Antivirus
or Snort [19], is to detect and block a signature of the bad
data used in the attack. Unfortunately, this approach is
akin to posting a picture of a burglar after he has robbed a
thousand banks. Much damage has already been done, and

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



it requires considerable human effort to extract signatures
for each new vulnerability and each new attack. Further,
a small change in the attack code will most likely not be
detected by current antivirus tools.

Signature detection can be regarded as adding checks for
the specific tool the burglar uses (e.g., a crowbar). Why not
secure the valuables in the first place? In other words, why
not add mechanisms that will prevent buffer overflows — the
root cause of many attacks — in the first place? The research
community has proposed many innovative solutions to this
problem without as much overhead as doing run-time bounds
checking. One set of software techniques requires the binary
to be modified using compiler techniques to guard function
addresses. Other hardware approaches require the use of a
separate return address stack, which is not generally appli-
cable to all types of branching constructs used in binaries.

In this paper we examine both software and hardware so-
lutions for protecting code pointers from buffer overflow at-
tacks. We first evaluate the performance overhead of the ex-
isting PointGuard [6] software solution for protecting code
pointers, and show that it can easily be applied to pro-
tect return pointers on the stack using binary modification.
PointGuard stores the code pointers in an obfuscated form
in memory. It protects a code pointer by XORing a key with
it to obfuscate the value, and performing an XOR to unob-
fuscate the value. These software techniques guard against
write attacks, but not read buffer attacks, where an attacker
is attempting to learn the key in order to mount a write
buffer attack. To address this, we propose using encryption
hardware to provide efficient security for code pointers from
read and write attacks.

The contributions of this paper are:

• We examine applying PointGuard using automatic bi-
nary modification, and show that this works by boot-
ing the linux kernel with these changes in place. This
requires handling call and return instructions that do
not have matching return and call instructions. In do-
ing this, we find that previously proposed pure hard-
ware return address protection techniques would not
work without performing this binary modification on
the program first.

• We examine reducing the overhead of software solu-
tions like PointGuard by providing hardware to protect
code pointers by adding special purpose encryption (e-
store) and decryption (d-load) instructions. We exam-
ine using these as an XOR-Key mechanism to provide
obfuscation of code pointers with little performance
overhead.

• We examine using these instructions to protect against
read attacks using cryptographic encryption. We pro-
pose using a Random Hash Table and a hardware Luby-
Rackoff Feistel Network for function pointer crypto-
graphic encryption/decryption for processes that need
to have read buffer attack protection. To achieve low
overheads for strong read attack security, we propose
a caching mechanism for the encrypted code pointers
that still provides the same protection semantics.

In Section 2 we discuss the types of buffer overflow attacks
that are of concern, and Section 3 provides an overview of
related work. Section 4 presents the methodology we use for
evaluating our design. Section 5 describes using automated

binary modification to apply PointGuard buffer overflow pro-
tection. In Section 6, we discuss using special purpose in-
structions to aid pointer encryption and decryption as well
as hardware techniques to provide read buffer attack protec-
tion. Finally in Section 7 we draw our conclusions.

2. TYPES OF ATTACKS
In this section, we classify buffer attacks into a few major

categories which an ideal system would guard against. At
the highest level, buffer overflow attacks can be either write
or read attacks: write buffer overflow attacks can change the
behavior of programs and thereby subvert systems, while
read buffer overflow attacks can be used to obtain privileged
information from a program. There are several subcategories
of write and read attacks that we now describe.

2.1 Write Attacks to Gain Process Control
A write attack attempts to gain control of a process/thread

by overwriting a function pointer. This modified function
pointer will allow execution of either code inserted by the
attacker’s buffer overflow or will call an existing routine in
the process’ address space with attacker supplied arguments.

In order to launch this attack the attacker must be able
to find or place into the process address space code that
can be used to perform desired actions, and then cause the
program to start running this code. Although many proces-
sors are now attempting to make it more difficult to execute
code created in a data area, it is still very easy to find code
already in the program to exploit with attacker supplied ar-
guments. Standard library system and shell invocation rou-
tines are just a few examples. Once the attack code location
is determined, the attacker can force control flow into that
piece of code by altering return addresses, function pointers,
or setjmp/longjmp structures. We will now discuss each of
these attacks on program control flow.

2.1.1 Return Address Attack
The first and most common attack is a return address at-

tack. In most ISAs and languages today, when a procedure
call is invoked, the return address is (either lazily or im-
mediately) saved on the stack. If a buffer overflow can be
exploited to overwrite values on the stack, then the return
address can be overwritten with the address of a function
chosen by the attacker. When the program attempts to re-
turn from the function call, the program will begin executing
the code chosen by the attacker.

2.1.2 Function Pointer Attack
The second type of write buffer overflow attack is a func-

tion pointer attack. This attack uses a buffer overflow to
overwrite a function pointer stored in the stack or heap to
point to the code of the attacker’s choice. In this attack,
the attacker is not necessarily able to choose the arguments
passed to the function; hence this attack has been less used
than the return address attack. The most common uses of
this attack are overwriting the Global Offset Table (GOT)
or virtual function pointers [4].

2.1.3 Setjmp/Longjmp
A third kind of write buffer overflow attack is the setjmp /

longjmp attack. setjmp and longjmp are used in C to imple-
ment non-local gotos and exception handling. setjmp stores
the program’s current register values, processor state, and

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



PC; longjmp uses setjmp’s data structure to return to that
point in the code. Because of the amount of state restora-
tion incurred by longjmp, if setjmp’s data-structure can be
overwritten by a buffer overflow, the attacker can choose to
return to any place in the code with almost any set of register
state he or she chooses. This makes setjmp/longjmp exploits
particularly dangerous, but they are somewhat less common
because setjmp/longjmp and similar constructs have been
generally deprecated in favor of structured exception han-
dling (which in turn can be defeated with a function pointer
attack described above).

2.2 Data Corruption/Manipulation Attacks
Data corruption attacks involve an attacker changing the

behavior of the program by overwriting data rather than
code pointers. These attacks can have just as devastating
effects as attacks on code pointers, but are generally more
difficult to mount. Our techniques could be used against
some of these attacks, but we do not address these attacks
in this paper.

2.3 Read Attacks
Read attacks occur either when a user is able to trick a pro-

gram into returning a longer response than it has allocated
buffer space for (in which case it is called a read overflow at-
tack) or when the program accidentally returns data which
has not been properly initialized. By exploiting this, an at-
tacker can take snapshots of memory that may include stack
contents, function pointers, and internal state that is meant
to be kept secret.

Read attacks are potentially a threat in code which at-
tempts to provide informational services to other pieces of
code, particularly when both sides must negotiate expected
sizes of information passed in a shared buffer. When one
side forgets to check a size returned by the other side of the
protocol, it can end up reading past the buffer and into its
own data structures when preparing a response. In another
common (but less useful) incarnation, the attacker can re-
quest information “early” in a protocol causing the return of
seemingly uninitialized data. Because this memory is likely
to be used for other purposes in a long running process, it is
possible that valuable information will leak; this can give a
determined attacker enough insight to launch a write attack
to gain control of the process.

CERT Vulnerability Note VU#738331 is an example of a
read overflow attack. The library used for DNS name res-
olution passes a buffer of insufficient length into a function
which fills it in and returns an integer that indicates the size
of the buffer that would be required to fill in a complete
response. However, this integer is treated as the length of
the actual response; the library then returns extra data from
past the end of the buffer to the attacker.

These read attacks, though currently uncommon, devas-
tate most prior proposed methods of buffer overflow protec-
tion. Because most of these methods are based on XOR
rather than true cryptographic security, they can be broken
with a single successful read attack of a single known pro-
tected value.

The attack against an XOR encrypted key can be mounted
as follows. First, one assumes that the attacker has access
to the same binary that is used by the victim (a typical case
given that most systems do not run fully custom software).
By XORing the plain-text version of the pointer (known from

the binary) and the encrypted value of the pointer (known
from the read overflow), the attacker now has the XOR-key
used by the process. The attacker can then encrypt any
desired address and use it in a write buffer overflow attack
against the same process.

2.4 Our focus
We propose hardware techniques to provide encryption of

function pointers to guard against read and write attacks tar-
geted at taking control of a process. We do not address any
data corruption/manipulation attacks. Some of our tech-
niques can be used against some non-code pointer attacks,
but our current experimental framework did not allow us to
examine this case.

Wilander and Kamkar [28] present a taxonomy of 20 dif-
ferent categories of buffer overflow attacks and test the ef-
fectiveness of then-current buffer overflow techniques. A full
implementation of PointGuard protects against all overflow-
ing pointer attacks. In Section 5 we present detailed emu-
lation results for automatically applying PointGuard using
binary modification to provide protection against the 3 at-
tacks related to overwriting the return address. Then in
Section 6 we provide performance simulation results evalu-
ating the overhead of protecting against 14 of the attacks
specified in [28].

3. RELATED WORK

3.1 Prior Work in Software Protection
Considerable effort has been expended on devising soft-

ware solutions to this problem [28]. Replacements for system
libraries, static analysis, and altered compilers have all been
proposed.

One of the most well known software solutions to buffer
overflow is StackGuard [5]. StackGuard protects the stack
from buffer overflow attacks by placing an extra value called
a canary on the stack in front of the return address. Before
a function returns, it loads both the return address and the
canary and checks that the canary is the expected value.
StackGuard supports multiple kinds of canaries. A canary
can be a terminator canary, which prevents the attacker from
using a string library function such as strcpy to replace it.
Alternately, a canary can be a special (possibly random)
number XORed with the return address. In the first case,
the attacker cannot attack by misusing a standard library
function; in the second case, the attacker must be able to
guess a weakly hidden value. In particular, any code which
has both a read buffer overflow and a write buffer overflow
can be exploited to circumvent the XOR cipher.

StackGhost [10] implements (in software) an XOR encryp-
tion of the return address value. StackGhost modifies the
SPARC kernel register window overflow handler to save mod-
ified return addresses by either XORing return addresses
with a per kernel or per process value. Protecting the re-
turn address occurs whenever a register window overflow
(encryption) or underflow (decryption) occurs. They show
a maximum of 40% overhead using their technique with a
carefully constructed microbenchmark and a 0.1-0.4% over-
head running the SPEC95 benchmarks. The StackGhost ap-
proach proposed can only be implemented on SPARC due to
its unique architectural feature of register windowing. The
StackGhost approach is susceptible to a single read buffer
overflow attack which motivates us to consider stronger hard-

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



ware assisted encryption functions.
Compiler based software techniques other than StackGuard

include safe dialects of programming languages [12] and static
detection of buffer overflow vulnerabilities [27, 26]. The dis-
advantages to these approaches are that they require recom-
pilation of a program and even rewriting the code. They also
typically incur high overhead in the resultant binary due to
array bounds checking.

Library based approaches such as libsafe [1] and libver-
ify [2] avoid the problem of recompilation, but generally
do it at the expense of missing attacks. libsafe contains
bounds-checked versions of unsafe C library functions. lib-
verify copies all functions and return addresses into the heap
and patches up the copied code to check the return address
on exit. libverify is less efficient than StackGuard in mem-
ory space and can degrade program performance by up to
15% [2].

3.2 Prior Work in Hardware Protection
Hardware protection against buffer overflows has also re-

cently become a popular topic for research. With the in-
crease in industry interest in digital rights management and
secure systems such as TCPA and Palladium [20], many ap-
proaches have been proposed which could also be used to
stop buffer overflows.

Lee et. al. [13, 16] and Ozodganoglu et. al. [18] inde-
pendently present a method of protecting the return address
stack by copying the return address and putting it on another
hardware managed stack with backing store in a protected
area of memory. When the code returns from a call, the
processor checks to make sure that the return value matches
the value stored on the duplicate stack. They explore both
hardware and operating system initiated save-on-overflow.
This method has been shown to have less than a 1% effect
on performance for a cached hardware stack size of 128.

This approach requires extra backing store for every pro-
cess to save the duplicate stack to and introduces some com-
plexity to the processor in handling stack overflows. An in-
teresting challenge that must be solved for these approaches
is as follows: they must keep the protected return address
stack in sync when dealing with constructs that arbitrarily
pop off several stack frames like setjmp/longjmp (and other
APIs which do not use stack entries in the order they were
pushed on the stack). Instead of this approach, we exam-
ine using hardware encryption to leave the encrypted return
value on the stack. In doing this, we do not have to do
anything special to correctly handle constructs that pop off
several stack frames at a time like setjmp/longjmp. Also,
this approach does not require a backing store for the hard-
ware stack like the return stack approaches. In addition, in
Section 5 we show existing code sequences in the linux kernel
that would break the return address stack semantics causing
the linux kernel to not run. To address this, we examine
using an automated binary modification approach for fixing
these code sequences in Section 5.

HSAP [22] employs a stack smashing protection which
does not allow variables passed into other functions to be
allocated on the stack. More similarly to our work, it also
provides an extra register and XOR instruction for protect-
ing function pointers, but does not concentrate on main-
taining existing code compatibility when providing protec-
tion. More recently, HSDefender [21] was proposed concur-
rently with our work examining the use of an XOR encrypted

call/return mechanism. Both HSAP and HSDefender are
proposed with weak XOR encryption, and do not provide
much performance analysis of their design space. In com-
parison, we focus on encryption to protect against read at-
tacks, provide code compatibility with binary modification,
and provide detailed analysis and comparison between this
and other protection techniques.

Other research in secure computing such as XOMOS [14]
could be used to solve the buffer overflow problem through
the use of signed memory. In order to implement this, every
piece of code which wishes to protect itself from the execu-
tion of other pieces of code must have a key. The key is used
to cryptographically sign each piece of memory (for instance
a cache-line) which is written back to storage. Untrusted
pieces of code are given a different key (or no key at all) and
a separate piece of memory to execute with. If the untrusted
code attempts to overwrite memory which it does not have
privileges to write to, it will be unable to create a valid corre-
sponding signature. When the memory is used, the incorrect
signature will be detected and the code will trap before any
damage is done. This approach could be used to provide
protection against buffer overflows, but would require users
to completely rewrite their application partitioning out all
potential code that could have a buffer overflow from the
main parts of the application. For some code this might not
be possible. In addition, asking programmers to deal with
explicit issues of trust and privilege has been problematic,
as the number of buffer overflow vulnerabilities in the CERT
databases will attest to.

More recently Crandall and Chong [7] proposed using an
additional integrity bit for each memory word to identify
trusted data vs non-trusted data. Initially all data in the
system is set to be high integrity. A low-water-mark scheme
is then used to propagate the integrity bit. On control trans-
fers such as jump, call and return, the integrity bit is checked
and an exception is triggered if it is not set.

4. METHODOLOGY
To verify our claims of compatibility for the techniques

we examine, we first implemented the PointGuard protec-
tion and our techniques in the IA-32 architecture emulator
Bochs [3]. In doing this, the return address pointers on the
stack are actually encrypted and decrypted to test that the
approach works. We then successfully used Bochs to boot
and run a real linux kernel and some linux programs, showing
that return addresses can be protected using binary modifi-
cation as described in the next section.

We also measure the performance overhead of PointGuard
and our proposed encryption techniques using cycle level
simulation [25]. We simulate a single threaded wide-issue
out-of-order processor with baseline architectural parame-
ters shown in Table 2. The parameters are meant to be
similar to those of a slightly aggressive desktop CPU. Just
as in Bochs, our simulations actually perform buffer overflow
protection (encryption and decryption) for code pointers.

5. AUTOMATIC BINARY MODIFICATION
FOR RETURN ADDRESS PROTECTION

In this section, we examine using binary modification to
provide return stack address protection.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



Pipeline 20 stages
Fetch Up to 8 instructions from 1 cacheline

Predictor
2bcgskew, 64K entry Meta and gshare, 16K
entry bimodal table

Prefetcher PC based stride, 256 entry with 8 stream
buffers

ROB 128 entry
HW Registers 126
Queues 64 entries each IQ, FQ, and MQ

Issue
6 instructions per cycle, up to 4 Integer, 2
FP, 2 load/store

ICache L1 32 KB 2-way set associative, 2 cycles latency
Data L1 16 KB 2-way set associative, 2 cycles latency

L2
512 KB 8-way set associative, 20 cycles la-
tency

L3
2 MB 16-way set associative, 40 cycles la-
tency

Memory 450 cycles latency

Table 2: Simulator Architectural Parameters

5.1 PointGuard
PointGuard [6] is a recent approach to buffer overflow vul-

nerabilities using a compiler solution to the buffer overflow
problem for write attacks. The PointGuard compiler gen-
erates a random key which is generated at process creation
time and stored in a protected area of memory. The same
key is then XORed with every pointer that is loaded from or
stored to memory for a process. By effectively obfuscating
pointers stored in memory, PointGuard prevents pure write
buffer overflow attacks from succeeding in changing control
flow to known locations. However, it is trivial to exploit if
there is a read attack in the program which leaks the value
of any code pointer in the program. Although the Point-
Guard approach is quite comprehensive, the overhead of do-
ing this in software can result in up to 20% slow-down for
the benchmarks examined in [6]. Our hardware extension
in Section 6 provides efficient hardware encrypt/decrypt in-
structions that PointGuard could use to provide this level
of protection with low overhead and security against read
attacks.

5.1.1 Calls and Returns
In order to properly handle calls and returns in Point-

Guard, there is a minimal set of operations that must be
implemented for every call and return in the code. For calls,
PointGuard encrypts the return address at the destination
call site, since the return value was just pushed onto the
stack by the call. This following code sequence would be
added at the start of each procedure to encrypt the return
address:

pop r0 (pop off the return address)

load r1 key_location

xor r0 r0 r1

push r0 (push obfuscated return address on stack)

As we can see, this adds overhead of three memory refer-
ences and one ALU operation per call. In order to properly
handle the corresponding return, PointGuard must replace
each return with the following sequence to decrypt the return
address:

pop r0

load r1 key_location

xor r0 r0 r1

push r0

return

This also adds 3 memory references, and an ALU operation
in overhead to our return. Note, the push and return could
be replaced by an indirect jump to r0, but this would inter-
fere with the return address stack predictor used in modern
processors.

When functions are small, the above overhead can be quite
large. Performing binary translation of these sequences is
not difficult, but does require relocating instructions due to
the extra instructions introduced. In Section 6 we present
providing hardware support for special purpose instructions,
which eliminate the performance and binary modification
overhead for call/return pairs. By allowing the call and re-
turn to automatically perform the encryption and decryp-
tion in hardware, the call and return instructions do not
need to be changed in the binary. Then the binary modifier
only needs to patch and transform the instruction sequences
in Sections 5.2.1 and 5.2.2. This will significantly simplify
and increase the speed of the binary patching process for
providing pointer protection, potentially allowing it to be
performed at process load-time without much overhead.

5.2 Protecting Calls and Returns using Binary
Modification

A goal of this study is to examine applying PointGuard
to commercial code using binary modification. To do this
we implemented our binary modification inside the IA-32
architecture emulator Bochs [3]. In Bochs we changed the
behavior of the call and return instructions to automatically
obfuscate every return pointer pushed by a call and to de-
obfuscate the pointer used in every return. We then suc-
cessfully used Bochs to boot a linux kernel showing that our
binary modification approach works on a complicated piece
of code.

For our study, we are mainly concerned with the x86 ISA,
which is currently the most widely deployed (and attacked)
ISA in the world. Programs compiled for this ISA use direct
and indirect call instructions to perform procedure calls,
which implicitly store the PC on the stack; programs also
use return instructions that pop the return address off the
stack and assign it to the PC. While this is the majority
of the calls and returns seen, there are cases where these
semantics are not used. These cases will cause pure hardware
techniques [18, 13] to break, unless those code sequences are
removed. This is because these techniques assume an ISA
that makes strict usage of call and return pair semantics
(every call instruction is matched by a return instruction).

In implementing our binary modification technique, the
two interesting code sequences we found that needed special
handling are unmatched call and return instructions. We
found that using binary modification either statically or dy-
namically at load-time can be used to accurately transform
these cases and provide return address protection.

5.2.1 Calls without Corresponding Returns
Code generated by a compiler will generally use standard

call/return semantics for the ISA. But for some legacy x86
code or assembly code it is always possible that the return
will be implemented by some manual means, which does not
match the normal semantics. To address this, these code
sequences must be corrected, and binary patching provides
an efficient mechanism to accomplish this.

For the x86 ISA, the PC register cannot be directly read;
thus the only practical way to get its value onto the stack is

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



to perform a call instruction. We found when running the
linux kernel with return address protection that there are
many locations where a local PC is obtained in a register
by performing a jump to the very next instruction and the
resulting PC is then popped off the stack and used as input
to an indirect jump (e.g., switch table). A short call appears
as follows:

call next_instruction;

pop r0;

We can easily identify these calls by looking for any call
that has a destination equal to the next PC. More gener-
ally, it is any call that has a destination where the return is
popped off the stack into a register. When these “short calls”
are identified, they are not obfuscated. After implementing
this in bochs, we found no instances where procedure calls
were improperly obfuscated. Note, encryption can be pro-
vided for the above code sequence if a d-load (described in
the next section) along with a stack pointer adjustment was
used instead of the pop instruction.

5.2.2 Returns without Corresponding Calls
In running the linux kernel we found locations in the code

that had return sequences without corresponding calls. These
code blocks appear as follows:

push r0 (save an indirect jump address

on top of the stack)

...

arbitrary code sequence

...

return (pop the indirect jump address off

the top of the stack and jump to it)

This code sequence occurred because a register contained
the value for an indirect jump. Then due to register pressure
or a procedure call, the register was saved on the stack to
be restored later. The binary would normally execute a pop
and indirect jump, but this is the exact semantics of a return
instruction, but with 1 less instruction. Therefore, to save
an instruction the compiler used a return instead of a pop
and indirect jump code sequence.

At the binary level, this is harder to detect than our ear-
lier code sequence. We found that the push and return
(pop+jump) occurred in the same function, and it was there-
fore possible to detect that they are accessing the same stack
location. During binary modification for the Bochs emula-
tion, we replace the return with a pop and indirect jump,
so this code pointer on the stack would not be protected.
Note, an alternative would be to use the e-store (described
in the next section) along with a stack pointer adjustment
instead of the push to provide encryption protection for the
code pointer.

In performing the above simple transformations we were
able to boot and run a real linux kernel and some linux pro-
grams, showing that return addresses can be protected using
binary modification.

6. HARDWARE SUPPORT FOR
CODE POINTER PROTECTION

In this section we examine the benefit of adding hardware
support to more efficiently provide encryption of the code
pointers to guard against read and write buffer overflow at-
tacks.

bz
ip

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

do
t

db
lu

e

bu
rg

0

5

10

15

20

Pe
rc

en
t S

lo
w

do
w

n

PG pointer
PG return stack

av
gli

Figure 1: Percent slowdowns on SPEC2000 and other
benchmarks using PointGuard techniques applied to
either all code pointers or only to return addresses.

6.1 Motivation
Because of the weaknesses in PointGuard, we explore in

this section (1) reducing the overhead of encrypting and de-
crypting the code pointers using special purpose instructions,
and (2) adding protection for read attacks by using crypto-
graphic security. In addition, this approach reduces the over-
head and complexity of the binary patching for protecting
return addresses as discussed in Section 5.1.1.

The PointGuard approach does not have security against
read attacks, whereas the approach we describe next offers
cryptographic security. A fundamental concept of security is
that one must assume that the attacker has access to every-
thing on a system except the key. This would include com-
piled binaries (which are widely distributed). This makes
it trivial for the attacker to recover the key from a single
pointer read if XOR is used.

Figure 1 shows that PointGuard induces a 7% slowdown
across the SPECint 2000 benchmark suite and a handful of
C++ programs when encrypting and decrypting all point-
ers in memory and approximately a 2% slowdown when en-
crypting only return stack addresses. However, some bench-
marks do far worse. For example, gzip, parser and perl slow
down quite a bit with perl slowing down almost 19% with
PointGuard applied. Large commercial applications tend to
have lots of function calls and heavy use of object-oriented
code, both of which put heavy demands on software encryp-
tion/decryption. We suspect that the slowdowns for Point-
Guard on these applications would be even greater than what
we were able to measure.

6.2 Encrypt-Stores and Decrypt-Loads

6.2.1 Targeted Encrypt/Decrypt Instructions
The fundamental idea behind our approach is that the in-

struction set architecture (or internal micro-op ISA) provides
the following two extra instructions:

• E-Store - The store encrypts the value to be stored and
the resulting value is stored at the effective address.

• D-Load - The value loaded is decrypted and the de-
crypted value is stored into the register destination.

When a function pointer or return address is stored, the
value is encrypted using one of the hardware techniques de-
scribed in Section 6.4. When the address is loaded back and
used, it is decrypted with the inverse function. Our mech-
anism for preventing buffer overrun attacks rely upon the
following properties:

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



• Code pointers being protected (either only return ad-
dress or all code addresses) are written using e-store
instructions and only loaded using d-load instructions
for all trusted store and load instructions.

• Untrusted store instructions that do not need to have
access to code pointer data use a normal non-encrypted
store instruction.

• Untrusted load instructions that do not need to have
access to code pointer data use a normal non-decrypted
load instruction.

An untrusted store or load instruction, and e-store and
d-load instructions can write and access all parts of the
processor’s normal address space. Whether the store/load
is trusted or not determines whether it does the encryp-
tion/decryption.

With the above enforced at the instruction execution level,
an attacker filling a buffer will be using a non-encrypted store
of the data for a code pointer. But when the code pointer is
used, a d-load will decrypt the data; if it was not correctly
encrypted the code pointer will jump to an undetermined lo-
cation, which may or may not be in the valid address space.
Therefore, the attacker has to know the cryptographic func-
tion in order to be able to write the correct value to assume
control of the process.

6.2.2 A Failed Attack, Detection, and the Aftermath
Assuming the encryption of the value is cryptographically

secure, an attacker who overwrites the return address will
have no chance of creating a value which decrypts to any-
thing other than a random value. When an attack fails the
decryption (d-load) will decrypt the value to an apparently
random address which may even be illegal or unaligned. This
will cause the program to crash either due to an illegal mem-
ory access, or incorrect program execution. We address the
issues and probability of the attacker succeeding with each of
the hardware encryption techniques described in Section 6.4.

An important aspect of any protection scheme to detect
attacks and to prevent the attacker from retrying or replay-
ing the attacks. We discuss these two issues next.

6.2.2.1 Detecting the Attack.
The above scenario will cause the process or daemon to

fail and restart with a new key. This is the primary form
of detection for our approach. Existing intrusion detection
methods and operating systems already check for this be-
havior and flag these processes [6]. If this occurs, then the
system will flag the user or system administrator and not
restart the process. We feel that this approach is sufficient
for detecting attacks.

6.2.2.2 Preventing Retrying and Replaying the At-
tack.

The scenario described above will occur during an attack,
which will ultimately result in the restarting of a process or
daemon. To prevent retrying and replaying from succeeding,
at process creation time, a random number is created and
used as a key for a cryptographic engine. This means that
all machines and all processes use different keys. A similar
idea is used in PointGuard [6], where they XOR a random
per-process random key with code pointers.

In addition, to provide additional protection for the stack,
we assume a randomized starting stack location is chosen

at program startup. This is not needed for our approach,
but we believe helps add yet another level of randomness
across different machines and processes. This technique is
currently being applied to several operating systems such as
several flavors of BSD and RedHat Linux.

6.2.3 Targeted Code Pointer Protection
Our approach uses encryption to protect function pointers.

We examine two approaches. The first providing protection
for only return addresses on the stack, and the second pro-
vides protection for all code pointers.

6.2.3.1 Automated Return Address Protection.
A goal of this research is providing protection of return ad-

dresses on the stack requiring minimal binary modification.
An architecture that performs an e-store to the stack for a
call and a d-load whenever a return instructions is executed
will allow binaries to automatically benefit from return ad-
dress protection. Then the only modification to the binary
that needs to be performed is to transform the few unstruc-
tured call or return sequences in the binary as discussed in
Sections 5.2.1 and 5.2.2. To handle these two cases, calls
without returns would be replaced an “unencrypted call” in-
struction, and returns without calls would be replaced with
“non-decrypting return” instructions.

6.2.3.2 All Function Pointers and Setjmp/Longjmp.
PointGuard can be used to provide protection for general

function pointers and setjmp / longjmp (as discussed in Sec-
tion 2). In Section 6.4, we examine using hardware support
to provide efficient protection in the presence of read attacks.
Having special purpose e-store and d-load instructions sig-
nificantly reduces the overhead for the encrypt/decrypt; it
also provides a level of protection in the presence of read and
write attacks. In Section 6.5, we examine the overhead of us-
ing our different hardware techniques for protecting all code
pointers in memory using the e-store and d-load instructions.

6.2.4 Issues
Our code pointer encryption approach efficiently handles

several important issues for stack and function pointer pro-
tection, which we now discuss.

6.2.4.1 Copying Memory.
It is important that our encryption approach still allows

encrypted data to be moved around memory and to be cor-
rectly used. The hardware encryption techniques we exam-
ine in the next section are based only on the value of the
data being stored. This allows the encrypted data to be
moved around memory using normal load and store instruc-
tions. A memory copy would use a normal untrusted store
and untrusted load instruction. Therefore, the encrypted
data would be read with a normal load into a register. At
this point the register contains the encrypted value. Then
a normal store instruction would store that encrypted value
back into memory. The value can later be read with a d-
load instruction to decrypt and use the correct code pointer
value.

6.2.4.2 Jumping Around The Stack.
As in PointGuard, our approach stores the encrypted value

on the stack in the location of the return address, so we
do not have to do anything special to correctly handle con-
structs that pop off several stack frames at a time like setjmp
/ longjmp. In comparison, other hardware techniques [18,

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



16] have to have special mechanisms to restore their return
address stack to the correct location.

6.2.4.3 Continuations.
There are programming constructs, such as Continuations

and Futures [17], which allow a stack to be shared across
threads. For these programs, a set of continuations (stack
pointers) is kept; when a thread stalls due to a lock, it stores
its stack pointer into the continuation list. It then sees if
there is a ready continuation to execute, and starts run-
ning using that stack pointer (continuation). Therefore, the
stacks being used for this parallel program are shared across
multiple threads. For this approach, threads would be as-
signed the same key, since they are in the same process.
Since we store the encrypted data in the return location on
the stack and the threads share the same key our approach
works for these types of programs and systems.

6.2.4.4 Replay Attacks.
One category of attacks which we do not handle is what

we will call “replay attacks” where a known good function
pointer is read and copied verbatim to a new location where
it is hazardous. An example of where this style of attack
can be used is in the GOT, where functions from libc can
be swapped with potentially devastating effect. Preventing
these kinds of attacks requires making the GOT read only
at load-time, or preventing the copying of function pointers
except through use of d-load/e-store for the GOT. Thus our
scheme provides only strong read attack security without
replay protection as defined in the next section.

6.3 Levels of Security
In this section, we describe our taxonomy of security of

pointer-protection relative to protection against an attacker
who is capable of both read and write attacks. To put our
work into a framework more familiar to the security com-
munity, we assume a program with an arbitrary number of
read and write buffer holes in it and define an adversary
who would like to inject a pointer into our program that will
cause it to execute malicious code. This adversary is allowed
a certain number of read attacks where he can view mem-
ory (e.g., the value of an encrypted pointer) in our program.
After these reads, he is allowed to issue write attacks that
attempt to direct control flow to a place of his choosing. If
the attacker can be expected to direct control flow to the
area of his choosing with less total effort than randomly is-
suing write attacks, then the attacker has broken the pointer
protection scheme.

We classify the security of an underlying pointer protection
mechanism by the ability or inability to provide protection
against read attacks and the additional ability to provide
protection against replay attacks.

6.3.1 Weak Read Attack Security
We define a pointer protection scheme with weak read at-

tack security to be – if an adversary cannot perform a read
attack then they cannot launch a successful write attack.
Techniques with this level of security must rely upon no
leakage from the program of values encrypted by their key.
PointGuard [6] fits this model well. PointGuard relies on an
attacker not being able to use a read attack. If the attacker
can “see” a single (known) pointer value encrypted by Point-
Guard’s XOR function, then the attacker can immediately
launch an attack against the still running program.

6.3.2 Strong Read Attack Security
The next level of security is what we call strong read at-

tack security. We define this level of protection to be – if
adversary can perform a read attack they cannot launch a
successful write attack. At this level, it is assumed that the
attacker can read values from memory, and it still requires
great effort to correctly inject a pointer to take control of the
program’s execution. Given that read buffer attacks are rarer
than write attacks and that the bar to actually implementing
a replay attack (described in Section 6.2.4.4) is significant,
this form of security may be adequate for systems.

6.3.3 Strong Read Attack Security with Replay Pro-
tection

We define strong read attack security with replay protec-
tion to be a pointer protection system in which read attacks
and replay attacks give the attacker no significant advantage.
This is the eventual goal of the secure processor community,
but poses substantial challenges for naive implementation
with existing software.

6.4 Three Levels of Hardware Encryption
In this section we present a description of three levels of

hardware support to provide encrypted protection against
hardware buffer overruns.

6.4.1 XOR-Key
The XOR-key algorithm provides hardware support for a

very efficient encryption scheme used by the PointGuard [6]
compiler. The hardware has a key stored in a special purpose
hardware register that is assigned to each process. For the
e-store instruction, the key is XORed with the data value
and stored. For the d-load instruction, the key is XORed
with the data value read, before using the data value. We
model this architecture taking one additional cycle for each
encrypted load and store code pointer instruction.

As mentioned previously in Section 2.3, this approach is
secure from a remote attack only if a process can be guaran-
teed free of read attacks. Therefore, it provides weak read
attack security. If read attacks are possible on the process,
we propose using one of the following two hardware tech-
niques for providing strong read attack security.

6.4.2 Random Permutation Table
To provide strong read attack security, we propose adding

a Random Permutation Table (RPT) to the processor [9].
The random permutation table is loaded by the operating
system at system startup time, and is of size 2N , where N is
the number of bits we are encrypting. The table is randomly
filled with all of the possible values from 0 to 2N . Table
permutations are actually ideal cryptographic functions be-
cause if an attacker has not seen a given input/output pair
before, random guessing (with probability 1 in 2N − q of be-
ing correct) is the best possible strategy for finding such a
pair, where q is the number of different possible read attacks.

For this approach, we use two keys, KB to XOR with the
data (D) being encrypted before the RPT lookup, and a KA

to XOR with the RPT table entry. The following function
is used to encrypt the code pointer (Data):

Index = D ⊕ KB

DE = RPT[Index] ⊕KA

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



The encrypted value is then stored into the data loca-
tion. Note, two RPT tables are needed. One for the encryp-
tion (RPT) and one performing the inverse function (Inverse
RPT) to decrypt the data. To decrypt the data, the follow-
ing function is used:

Index = DE ⊕ KA

D = Inverse-RPT[Index] ⊕KB

The keys are assigned per process. It is important to XOR
the key with the original data before indexing into the RPT
to thwart attacks. Note that the RPT is shared among all
processes on the machine because it can be quite large. It is
only reset at machine bootup.

The individual process keys are used to randomize across
processes so that different entries in the RPT will be used
for different processes. This is important to prevent retry
attacks.

For this approach, we propose permuting the lower N-bits
of code pointer addresses. Then the attacker is left with
randomly guessing a table entry to perform an attack, since
the RPT is a random permutation of all the possible values
from 0 to 2N . If the attack fails, the process/daemon will
be restarted using new keys. The attacker has only a 1 in
216 − q chance of success, where q is the number of different
possible read attacks. For detection, enough failed attacks
will trigger a detection as described in Section 6.2.2.1. To
provide this level of protection two tables of 64 KBytes are
used. In addition, just two N-bit (e.g., 16 bits in our ex-
ample) hardware keys are required for the current process.
When context switching, the 2 keys for the process are stored
along with process context state in OS-protected memory.

Based on the amount of on-chip storage available, the ta-
ble sizes can be increased or decreased by controlling the
value of N . This provides a simple inverse trade-off between
the amount of storage and the probability an attacker has of
succeeding in a random guess. However, this is only a real-
istic solution for small values of N due to the storage size of
the table. This leads us to our next approach.

6.4.3 Feistel Network
Our previous approach of table lookup can scale to be used

on 32-bit processors, but cannot create the higher levels of
security possible on 64-bit processors because of the inher-
ently small table sizes that must be used to fit on chip. On a
64-bit processor, we would like to increase the number of read
attacks required for an attacker to mount a successful write
attack. To achieve this, we propose the use of an on-chip
pipelined version of a 4 round Luby-Rackoff Feistel Network
with the standard 10 rounds of AES to perform encryption
and decryption [15]. A single round of Luby-Rackoff (F )
breaks a 64-bit address into two 32-bit chunks, L and R and
then performs the following:

F (L, R) = (R, L ⊕ f(R))

Where f is a function which is difficult to distinguish from
a pseudo-random function. For a 64-bit implementation, we
use the output of the lower 32 bits of AES as f . A custom
AES [11] datapath is used to perform the encryption. This
approach takes longer to encrypt and decrypt than the RPT,
since it is no longer just a simple table lookup, but we ex-
pect the attacker to require 216 chosen read attack queries

to construct a birthday attack. We implement a standard 4
round Luby-Rackoff Feistel Network with each round being
AES, and ensure that each round uses an independent ran-
dom function. In addition, the keys for AES are initialized at
process creation time. We point the interested reader to [15,
11] for the full details of the algorithms. For the Feistel Net-
work and a 32-bit ISA, only the bottom 16-bits of AES is
used, and for a 64-bit ISA only the bottom 32-bits of AES
are used.

For an attacker to achieve full key recovery, the attacker
would have to do 2X operations, where the key length is X
bits; we assume a 128-bit key length for our design. Given
this approach, the attacker is left to try to exploit some
property of the Feistel Network. For an ISA where the data
addresses and code pointers are 32-bit, using the Feistel Net-
work, the attacker will have only a probability of being cor-
rect of approximately q2 out of 216, where q is the possible
number of unique read attacks. For a 64-bit architecture
(where data addresses are 64-bits), this would be a proba-
bility of q2 in 232 of exploiting the attack. This leads us to
expect that our adversary can construct an attack if they
can read 216 encrypted code pointers from memory.

6.4.3.1 How the Feistel Network Fits into the Pipeline.

We examine two implementations of the Feistel Network,
one where it is put onto the e-store and d-load critical path
to use for protection for all code pointers, and the other
where the encryption and decryption can be overlapped with
execution for call/return instructions. This second approach
is targeted specifically at protecting return address pointers
on the stack.

When performing a procedure call, the return PC is avail-
able at the fetch stage in the processor pipeline. We can
therefore start the encryption using the Feistel Network of
the return PC at fetch, and the PC is not needed to store
onto the stack until the call commits. For return instruc-
tions, there are two paths it can take. The common case
fast path uses the predicted return address from the return
address stack on a processor. For this approach, we first en-
crypt the return address when it is predicted; we then match
the encrypted predicted return address with the encrypted
address read from the stack. If they are the same, then we
have a match. If they are different, we then decrypt the data
read from the stack and jump to that value because we either
had a return address misprediction or an attack.

6.4.3.2 Caching Decrypted Code Pointers.
We calculated the latency of implementing the full Feistel

Network we are using to be between 40 to 80 cycles for the
processor we are simulating. This latency can be tolerated
when using this for only protecting return addresses on the
stack using the approach in the previous subsection. How-
ever, it is too inefficient to be used for protecting general
purpose code pointers through e-store and d-loads.

To address this inefficiency, we examine caching the de-
crypted values in the L1 cache, and marking the decrypted
code pointers stored in the cache as protected with a single
bit for every data word stored in the cache. For this design,
only d-loads and e-stores can set the bit. On a d-load that
misses in the cache, we decrypt the data, and store it in the
cache; we also set a bit indicating that this is a protected
code pointer. If a d-load occurs and the bit is already set,
the value is ready to use without any extra delay. This makes

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



the common case fast. This removes the decryption of the
Feistel Network for code pointers that hit in the cache. For
this study, we examine applying this caching just to the L1
virtually indexed data cache.

Our caching policy allows d-loads to directly access un-
encrypted code pointers from the L1 cache, and e-stores to
store unencrypted data into the L1 cache. All other un-
trusted loads and stores only see encrypted data when ac-
cessing a protected code pointer. These are the semantics
enforced by the following policies.

For e-stores, if there is a cache hit or the cache is write-
allocate, then the unencrypted data would be stored in the
cache with the code pointer protection bit set. When the
dirty block is written to the next level of the memory hierar-
chy (or if the cache is write through) the code pointer would
at that time be encrypted using Feistel Network.

If a d-load occurs and there is a hit in the cache and the
encrypted bit is not set, then the data item needs to be
decrypted and recached. When this occurs the d-load goes
through the decryption process, recaches this unencrypted
value, and sets the bit in the cache. This situation can occur
when a cache line is prefetched, or when a spatial hit brings
in the cache block.

If an untrusted store instruction writes to a data item that
is already in the cache and the encryption bit is set for that
data item, then the register value is stored and the encrypted
bit is cleared because it was not stored with an e-store.

The last remaining issue occurs if an untrusted load loads a
data item, and the protection bit is set. This can only occur
if a d-load or e-store last accessed that code pointer. The
reason why an untrusted load might be accessing it is to do a
memcopy or something similar. Our policy is that untrusted
loads should only see encrypted data. Therefore, the data
item is encrypted before storing the value into the register for
that load. The encrypted data item is then stored into the
cache and the bit is cleared. This should occur significantly
less often than the d-load and e-store accessing that cached
code pointer.

6.5 Hardware Support Results

6.5.1 Simulating D-Loads and E-Stores
To gather performance overhead results, we perform cycle

level simulation as described in Section 4. To simulate return
address encryption, we detect loads and stores to and from
the return address register and introduce extra latency to
them. To simulate targeted encryption of function pointers
we add extra latency to every load or store in a program that
accesses a value which could be interpreted as a pointer to
the text segment and we add extra latency to them. We then
run our simulator for 100 million instructions using the early
SimPoints [23] on the SPECint benchmarks and a handful of
C++ programs and measure the effects of our modification.
In doing the cycle level simulations we modeled in detail all
pipeline modifications and latencies, including details like
the return address check.

Our latencies for the various techniques are conservative.
The RPT method requires two XORs and a table lookup. In
all likelihood this is a single cycle operation in any conceiv-
able processor, but we give 5 cycle numbers to show that the
performance impact for additional latency is not substantial.

For the 4 round Luby-Rackoff Feistel Network, we assume
the AES [8] implementation. We provide results for assum-

0

2

4

6

8

10

12

14

16

18

20

burg dot gap perlbmk li parser avg-rest avg

P
er

ce
nt

S
lo

w
do

w
n

P G return s tack
1 cycle return s tack
5 cycle return s tack
P G P ointer
1 cycle pointer
5 cycle pointer

Figure 2: SPECint and other benchmark results for
XOR-Key and RPT. The first 3 bars are for protect-
ing only return addresses, and the last 3 bars are for
protecting all code pointers.

ing each Feistel Network round to take 10 cycles or 20 cy-
cles for a total of 40 or 80 cycles for the two configurations
examined. In terms of area, from published AES implemen-
tations, we can estimate that the cost of a pipelined AES
implementation would be hundreds of thousands of gates -
a very small fraction of a future microprocessor. Note, each
round of the Luby-Rackoff Feistel Network could be repre-
sented as a direct table lookup by expanding AES, but exam-
ining the performance of this approach is beyond the scope
of this paper.

6.5.2 XOR-Key and Random Permutation Table Re-
sults

We first assume simple XOR encryption on the load/store
path and perform two different experiments. The first exper-
iment assumes that we only encrypt call/return sequences.
The second approach assumes compiler support which has
replaced all pointer stores and loads with e-store and d-load.

Figure 2 shows the performance overhead of using the pure
software approach of PointGuard (PG), the XOR-Key archi-
tecture, and the RPT architecture. The results are shown for
two latencies (1 and 5 cycle) for encrypting all code point-
ers (pointer) and only return addresses (return stack). For
the XOR-Key results we assume a 1-cycle latency to perform
the encryption and decryption. The effects on the SPECint
benchmarks is fairly benign. The XOR-Key results show
that we can provide PointGuard level of protection for less
than 0.5% slowdown on average.

For the RPT approach we model that the RPT function is
performed on the critical path of the e-store and d-load for
all code pointers and assume that this takes 5 cycles. Only
with 5 cycle encryption of all code pointers do perlbmk, gap
and dot show slowdowns of up to 10%. This implies that
the RPT approach may benefit from the caching approach
discussed in Section 6.4.3.2. Even so, if we use the RPT ap-
proach for just return stack addresses, effectively no overhead
is seen except for dot. The reason for not having any perfor-
mance degradation for 5 cycle return stack is that the check
is performed off of the predicted return address as described
in Section 6.4.3. This effectively masks the latency of the
return address check. In all cases, except for dot, the RPT
table creates less than half the slowdown of PointGuard.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



0

10

20

30

40

50

60

70

burg dot gap perlbmk li parser avg-
rest

avg

P
er

ce
nt

S
lo

w
do

w
n

P G P ointer
40 cycle pointer
80 cycle pointer
40 cycle pointer L1
80 cycle pointer L1

Figure 3: SPECint benchmark results for Feistel Net-
work with and without caching. The first bar shows
results for the software only solution of PointGuard,
and the last 4 bars are using hardware support for
protecting all code addresses with strong read attack
security.

6.5.3 Performance of Feistel Network encryption
As previously mentioned, we estimated the implementa-

tion for the 4 round AES Feistel Network to be 40-80 cycles
for our processor assumptions based on published implemen-
tations of AES [11]. Figure 3 shows the results for these two
latencies using the Feistel Network to protect all code point-
ers (pointer). The performance decrease caused by naively
placing the encryption on the critical path of the d-load/e-
store leads to debilitating performance drops.

Our final experiment is to assume that we add extra bits
to the L1 cache tags to indicate that encryption must be
performed when the data words are accessed as described in
Section 6.4.3.2. These are the L1 bars in Figure 3. As we
see, the penalty from this is greatly reduced relative to the
non-cached approach when protecting all code pointers.

6.5.4 Results Summary
From the results in this section it is clear that the return

addresses can have strong read attack security with very low
overhead. Applying the Luby-Rackoff Feistel network to all
code pointers is more expensive than PointGuard and there-
fore not likely to be a popular option in a processor. How-
ever, using the caching approach allows strong read attack
security for all pointers with performance degradations only
a fraction of the PointGuard approach. Even the 80 cycle
implementation of the Feistel network with caching has a
performance degradation of approximately 3% compared to
9% for software PointGuard. An alternative design left for
future research is to use a direct table lookup by expanding
AES used in each round of the Luby-Rackoff Feistel Net-
work. This will significantly reduce the latency of the Feistel
Network, but increase the area required to implement it.

7. SUMMARY
Buffer overflows are a key part of the hacker’s arsenal be-

cause the efficient languages used for system development
have chosen not to protect against them. Vulnerabilities are
currently being found at a tremendous rate and machines
frequently remain unpatched for long periods of time. Write
and read buffer overflows can be used to allow an attacker to
run arbitrary code on a victim’s machine and are the basis
for the many of the damaging worms seen recently. Thus,

providing new mechanisms for preventing the root cause of
such attacks will have considerable economic and societal
benefits, compared to the more indirect approach used to-
day of finding and blocking the signature of an attack in the
network once it has caused damage.

In this paper we consider hardware approaches to elim-
inating buffer overflow attacks. When considering adding
such a hardware change, a processor vendor would like a
mechanism that is:

1. General: The mechanism should work with as many
attacks as possible, and deal with nuances like contin-
uations and setjmp/longjmp;

2. Backwards Compatible: The mechanism should ide-
ally not require re-compilation (just minor binary mod-
ification), and deal with the vagaries of legacy code
which may not always respect standard call/return se-
mantics;

3. Secure: There should be a reasonable argument that
the security provided cannot be finessed by attacks
such as read buffer overflow attacks.

4. Efficient: The mechanism should fit in easily with
existing ISAs, require a small amount of hardware to
implement, take little extra memory, and cause very
little slowdown.

Our paper shows that PointGuard can be applied via bi-
nary modification, as we show with Bochs, to execute legacy
code and code that does not following the strict call/return
semantics. In doing this, we show that previous return stack
security architectures must have binaries (like the linux ker-
nel) cleaned of non-strict call/return semantics in order to
work.

We show that existing software techniques such as Point-
Guard have performance overhead, and we examine using
special purpose hardware instructions to eliminate this over-
head. These instructions significantly reduce the time and
complexity of binary patching to protect return addresses,
and would enable fast dynamic patching of code.

In addition, the existing software techniques like Point-
Guard do not protect against read attacks. To address this,
we examine cryptographically secure mechanisms for tar-
geted encryption of function pointers. Our approach also
considers a wide spectrum of security needs ranging from
the simplest and most efficient cypher (XOR) to a crypto-
graphically strong Luby-Rackoff Feistel network. We address
the inefficiency of the Luby-Rackoff Feistel network by intro-
ducing a scheme to avoid encryption and decryption of ad-
dresses that hit in the cache. Finally, we have shown that our
approach requires little modification to existing ISAs (espe-
cially our target, the widely deployed x86 ISA), requires only
a small amount of hardware changes, requires only a modest
amount of extra memory even for cryptographically strong
variants, and causes a very small slowdown of less than 3%
on average for the SPECint benchmarks for even our most
secure encryption algorithm when using caching.

Overall, this approach trades the generality and overhead
of a more revolutionary approach (e.g., secure processor de-
sign) [14, 24, 29] for an efficient evolutionary approach that
focuses only on protecting buffer overflow attacks that hi-
jack processor control flow. In particular, mechanisms such
as ours cannot prevent an attacker from crashing a process.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



However, if generally implemented in the next generation of
processors, such mechanisms could greatly limit the power
of attackers and make writing a worm a much harder task
than it is today.

Acknowledgments
We would like to thank Tadayoshi Kohno for detailed dis-
cussions and suggestions about the security algorithms used
in this paper, and the anonymous reviewers and Jedidiah
Crandall for providing useful comments on this paper. This
work was funded in part by NSF grant No. CCR-0311712
and an equipment grant from Intel.

8. REFERENCES
[1] Arash Baratloo, Timothy Tsai, and Navjot Singh. Libsafe:

Protecting critical elements of stacks. Technical report,
Avaya Labs, 1999.

[2] Arash Baratloo, Timothy Tsai, and Navjot Singh.
Transparent run-time defense against stack smashing
attacks. In Proceedings of the USENIX Annual Technical
Conference, June 2000.

[3] Bochs. Bochs ia-32 emulator project.
http://bochs.sourceforge.org, 2001.

[4] Bulba and Kil3r. Bypassing stackguard and stackshield.
Phrack Magazine, 0xa(0x38), May 2000.

[5] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian
Zhang, and Heather Hinton. StackGuard: Automatic
adaptive detection and prevention of buffer-overflow
attacks. In Proc. 7th USENIX Security Conference, pages
63–78, San Antonio, Texas, jan 1998.

[6] Crispin Cowan, Steve Beattie, John Johansen, and Perry
Wagle. Pointguard: Protecting pointers from buffer overflow
vulnerabilities. In 12th USENIX Security Symposium,
Washington DC, August 2003.

[7] J.R. Crandall and F.T. Chong. A security assessment of the
minos architecture. In 37th International Symposium on
Microarchitecture, 2004.

[8] J. Daemen and V. Rijmen. The Design of Rijndael: AES -
The Advanced Encryption Standard. Springer-Verlag, 2002.

[9] S. Even and Y. Mansour. A construction of a cipher from a
single pseudorandom permutation. Journal of Cryptology,
10(3), 1997.

[10] Mike Frantzen and Mike Shuey. StackGhost: Hardware
facilitated stack protection. In 10th USENIX Security
Symposium, pages 55–66, 2001.

[11] K. Gaj and P. Chodowiec. Comparison of the hardware
performance of the aes candidates using reconfigurable
hardware. In 3rd Advanced Encryption Standard Candidate
Conference, 2000.

[12] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks,
James Cheney, and Yanling Wang. Cyclone: A safe dialect
of c. In USENIX Annual Technical Conference, pages
275–288, June 2002.

[13] Ruby B. Lee, David K. Karig, John P. McGregor, and
Zhijie Shi. Enlisting hardware architecture to thwart
malicious code injection. In Proceedings of the International
Conference on Security in Pervasive Computing
(SPC-2003), March 2003.

[14] David Lie, Chandramohan Thekkath, and Mark Horowitz.
Implementing an untrusted operating system on trusted
hardware. In Symposium on Operating Systems Principles,
October 2003.

[15] M. Luby and C. Rackoff. How to construct pseudorandom
permutations from pseudorandom functions. SIAM
J. Computation, 17(2), April 1988.

[16] John P. McGregor, David K. Karig, Zhijie Shi, and Ruby B.
Lee. A processor architecture defense against buffer overflow
attacks. In Proceedings of IEEE International Conference

on Information Technology: Research and Education
(ITRE 2003), pages 243–250, August 2003.

[17] E. Mohr, D. Kranz, and R. Halstead. Lazy task creation: A
technique for increasing the granularity of parallel
programs. ACM Transactions on Parallel and Distributed
Systems, 2(3):264–280, 1991.

[18] H. Ozdoganoglu, C.E. Brodley, T.N. Vijaykumar, and B.A.
Kuperman. Smashguard: A hardware solution to prevent
attacks on the function return address. Technical report,
Electrical and Computer Engineering Department, Purdue
University, Dec 2000.

[19] Martin Roesch. Snort – lightweight intrusion detection for
networks. In Proceedings of LISA’99: 13th Systems
Administration Conference, pages 229–238, November 1999.

[20] Ahmad-Reza Sadeghi and Christian Stüble. Bridging the
gap between TCPA/palladium and personal security.

[21] Zili Shao, C. Xue, Q. Zhuge, E.H.-M Sha, and B. Xiao.
Security protection and checking in embedded system
integration against buffer overflow attacks. In Proceedings of
Information Assurance and Security special track in
conjunction with the International Conference on
Information Technology: Coding and Computing (ITCC
2004), volume I, pages 409–412, April 2004.

[22] Zili Shao, Qingfeng Zhuge, Yi He, and Edwin Sha.
Defending embedded systems against buffer overflow via
hardware/software. In Proceedings of the 19th Annual
Computer Security Applications Conference, 2003.

[23] T. Sherwood, E. Perelman, G. Hammerley, and B. Calder.
Automatically characterizing large-scale program behavior.
In Proceedings of the International Conference on 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, October
2002.

[24] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten
van Dijk, and Srinivas Devadas. Efficient memory integrity
verification and encryption for secure processors. In
Proceedings of MICRO-36, December 2003.

[25] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In 22nd
Annual International Symposium on Computer
Architecture, June 1995.

[26] John Viega, J. T. Bloch, Tadayoshi Kohno, and Gary
McGraw. ITS4: A static vulnerability scanner for C and
C++ code. ACM Transactions on Information and System
Security, 5(2), 2002.

[27] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and
Alexander Aiken. A first step towards automated detection
of buffer overrun vulnerabilities. In Network and Distributed
System Security Symposium, pages 3–17, San Diego, CA,
February 2000.

[28] John Wilander and Mariam Kamkar. A comparison of
publicly available tools for dynamic buffer overflow
prevention. In Proceedings of the 10th Network and
Distributed System Security Symposium, pages 149–162,
San Diego, California, February 2003.

[29] Jun Yang, Youtao Zhang, and Lan Gao. Fast secure
processor for inhibiting software piracy and tampering. In
Proceedings of MICRO-36, December 2003.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 


