Managing Wire Delay in Large

Chip-Multiprocessor Caches

Bradford M. Beckmann and David A. Wood
Computer Sciences Department
University of Wisconsin—Madison
{beckmann, david}@cs.wisc.edu

Abstract

In response to increasing (relative) wire delay, archi-
tects have proposed various technologies to manage the
impact of slow wires on large uniprocessor L2 caches.
Block migration (e.g., D-NUCA [27] and NuRapid [12])
reduces average hit latency by migrating frequently used
blocks towards the lower-latency banks. Transmission Line
Caches (TLC) [6] use on-chip transmission lines to provide
low latency to all banks. Traditional stride-based hardware
prefetching strives to tolerate, rather than reduce, latency.

Chip multiprocessors (CMPs) present additional chal-
lenges. First, CMPs often share the on-chip L2 cache,
requiring multiple ports to provide sufficient bandwidth.
Second, multiple threads mean multiple working sets, which
compete for limited on-chip storage. Third, sharing code
and data interferes with block migration, since one proces-
sor’'s low-latency bank is another processor’s high-latency
bank.

In this paper, we develop L2 cache designs for CMPs
that incorporate these three latency management tech-
nigues. We use detailed full-system simulation to analyze
the performance trade-offs for both commercial and scien-
tific workloads. First, we demonstrate that block migration
is less effective for CMPs because 40-60% of L2 cache hits
in commercial workloads are satisfied in the central banks,
which are equally far from all processors. Second, we
observe that although transmission lines provide low
latency, contention for their restricted bandwidth limits
their performance. Third, we show stride-based prefetching
between L1 and L2 caches alone improves performance by
at least as much as the other two techniques. Finally, we
present a hybrid desigrcombining all three techniques
that improves performance by an additional 2% to 19%
over prefetching alone.

1 Introduction

Many factors—both technological and marketing—are
driving the semiconductor industry to implement multiple
processors per chip. Small-scale chip multiprocessors
This work was supported by the National Science Foundation
(CDA-9623632, EIA-9971256, EIA-0205286, and CCR-
0324878), a Wisconsin Romnes Fellowship (Wood), and dona-
tions from Intel Corp. and Sun Microsystems, Inc. Dr. Wood has a
significant financial interest in Sun Microsystems, Inc.

(CMPs), with two processors per chip, are already commer-
cially available [24, 30, 44]. Larger-scale CMPs seem likely
to follow as transistor densities increase [5, 18, 45, 28]. Due
to the benefits of sharing, current and future CMPs are
likely to have a shared, unified L2 cache [25, 37].

Wire delay plays an increasingly significant role in
cache design. Design partitioning, along with the integra-
tion of more metal layers, allows wire dimensions to
decrease slower than transistor dimensions, thus keeping
wire delay controllable for short distances [20, 42]. For
instance as technology improves, designers split caches into
multiple banks, controlling the wire delay within a bank.
However, wire delay between banks is a growing perfor-
mance bottleneck. For example, transmitting data 1 cm
requires only 2-3 cycles in current (2004) technology, but
will necessitate over 12 cycles in 2010 technology assum-
ing a cycle time of 12 fanout-of-three delays [16]. Thus, L2
caches are likely to have hit latencies in the tens of cycles.

Increasing wire delay makes it difficult to provide uni-
form access latencies to all L2 cache banks. One alternative
is Non-Uniform Cache Architecture (NUCA) designs [27],
which allow nearer cache banks to have lower access laten-
cies than further banks. However, supporting multiple pro-
cessors (e.g., 8) places additional demands on NUCA cache
designs. First, simple geometry dictates that eight regular-
shaped processors must be physically distributed across the
2-dimensional die. A cache bank that is physically close to
one processor cannot be physically close to all the others.
Second, an 8-way CMP requires eight times the sustained
cache bandwidth. These two factors strongly suggest a
physically distributed, multi-port NUCA cache design.

This paper examines three techniques—previously
evaluated only for uniprocessors—for managing L2 cache
latency in an eight-processor CMP. First, we consider using
hardware-directed stride-based prefetching [9, 13, 23] to
tolerate the variable latency in a NUCA cache design.
While current systems perform hardware-directed strided
prefetching [19, 21, 43], its effectiveness is workload
dependent [10, 22, 46, 49]. Second, we consider cache
block migration [12, 27], a recently proposed technique for
NUCA caches that moves frequently accessed blocks to
cache banks closer to the requesting processor. While block
migration works well for uniprocessors, adapting it to

YF]',F.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

COMPUTER
SOCIETY

CMPs poses two problems. One, blocks shared by multipl@able 1 specifies the system parameters for all designs. Each
processors are pulled in multiple directions and tend to con€MP design assumes approximately 300 %roh available
gregate in banks that are equally far from all processorsdie area [16]. We estimate eight 4-wide superscalar proces-
Two, due to the extra freedom of movement, the effectivesors would occupy 120 m?1129] and 16 MB of L2 cache
ness of block migration in a shared CMP cache is morestorage would occupy 64 m?rr[16]. The on-chip intercon-
dependent on “smart searches” [27] than its uniprocessarection network and other miscellaneous structures occupy
counterpart, yet smart searches are harder to implement inthe remaining area.
CMP environment. Finally, we consider using on-chip trans- As illustrated in Figure 1, the baseline design—denoted
mission lines [8] to provide fast access to all cache banks [6]cMP-SNUCA—assumes a Non-Uniform Cache Architec-
On-chip transmission lines use thick global wires to reduceure (NUCA) L2 cache, derived from Kim, et al.'s S-NUCA-
communication latency by an order of magnitude versu® design [27]. Similar to the original proposal, CMP-
long conventional wires. Transmission Line Caches (TLCS)SNUCA statically partitions the address space across cache
provide fast, nearly uniform, access latencies. However, thganks, which are connected via a 2D mesh interconnection
limited bandwidth of transmission lines—due to their |argenetwo|’k_ CMP-SNUCA differs from the uniprocessor design
dimensions—may lead to a performance bottleneck inn several important ways. First, it places eight processors
CMPs. around the perimeter of the L2 cache, effectively creating
This paper evaluates these three techniqgues—againstedght distributed access locations rather than a single central-
baseline NUCA design with L2 miss prefetching—usingized location. Second, the 16 MB L2 storage array is parti-
detailed full-system simulation and both commercial and scitioned into 256 banks to control bank access latency [1] and
entific workloads. We make the following contributions: to provide sufficient bandwidth to support up to 128 simulta-

* Block migration is less effective for CMPs than previous N€0US on-chip processor requests. Third, CMP-SNUCA con-
results have shown for uniprocessors. Even with an perd€cts four banks to each switch and expands the link width to
fect search mechanism, block migration alone only32 bytes. The wider CMP-SNUCA network provides the
improves performance by an average of 3%. This is in@dditional bandwidth needed by an 8-processor CMP, but

part because shared blocks migrate to the middidequires longer latencies as compared to the originally pro-
equally-distant cache banks, accounting for 40-60% of0sed uniprocessor network. Fourth, shared CMP caches are

L2 hits for the commercial workloads. subject to contention from different processors’ working sets
* Transmission line caches in CMPs exhibit performanc 32], motivating 16-way set-associative banks with a pseudo-

improvements comparable to previously published uni-. RU replacement policy [40]. Finally, we assume an ideal-

o ized off-chip communication controller to provide consistent
processor results [6]—8% on average. However, conten-

tion for their limited bandwidth accounts for 26% of L2 off-chip latency for all processors.
hit latency. 2.2 Strided Prefetching

* Hardware-directed strided prefetching hides L2 hit Strided or stride-based prefetchers utilize repeatable
latency about as well as block migration and transmis-memory access patterns to tolerate cache miss latency [11,
sion lines reduce it. However, prefetching is largely 23, 38]. Though the L1 cache filters many memory requests,
orthogonal, permitting hybrid techniques. L1 and L2 misses often show repetitive access patterns. Most

* A hybrid implementation—combining block migration, current prefetchers utilize miss patterns to predict cache
transmission lines, and on-chip prefetching—providesmisses before they happen [19, 21, 43]. Specifically, current
the best performance. The hybrid design improves perhardware prefetchers observe the stride between two recent
formance by an additional 2% to 19% over the baselinecache misses, then verify the stride using subsequent misses.

« Finally, prefetching and block migration improve net- Once the prefetcher reaches a threshold of fixed strided
work éfficiency for some scientific workloads. while misses, it launches a series of fill requests to reduce or elimi-

transmission lines potentially improve efficiency acrossnate additional miss latency.

all workloads. _ We base_: our prefe?ching strategy on the_ _IBM Power 4
) implementation [43] with some slight modifications. We
2 Managing CMP Cache Latency evaluate both L2 prefetching (i.e., between the L2 cache and

This section describes the baseline CMP design for thisnemory) and L1 prefetching (i.e., between the L1 and L2
study and how we adapt the three latency management techaches). Both the L1 and L2 prefetchers contain three sepa-

nigues to this framework. rate 32-entry filter tables: positive unit stride, negative unit
. . stride, and non-unit stride. Similar to Power 4, once a filter
2.1 Baseline CMP Design table entry recognizes 4 fixed-stride misses, the prefetcher

We target eight-processor CMP chip designs assumingllocates the miss stream into its 8-entry stream table. Upon
the 45 nm technology generation projected in 2010 [16]allocation, the L1l and L1D prefetchers launch 6 consecutive

YF]',F.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) COMPUTER
1072-4451/04 $20.00 © 2004 IEEE SOCIETY

Table 1. 2010 System Parameters

Memory System

Dynamically Scheduled Processor

split L1 | & D caches

64 KB, 2-way, 3 cycles

clock frequency

10 GHz

unified L2 cache

16 MB, 256x64 KB, 16
way, 6 cycle bank access

+ reorder buffer / scheduler

128 / 64 entries

L1/L2 cache block size 64 Bytes pipeline width 4-wide fetch & issue
memory latency 260 cycles pipeline stages 30

memory bandwidth 320 GB/s direct branch predictor 3.5 KB YAGS
memory size 4 GB of DRAM return address stack 64 entries

indirect branch predictor 256 entries (cascaded)

outstanding memory requests/CAU 16

prefetches along the stream to compensate for the L1 to L2
latency, while the L2 prefetcher launches 25 prefetches. CPU2
Each prefetcher issues prefetches for both loads and stores
because, unlike the Power 4, our simulated machine uses an
L1 write-allocate protocol supporting sequential consistency.
Also we model separate L2 prefetchers per processor, rather
than a single shared prefetcher. We found that with a shared
prefetcher, interference between the different processors’
miss streams significantly disrupts the prefetching accuracy
and coverage

2.3 Block Migration 8

Block migration reduces global wire delay from L2 hit
latency by moving frequently accessed cache blocks closer . .
to the requesting processor. Migrating data to reduce latency ~ Figure 1. CMP-SNUCA Layout with CMP-
has been extensively studied in multiple-chip multiproces- DNUCA Bankcluster Regions
sors [7, 15, 17, 36, 41]. Kim, et al. recently applied data[27]. The bankclusters are grouped into three distinct
migration to reduce latency inside future aggressivelyregions. The 8 banksets closest to each processor form the
banked uniprocessor caches [27]. Their Dynamic NUCA (D-ocal regions, shown by the 8 lightly shaded bankclusters in
NUCA) design used a 2-dimensional mesh to interconnect 2Figure 1. The 4 bankclusters that reside in the center of the
way set-associative banks, and dynamically migrated freshared cache form theenterregion, shown by the 4 darkest
quently accessed blocks to the closest banks. NuRapid usefladed bankclusters in Figure 1. The remaining 4 bankclus-
centralized tags and a level of indirection to decouple datgers form theinter, or intermediate, region. Ideally block
placement from set indexing, thus reducing conflicts in themigration would maximize L2 hits within each processor’s
nearest banks [12]. Both D-NUCA and NuRapid assumed #ocal bankcluster where the uncontended L2 hit latency (i.e.,
single processor chip accessing the L2 cache network from laad-to-use latency) varies between 13 to 17 cycles and limit
single location. the hits to another processor’s local bankcluster, where the

For CMPs, we examine a block migration scheme as amincontended latency can be as high as 65 cycles.
extension to our baseline CMP-SNUCA design. Similar to To reduce the latency of detecting a cache miss, the uni-
the uniprocessor D-NUCA design [27], CMP-DNUCA per- processor D-NUCA design utilized a “smart search” [27]
mits block migration bylogically separating the L2 cache mechanism using a partial tag array. The centrally-located
banks into 16 unique banksets, where an address maps tqartial tag structure [26] replicated the low-order bits of each
bankset and can reside within any one bank of the banksebank’s cache tags. If a request missed in the partial tag struc-
CMP-DNUCA physicallyseparates the cache banks into 16ture, the block was guaranteed not to be in the cache. This
different bankclustersshown as the shaded “Tetris” pieces smart search mechanism allowed nearly all cache misses to
in Figure 1. Each bankcluster contains one bank from everye detected without searching the entire bankset.
bankset, similar to the uniprocessor “fair mapping” policy In CMP-DNUCA, adopting a partial tag structure

1. Similar to separating branch predictor histories per thread [39]2PPears impractical. A centralized partial tag structure can-
separating the L2 miss streams by processor significantly improveB0t be quickly accessed by all processors due to wire delays.
prefetcher performance (up to 14 times for the workload ocean). Fully replicated 6-bit partial tag structures (as used in uni-

YF]',F.

COMPUTER
SOCIETY

Bankcluster Ke:
D Local
or

e D Inter.
-

o =

. Center

,_
[N
=
[N

¥ NdD

[]

CPU1

&) [=1/=] E/=R

=

S NdD

5] [)] []
| ==
()] [{}]

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

i erus 29 oy pid chuz Q
T8 L L e i g
3 LS/ ol i
1o PR 1 7 RN -1
i i TP P v il .
i £ R TR)Y i >
i)i i Z
| e
,,,,,,,,,,, BLINIH O

o orun lFll - ceue AR i
1l I S | — ek

Dy |I$ e 2
Bee icPuo cPU7! [BEEH 5
{E{»D B L1 L1 ! ”HE}H CPU 6
D[,E)T_‘ I$ D 0'C0'0)
Figure 2. CMP-TLC Layout Figure 3. CMP-Hybrid Layout

processor D-NUCA [27]) require 1.5 MBs of state, anthe number of transmission lines available. Alternatively,
extremely high overhead. More importantly, separate partiagxtra metal layers may be integrated to the manufacturing
tag structures require a complex coherence scheme thptocess, but each new metal layer adds about a day of manu-
updates address location state in the partial tags with bloctacturing time, increasing wafer cost by hundreds of dollars
migrations. However, because architects may invent a soly47].

tion to this problem, we evaluate CMP-DNUCA both with Applying on-chip transmission lines to reduce the

and without a perfect search mechanism. access latency of a shared L2 cache requires efficient utiliza-
2.4 On-chip Transmission Lines tion of thelr limited b{;\ndW|dth. S|m|l_ar to our uniprocessor
) . TLC designs [6], we first propose using transmission lines to

On-chip transmission line technology reduces L2 cachg,nnect processors with a shared L2 cache through a single
access latency by replacing slow conventional wires with 5 jnterface, as shown in Figure 2. Because transmission
ultra-fast transmission lines [6]. The delay in conventionaljnes go not require repeaters, CMP-TLC creates a direct
wires is dominated by a wire’s resistance-capacitance prodsonnection between the centrally located L2 interface and
uct, or RC delay. RC delay increases with improving t€Ch+ne peripherally located storage arrays by routing directly
nology as wires become thinner to match the smaller featurg, o the processors. Similar to CMP-SNUCA, CMP-TLC
sizes below. Specifi_cally, wire resistance_ increases due_to ﬂ'ﬁatically partitions the address space across all L2 cache
smaller cross-sectional area and sidewall capacitanCganis. Sixteen banks (2 adjacent groups of 8 banks) share a
increases due to the greater surface area exposed 10 adjacgginmon pair of thin 8-byte wide unidirectional transmission
wires. On the other hand, transmission lines attain significanfne Jinks to the L2 cache interface. To mitigate the conten-
performance benefit by increasing wire dimensions to thgi,n for the thin transmission line links, our CMP-TLC

point where the inductance-capacitance product (LC delayesign provides 16 separate links to different segments of the
determines delay [8]. In the LC range, data can be communir 5 cache. Also to further reduce contention, the CMP-TLC
cated by propagating an incident wave across the transmig jyierface provides a higher bandwidth connection (80-
sion line instead of charging the capacitance across a seriggre wide) between the transmission lines and processors
of wire segments. While techniques such as low-k intermetal o, the original uniprocessor TLC design. Due to the higher

dielectrics, additional metal layers, and more repeaterﬁandwidth, requests encounter greater communication
across a link, will mitigate RC wire latency for short and latency (2-10 cycles) within the L2 cache interface.
intermediate links, transmitting data 1 cm will require more

. e We also propose using transmission lines to quickly
than 12. cycles_m 20.10 technology_ [16]. In contrast, on Ch.'paccess the central banks in the CMP-DNUCA design. We
transmission lines implemented in 2010 technology will

transmit data 1 cm in less than a single cycle [6] refer to this design as CMP-Hybrid. CMP-Hybrid, illustrated
. . . . gecy) L in Figure 3, assumes the same design as CMP-DNUCA
While on-chip transmission lines achieve significant

except the closest switch to each processor has a 32-byte

latency reduction, they sacrifice substantial bandwidth ogije transmission line link to a center switch in the DNUCA
require considerable manufacturing cost. To achieve trangsyche Because the processors are distributed around the
mission line signalling, on-chip wire dimensions and spacing,erimeter of the chip and the distance between the processor
must be an order of magnitude larger than minimum pitchyyitches and the center switches is relatively short (approxi-
global wires. To attain these large dimensions, transm|SS|0Fhate|y 8 mm), the transmission line links in CMP-Hybrid

lines must be implemented in the chip’s uppermost metal .« \vider (32 bytes) than their CMP-TLC counterparts
layers. The sparseness of these upper layers severely limits

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) COMPUTER
1072-4451/04 $20.00 © 2004 IEEE SOCIETY

70

CMP-SNUCA — Table 2. Evaluation Methodology
60 | CMP-TL —<—)
CMP-Hybrid - Bench | Fast Forward | Warm-up | Executed
? Commercial Workloads (unit = transactions)
s apache | 500000 2000 500
2 zeus 500000 2000 500
c
% jbb 1000000 15000 2000
oltp 100000 300 100
Scientific Workloads (unit = billion instructions)
0 ' ! ' . barnes None 1.9 run completion
0 20 40 60 80 100 .
% of L2 Cache Storage ocean None 24 run completion|
. apsi 88.8 4.64 loop completion
Figure 4. CMP-SNUCA vs. CMP-TLC vs. CMP- ,
Hybrid Uncontended L2 Hit Latency fma3d | 1904 2.08 loop completiop

(8 bytes). The transmission line links of CMP-Hybrid pro- responses, replacements, and acknowledgements. Network
vide low latency access to those blocks that tend to congrerouting is performed using a virtual cut-through scheme with
gate in the center banks of the block migrating NUCA cacheinfinite buffering at the switches.

Section 5.3. We studied the CMP cache designs for various commer-

Figure 4 compares the uncontended L2 cache hit latencgial and scientific workloads. Alameldeen, et al. described in
between the CMP-SNUCA, CMP-TLC, and CMP-Hybrid detail the four commercial workloads used in this study [2].
designs. The plotted hit latency includes L1 miss latency, i.eWe also studied four scientific workloads: two Splash2
it plots the load-to-use latency for L2 hits. While CMP-TLC benchmarks [48]: barnes (16k-particles) and ocean
achieves a much lower average hit latency than CMP{514x 514, and two SPECOMP benchmarks [4]: apsi and
SNUCA, CMP-SNUCA exhibits lower latency to the closest fma3d. We used a work-related throughput metric to address
1 MB to each processor. For instance, Figure 4 shows alinultithreaded workload variability [2]. Thus for the com-
processors in the CMP-SNUCA design can access their locahercial workloads, we measured transactions completed and
bankcluster (6.25% of the entire cache) in 18 cycles or lesdor the scientific workloads, runs were completed after the
CMP-DNUCA attempts to maximize the hits to this closestcache warm-up period indicated in Table 2. However, for the
6.25% of the NUCA cache through migration, while CMP- specOMP workloads using the reference input sets, runs
TLC utilizes a much simpler logical design and provides fastwere too long to be completed in a reasonable amount of
access for all banks. CMP-Hybrid uses transmission lines ttime. Instead, these loop-based benchmarks were split by
attain similar average hit latency as CMP-TLC, as well asmain loop completion. This allowed us to evaluate all work-
achieving fast access to more banks than CMP-SNUCA. loads using throughput metrics, rather than IPC.

3 Methodology 4 Strided Prefetching

We evaluated all cache designs using full system simula- Both on and off-chip strided prefetching significantly
tion of a SPARC V9 CMP running Solaris 9. Specifically, we improve the performance of our CMP-SNUCA baseline.
used Simics [33] extended with the out-of-order processoFigure 5 presents runtime results for no prefetching, L2
model, TFSim [34], and a memory system timing model.prefetching only, and L1 and L2 prefetching combined, nor-
Our memory system implements a two-level directory cachemalized to no prefetching. Error bars signify the 95% confi-
coherence protocol with sequential memory consistency. Thdence intervals [3] and the absolute runtime (in 10K
intra-chip MSI coherence protocol maintains inclusioninstructions per transaction/scientific benchmark) of the no
between the shared L2 cache and all on-chip L1 caches. Aprefetch case is presented below. Figure 5 illustrates the sub-
L1 requests and responses are sent via the L2 cache allowisgantial benefit from L2 prefetching, particularly for regular
the L2 cache to maintain up-to-date L1 sharer knowledgescientific workloads. L2 prefetching reduces the run times of
The inter-chip MOSI coherence protocol maintains directoryocean and apsi by 43% and 59%, respectively. Strided L2
state at the off-chip memory controllers and only tracksprefetching also improves performance of the commercial
which CMP nodes contain valid block copies. Our memoryworkloads by 4% to 17%.
system timing model includes a detailed model of the intra- The L1&L2 prefetching bars of Figure 5 indicate on-
and inter-chip network. Our network models all messageghip prefetching between each processor’s L1 | and D caches
communicated in the system including all requestsand the shared L2 cache improves performance by an addi-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

Table 3. Prefetching Characteristics

L1 | Cache L1 D Cache L2 Cache
benchmark prefetches covera&;e accurgey prefetches coverage agturacy prefetches Coverage |accuracy
apache 7.6 18.39 48.7% 53 9.3% 61.7% 7.0 39.0% 49(8%
jbb 25 30.1 57.0 2.0 7.7 35.9 3.0 38.3 36.8
oltp 15.1 26.7 53.5 1.4 5.9 59.6 1.9 35.0 50.3
zeus 11.3 19.0 47.9 4.9 15.7 78.6] 8.0 47.3 56.Y
barnes 0.0 9.1 38.7 0.2 3.0 20.8 0.0 12.3 22.8
ocean 0.0 221 50.9 17.6 85.9 88.3 4.0 91.3 87.b
apsi 0.0 10.8 38.5 5.6 46.7 99.4 5.7 98.7] 98.9
fma3d 0.0 12.4 331 6.7 32.8 82.5 11.2 36.8 67.9

large on-chip caches will implement hardware-directed
prefetching and service multiple on-chip processors. Our
CMP-DNUCA design extends block migration to an 8-pro-

1.0

ACMPSNUCALIZLZEN ur CMP cache implementing block migration in

Section 5.2, and present evaluation results in Section 5.3.

é cessor CMP cache and supports strided prefetching at the L1
£z Il CMP-SNUCA no pf and L2 cache levels. We characterize the working sets exist-
g 054 — BMCMP-SNUCA L2 pf ing in a shared CMP cache in Section 5.1. Then we describe
I
€
2

5.1 Characterizing CMP Working Sets
We analyze the working sets of the workloads running

0.0~ —
31 51 200 15 38000 28000 21000 32000

ache job olip zaus bames ocen gps fmaSd on an eight-processor CMP. Specifically, we focus on under-
Benchmarks standing the potential benefits of block migration in a CMP

Figure 5. Normalized Execution: Strided cache by observing the behavior of L2 cache blocks. We
Prefetching model a single-banked 16 MB inclusive shared L2 cache

tional 6% on average. On-chip prefetching benefits aliWith 16-way associativity and a uniform access time to iso-

benchmarks except for jbb and barnes, which have high locafte the sharing activity from access latency and conflict

L1 cache hit rates of 91% and 99% respectively. Table 4nisses. No prefetching is performed in these runs. To miti-
breaks down the performance of stride prefetching into: gate cold start effects, the runs are long enough that L2 cache
prefetches misses outnumber physical L2 cache blocks by an order of

mstructions’ 1000 (Prefetches), and magnitude.

prefetchHits Figure 6 shows the cumulative distribution of the num-
prefetchHits+ misse>§100 (coverage), and ber of processors that access each block. For the scientific
workloads, the vast majority of all blocks—between 70.3%
100 (accuracy). and 99.9%—are accessed by a single processor. Somewhat
surprisingly, even the commercial workloads share relatively
A Prefetch hit is defined as the first reference to a prefetchefew blocks. Only 5% to 28% of blocks in the evaluated com-
block including a “partial hit” to a block still in-flight. mercial workloads are accessed by more than two proces-
Except for L2 prefetches in jbb and barnes, less than 12% afors. Because relatively few blocks are shared across the
prefetch hits were partial hits. Overall, as communicationentire workload spectrum, block migration can potentially
latency increases, the significant performance improvemeninprove all workloads by moving blocks towards the single
attainable by prefetching ensures its continued integratioprocessor that requests them.
into future high performance memory systems. Although relatively few blocks are shared in all work-
5 Block Migration loads, a disproportionate fraction of L2 hits are satisfied by

CMP h tilizing block miarati ¢ effectivel highly shared blocks for the commercial workloads. Figure 7
caches utiizing block migration must eectiVely o,\ys the cumulative distribution of L2 hits for blocks
manage multiple processor worklng_ sets in order to reduc ccessed by 1 to 8 processors. The three array-based scien-
cache access latency. Although Kim, et al. [27] showeqfi \qr10ads (fma3d [4], apsi [4], and ocean [48]) exhibit

block migration significantly reduced cache access latency "%xtremely low inter-processor request sharing. Less than 9%
a non-prefetching uniprocessor NUCA cache, most future

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) COMPUTER
1072-4451/04 $20.00 © 2004 IEEE SOCIETY

prefetchrate =

coverage% =

prefetchHitsx

r % =
accuracy ¥ prefetches

100+ e
WA=
[Rl)
&) 80+ ///// //// — apsl
3 A fma3d
@ 6o [/ ——- ocean
%_ [/ ~—jbb
= jf | --- zeus
o 407 i —— barnes
< e apache
© 20* /[i Oltp
/
/
O T T T 1
0 2 4 6 8

of Processors to Access the Block

Figure 6. Cumulative Percentage of Unique L2
Blocks vs. # of Processors to Access the Block

% of Total L2 Hits

100+ —

P — sl
v,/ v///
801 4 i — fmad
1 ol apsi
604 | - -J// ——— ocean
e fl ——jbb
= P
) 7 ! --- barnes
407} - / —— zeus
/ 2 e apache
o " ——olt
201}, [- p
| // ////
1.~
0 . . ; ,
0 2 4 6 8

of Processors to Access the Block
Figure 7. Cumulative Percentage of Total L2
Cache Hits vs. # of Processors to Access a
Block During its L2 Cache Lifetime

During its L2 Cache Lifetime
100 2
80
60 i
40

% of Total L2 Hits

20

O - 35578 1235678

apache jbb oltp

zeus barnes ocean aps fma3d

Benchmarks

8 GETX
0 UPGRADE
B GETS

1 GET_INSTR

Figure 8. Request Type Distribution vs. # of Processors to Access a Block During its L2 Cache Lifetime

of all L2 hits are to blocks shared by multiple processors.

Allocation. The allocation policy seeks an efficient ini-

However, for barnes, utilizing a tree data structure [48], 71%tial placement for a cache block, without creating excessive
of L2 hits are to blocks shared among multiple processorscache conflicts. While 16-way set-associative banks help
For the commercial workloads, more than 39% of L2 hits arereduce conflicts, the interaction between migration and allo-
to blocks shared bwll processors, with as many as 71% of cation can still cause unnecessary replacements. CMP-
hits for oltp. Figure 8 breaks down the request type over th®©NUCA implements a simple, static allocation policy that
number of processors to access a block. In the four commeuses the low-order bits of the cache tag to select a bank
cial workloads, instruction requests (GET_INSTR) make upwithin the block’s bankset (i.e., the bankcluster). This simple
over 56% of the L2 hits to blocks shared by all processorsscheme works well across most workload types. While not
Kundu et al. [31] recently confirmed the high degree ofstudied in this paper, we conjecture that static allocation also
instruction sharing in a shared CMP cache running oltp. Thevorks well for heterogeneous workloads, because all active
large fraction of L2 hits to highly shared blocks complicatesprocessors will utilize the entire L2 cache storage.

block migration in CMP-DNUCA. Since shared blocks will

Migration. We investigated several different migration

be pulled in all directions, these blocks tend to congregate ifolicies for CMP-DNUCA. A migration policy should maxi-

the center of the cache rather than toward just one processgiize the proportion of L2 hits satisfied by the banks closest
to a processor. Directly migrating blocks to a requesting pro-

5.2 Implementing CMP Block Migration

cessor’'s local bankcluster increases the number of local

~ Our CMP-DNUCA implementation employs block pancjuster hits. However, direct migration also increases
migration within a shared L2 cache. This design strives Qe hronortion of costly remote hits satisfied by a distant pro-
reduce additional state while providing correct and efficient.ossors’ local bankcluster. Instead CMP-DNUCA imple-
ments a gradual migration policy that moves blocks along

the six bankcluster chain:

allocation, migration and search policies.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)

1072-4451/04 $20.00 © 2004 IEEE

YF]',F.

COMPUTER
SOCIETY

other~ other other my my my
local . inter - centerD center[| inte'rIj local

The gradual migration policy allows blocks frequently 801

accessed by one processor to congregate near that particular

processor, while blocks accessed by many processors tend to

move within the center banks. Furthermore the policy sepa- % 604 = [l orver 0 Barkausers
rates the different block types without requiring extra stateor 3 [l ceve 4 Bankclusers
complicated decision making. Only the current bank location S [imer. Berkcuster
and the requesting processor id is needed to determine which 5 40 [] ocd Berkctuster

bank, if any, a block should be moved to.

Search.Similar to the best performing uniprocessor D-
NUCA search policy, we advocate using a two-phase multi- 201
cast search for CMP-DNUCA. The goal of the two-phase
search policy is to maximize the number of first phase hits,
while limiting the number of futile request messages. Based 0
on the previously discussed gradual migration policy, hits

Benchmark
most likely occur in one of six bankclusters: the requesting . (_mc njar S, .
processor’s local or inter bankclusters, or the four center ~ Figure 9. L2 Hit Distribution of CMP-DNUCA

bankclusters. Therefore the first phase of our search policy,5; aimost all false misses occur for a few hot blocks that
broadcasts a request to the appropriate banks within these six, rapidly accessed by multiple processors. By delaying
bankclusters. If all six initial bank requests miss, we broad'migrations by a thousand cycles, and canceling migrations
cast the request to the remaining 10 banks of the banksgfhen 5 different processor accesses the same block, CMP-
Only after a request misses in all 16 banks of the banksgbnyca still performs at least 94% of all scheduled migra-
will a request be sent off chip. Waiting for 16 replies over ons \yhile reducing false misses by at least 99%. In apsi,
two phases adds significant latency to cache misses. Unfortys, instance, lazy migration reduced the fraction of false

nately, as discussed in Section 2.3, implementing a smaghisses from 18% of all misses to less than 0.00001%.
search mechanism to minimize search delay in CMP-

DNUCA is difficult. Instead, we provide results in the fol- 5.3 Evaluating CMP Block Migration
lowing section for an idealized smart search mechanism. Our CMP-DNUCA evaluation shows block migration
A unique problem of CMP-DNUCA is the potential for creates a performance degradation unless a smart search
false misseswhere L2 requests fail to find a cache block mechanism is utilized. A smart search mechanism reduces
because it is in transit from one bank to another. It is essercontention by decreasing the number of unsuccessful request
tial that false misses are not naively serviced by the direcmessages and reduces L2 miss latency by sending L2 misses
tory, otherwise two valid block copies could exist within the directly off chip before consulting all 16 banks of a bankset.
L2 cache creating a coherence nightmare. One possible solu- The high demand for the equally distant central banks
tion is requests could consult a second set of centralized oRestricts the benefit of block migration for the commercial
chip tags not effected by block migration before going off workloads. Figure 9 shows in all four commercial workloads
chip. However, this second tag array would cost over 1 MBover 47% of L2 hits are satisfied in the center bankclusters.
of extra storage and require approximately 1 KB of data toThe high number of central hits directly correlates to the
be read and compared on every lookup—because each sgtreased sharing in the commercial workloads previously
logically appears 256-way associative. shown in Figure 7. Figure 10 graphically illustrates the dis-
Instead, CMP-DNUCA compensates for false misses byribution of L2 hits for oltp, where the dark squares in the
relying on the directory sharing state to indicate when a posmiddle represent the heavily utilized central banks.
sible false miss occurred. If the directory believes a valid Conversely, CMP-DNUCA exhibits a mixture of behav-
block copy already exists on chip, the L2 cache stops migrajor running the four scientific workloads. Due to a lack of
tions and searches for an existing valid copy before using thgequently repeatable requests, barnes, apsi, and fma3d
received data. Only after sequentially examining all banks okncounter 30% to 62% of L2 hits in the distant 10 bankclus-
a bankset with migration disabled will a cache be certain theers. These hits cost significant performance because the dis-
block isn’t already allocated. While the meticulous examina-tant banks are only searched during the second phase. On the
tion ensures correctness, it is very slow. Therefore, it isother hand, the scientific workload ocean contains repeatable
important to ensure false misses don't happen frequently. requests and exhibits very little sharing. Figure 9 indicates
We significantly reduced the frequency of false missesCMP-DNUCA successfully migrates over 60% of ocean’s
by implementing a lazy migration mechanism. We observed_2 hits to the local bankclusters. The dark colored squares of

YF]',F.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) COMPUTER
1072-4451/04 $20.00 © 2004 IEEE SOCIETY

apache jbb oltp zeus barnesocean apsi fma3d

"

All CPUs

LT
|1 IT IT IT
ST e EAEE Bkt EiovEL

@]
o
C
w

CPUO CPU1 CPU 2 CPUO CPU1 CPU 2

SESRST" YRiN=) CFEIETR) SHRAerE)
L L] L
|| |1 || -
SLETRIE IEiSTe L. Nl I
CPU 4 CPUS CPU 6 CPU7 CPU 4 CPU 5 CPU 6 CPU7
Figure 10. oltp L2 Hit Distribution Figure 11. ocean L2 Hit Distribution

The figures above illustrate the distribution of cache hits across the L2 cache banks. The Tetris shapes indicate the bankclus-
ters and the shaded squares represent the individual banks. The shading indicates the fraction of all L2 hits to be satisfied by a
given bank, with darker being greater. The top figure illustrates all hits, while the 8 smaller figures illustrate each CPU’s hits.

L2 hits. The added latency of second phase hits in CMP-
DNUCA is due to the delay waiting for responses from the
first phase requests. Furthermore due to the slow two-phase
search policy, L2 misses also encounter 23 to 65 more delay

I CMP-SNUCA no pf cycles compared to CMP-SNUCA.
| W CMP-DNUCA no pf .
[perfect CMP-DNUCA no pf A smart search mechanism solves CMP-DNUCA's slow

search problems. Figure 12 shows the L2 hit latency attained
by CMP-DNUCA with perfect search (perfect CMP-
DNUCA), where a processor sends a request directly to the
cache bank storing the block. Perfect CMP-DNUCA reduces
apache jbb oltp zeus bames ooen epsi fmasd L2 hit latency across all workloads by 7 to 15 cycles versus
Benchmarks CMP-SNUCA. Furthermore, when the block isn’t on chip,
Figure 12. Avg. L2 Hit Latency: No Prefetching perfect CMP-DNUCA immediately generates an off-chip
request, allowing its L2 miss latency to match that of CMP-

Figure 11 graphically display how well CMP-DNUCA is SNUCA. Although the perfect search mechanism is infeasi-

able to split ocean’s data set into the local bankclusters. ~ ble, architects may develop practical smart search schemes
The limited success of block migration along with the in the future. We assume perfect searches for the rest of the

slow two-phase search policy causes CMP-DNUCA to actuP2Per to examine the potential benefits of block migration.
ally increase L2 hit and L2 miss latency. Figure 12 indicatess Targeting On-chip Latency In Isolation

CMP-DNUCA only reduces L2 hit latency versus CMP- On-chip prefetching performs competitively with the

SNUCA for one workload, ocean. The latency increase fof.,, . extravagant technigues of block migration and trans-

the other seven workloads results from second phase hityjsqjon fines. A comparison between the bars labeled CMP-
encountering 31 to 51 more delay cycles than CMP-SNUCASNUCA L1&L2 pf to those labeled perfect CMP-DNUCA

YF]',F.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) COMPUTER
1072-4451/04 $20.00 © 2004 IEEE SOCIETY

1.0
.]
£ B CMP-SNUCA L2 pf
5 B CMP-SNUCA L1&L 2 pf
% ‘ 8 CMP-TLC L2 pf
& 0.5 — BCMP-TLCL1&L2 pf
g 1 B perfect CMP-DNUCA L2 pf
s 0 perfect CMP-DNUCA L1&L 2 pf
0.0- 31 51 190 15 38000 20000 20000 32000
apache jbb oltp zeus barnes ocean apsi fma3d

Benchmarks
Figure 13. Normalized Execution: Latency Reduction Techniques with Prefetching

L2 pf and CMP-TLC L2 pf in Figure 13 reveals on-chip]
prefetching achieves the greatest single workload improve-
ment over the baseline (CMP-SNUCA L2 pf)—22% for
ocean. In addition, on-chip prefetching improves perfor—%
mance by at least 4% for the workloads zeus, apsi, an@
fma3d.

Block migration improves performance by 2%—4% for 6 §
of the 8 workloads. However, for apache, an increase in
cache conflicts causes a 4% performance loss. As illustrated
by Figure 9, the four center bankclusters (25% of the total 00— S 2 200 31000
L2 storage) incur 60% of the L2 hits. The unbalanced load =~ ®xhe it odtp zas banes ocen s fmed

increases cache conflicts, resulting in a 13% increase in L2 enchmere _ o
misses versus the baseline design. Figure 14. Normalized Execution: Combining All

By directly reducing wire latency, transmission lines Techniques
consistently improve performance, but bandwidth contentionng’s benefit slightly overlaps the consistent latency reduc-
prevents them from achieving their full potential. Figure 13tion of CMP-TLC. The bars labeled CMP-DNUCA L1&L2
shows transmission lines consistently improve performancef and CMP-TLC L1&L2 pf in Figure 13 show the perfor-
between 3% to 10% across all workloads—8% on averaganance of CMP-DNUCA and CMP-TLC combined with on-
However, CMP-TLC would do even better, except for band-chip prefetching. A comparison between the L2 pf bars and
width contention that accounts for 26% of the L2 hit latencythe L1&L2 pf bars reveals L1 prefetching provides roughly

Overall, CMP-TLC is likely to improve a larger number equal improvement across all three designs. The only slight
of workloads because transmission lines reduce latencgleviation is on-chip prefetching improves CMP-TLC by 5%
without relying on predictable workload behavior. On theto 21% for the scientific workloads ocean, apsi, and fma3d,
other hand, prefetching and block migration potentially pro-while improving CMP-DNUCA by 6% to 27%. While com-
vide a greater performance improvement for a smaller numbining each technique with prefetching is straightforward,
ber of workloads. combining all three techniques together requires a different
cache design.

[l CMP-SNUCA L1&L2 pf

1l perfect CMP-DNUCA L1&L2 pf
— HCMP-TLCL1&L2pf

[perfect CMP-Hybrid L1& L2 pf

0.5

malize

7 Merging Latency Management Techniques

None of the three evaluated techniques subsumd-2 Combining All Techniques
another, but rather the techniques can work in concert to CMP-Hybrid combines prefetching and transmission
manage wire latency. Section 7.1 demonstrates prefetching igies and block migration to achieve the best overall perfor-
mostly orthogonal to transmission lines and block migrationmance. Figure 14 shows that CMP-Hybrid combined with on
while Section 7.2 evaluates combining all three techniquesand off-chip prefetching (perfect CMP-Hybrid L1&L2 pf)

prefetching, block migration, and transmission lines. reduces runtime by 2% to 19% compared to the baseline
.. . . . design. As previously shown in Figure 9, 25% to 62% of L2
7.1 Combining with On-chip Prefetching hits in CMP-DNUCA are to the center banks for all work-

Prefetching, which reduces latency by predicting theloads except ocean. By providing low-latency access to the
next cache block to be accessed, is orthogonal to blockenter banks, Figure 15 indicates CMP-Hybrid (bars labelled
migration. However, for some scientific workloads, prefetch-H) reduces the average L2 hit latency for these seven work-

YF]',F.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) COMPUTER
1072-4451/04 $20.00 © 2004 IEEE SOCIETY

oltp

w

@ contended
Il uncontended

N
)

I —o— CMP-DNUCA
., o CMP-Hybrid
—+— CMP-SNUCA

Normalized (Network Energy) x (Delay)

~& CMP-TLC
1<
7DTH DTH DTH DTH DTH DTH DTH DTH
apache jbb oltp zeus barnes ocean apsi fma3d
Benchmarks 0
Figure 15. Avg. L2 Hit Latency: Combining none Pr';fZeimr:y L1& L2
Latency Reduction Techniques . cning
y g Figure 16. Normalized Network Energy-Delay:
loads by 6 to 9 cycles versus CMP-DNUCA (bars labelled oltp and ocean

D). As previously mentioned in Section 6, link contention ., 5 reduction of network energy-delay by 18% to 54% for

within the centralized network of CMP-TLC accounts for all designs with ocean. Also, by successfully migrating fre-

26% of delay for L2 hits. CMP-Hybrid's high bandwidth, ety requested blocks to the more efficiently accessed
distributed network reduces contention, allowing for better|oca| banks, CMP-DNUCA achieves similar network effi-
utilization of transmission line’'s low latency. Figure 15 ciency as CMP-SNUCA for ocean despite sending extra
shows L2 hits within CMP-Hybrid encounter up to 8 fewer migration messages. However, both block migration and L1
contention delay cycles as compared those within CMP'TLCprefetching increase network energy-delay between 17% and
(bars labelled T). 53% for the commercial workload oltp. On the other hand,
While CMP-Hybrid achieves impressive performance,those designs using transmission lines, CMP-TLC and CMP-
one should note it also relies on a gOOd search meChanismybrid, reduce network energy-de|ay by 26% for 0|tp and
for its performance. Furthermore, CMP-Hybrid requires both33os for ocean on average versus their counterpart designs
extra manufacturing cost to produce on-chip transmissiofhat exclusively rely on conventional wires, CMP-SNUCA
lines and additional verification effort to implement block and CMP-DNUCA. In generaL workload characteristics
migration. affect prefetching and block migration efficiency more than

8 Energy Efficiency transmission line efficiency.
Although the majority of L2 cache power consumption 9 Conclusions

is expected to be leakage power [14], we analyze each net- Managing on-chip wire delay in CMP caches is essen-
work’s dynamic energy-delay product to determine the effija| in order to improve future system performance. Strided
ciency of each design. Similar to our previous study [6], weprefetching is a common technique utilized by current
estimate the network energy by measuring the energy usegksigns to tolerate wire delay. As wire delays continue to
by the wires as well as the switches. For conventional RGncrease, architects will turn to additional techniques such as
interconnect using repeaters, we measure the energy requirgghck migration or transmission lines to manage on-chip
to charge and discharge the capacitance of each wire segelay. While block migration effectively reduces wire delay
ment. For transmission lines, we measure the energy, uniprocessor caches, we discover block migration’s capa-
required to create the incident wave. We do not include thejlity to improve CMP performance relies on a difficult to
dynamic energy consumed within the L2 cache banks, buinplement smart search mechanism. Furthermore, the poten-
we do note block migration requires accessing the storaggal benefit of block migration in a CMP cache is fundamen-
banks about twice as often as the static designs. tally limited by the large amount of inter-processor sharing

Prefetching and block migration improve network effi- that exists in some workloads. On the other hand, on-chip
ciency for some scientific workloads, while transmissiontransmission lines consistently improve performance, but
lines potentially improve efficiency across all workloads.their limited bandwidth becomes a bottleneck when com-
Figure 16 plots the product of the networks’ dynamic energybined with on-chip prefetching. Finally, we investigate a
consumption and the design’s runtime normalized to théhybrid design, which merges transmission lines, block
value of the CMP-SNUCA design running ocean. The twomigration, and prefetching. Adding transmission lines from
block migrating designs, CMP-DNUCA and CMP-Hybrid, each processor to the center of the NUCA cache could allevi-
assume the perfect search mechanism. Figure 16 shows thée the deficiencies of implementing block migration or
high accuracy and coverage of L1 and L2 prefetching resultgransmission lines alone.

YF]',F.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) COMPUTER
1072-4451/04 $20.00 © 2004 IEEE SOCIETY

Acknowledgements

We thank Alaa Alameldeen, Mark Hill, Mike Marty,

Kevin Moore, Phillip Wells, Allison Holloway, Luke Yen,
the Wisconsin Computer Architecture Affiliates, Virtutech
AB, the Wisconsin Condor group, the Wisconsin Computer{24]
Systems Lab, and the anonymous reviewers for their com-
ments on this work.

References

(1
(2]

(3]

(4]

(5]

(6]
(71

8

9]

[20]

[11]

[12]

[13]

[14]

[20]
[21]

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)

V. Algarwal, S. W. Keckler, and D. Burger. The Effect of Technology
Scaling on Microarchitectural Structurésechnical Report TR-00-02,
Delgartment of Computer Sciences, UT at Ausm?/ 2001.

A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu,
D.J. Sorin, M.D. Hill, and D.A. Wood. Simulating a $2M

g&grémercial Server on a $2K PEEE Computer36(2):50-57, Feb.

A.R. Alameldeen and D.A. Wood. Variability in Architectural
Simulations of Multi-threaded Workloads. Rroceedings of the Ninth
IEEE Symposium on High-Performance Computer Architecpages
7-18, Feb. 2003.)

V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones, and

(22]

(23]

(25]

[26]
(27]
(28]
(29]

[30]
[31

_—

B. Parady. SPEComp: A New Benchmark Suite for Measuring Parallel

Computer Performance. IWorkshop on OpenMP Applications and
Tools pages 1-10, JUIK 2001.

L.A. Barroso, K. Gharachorloo, R.McNamara, A.Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Ver?_hese. Piranha:

Scalable Architecture Based on Single-Chip Multiprocessing. In
Proceedings of the 27th Annual International Symposium on Compute
Architecture pages 282-293, June 2000. o)

B. M. Beckmann and D. A. Wood. TLC: Transmission Line Caches, In

Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture Dec. 2003.

R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum
Schedulmg_and Page Migration for Multiprocessor Compute Servers
In Proceedings of the 6th International Conference on Architectural

Su&gort for
AT LOS)Oct. 19

[32]
A

[331
[34]
[35]

[36]

Progaamming Languages and Operating Systems

.Chang, N. Talwalkar, C. P. Yue, and S. S. Wong. Near Speed-of{37]

Light Signaling Over On-Chip Electrical InterconnedisEE Journal

of Solid-State Circuits38(5):834-838, May 2003.)

T.-F. Chen and J.-L. Baer. Reducm?ﬁ emory Latency via Non-
Blocking and Prefetching Caches. TRroceedings of the Fifth
International Conference on Architectural Su:[)port for Programming
Lar&guaﬁes and Operating Systempsges 51-61, Oct. 1992.

T.-F. Chen_and J.-L. Baer. A Performance Study of Software and
Hardware Data Prefetching Schemes. Rroceedings of the 21st
Annual International Symposium on Computer Architectypages
223-232, Apr. 1994,

(38]
[39]

[40]

T.-F. Chen and J.-L. Baer. Effective Hardware-Based Data Prefetchings1)

for High Performance Processof&EEE Transactions on Computers
44&5[2‘:_ 09-623, May 1995. . .
Z.Chishti, M.D. “Powell, and T.N. Vi ?e/k_umar. Distance
Associativity for High-Performance Energg— icient Non-Uniform
Cache Architectures. IRroceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitectufgec. 2003.

[42]

F. Dahlgren and P. Stenstrom. Effectiveness of Hardware-Based Stride

and Sequential Prefetchin?Ein Shared-Memory Multiprocessors. 143
e

Proceedings of the First [EEE Symposium on High-Performanc

Computer Architecturepages 68-77, Feb. 1995.

B. Doyle, R. Arghavani, D.Barlage, S. Datta, M. Doczy,

J. Kavalieros, A. Murthy, and R. Chau. Transistor Elements for 30nm
gggglcal Gate Lengths and Beyoridtel Technology JournalMay

B. Falsafi and D. A. Wood. Reactive NUMA: A Design for Unifyin
S-COMA and CC-NUMA. In Proceedings of the 24th Annua
International Symposium on Computer Architectysages 229-240,

June 1997.) -)
I. T.R. for Semiconductors. ITRS 2003 Edition. Semlcozngou??tor

Industry . Association,
http://public.itrs.net/Files/2003ITRS/Home2003.htm.

E. Hagersten, A. Landin, and S. Haridi. DDM-A Cache-Only Memory
Architecture IEEE ComputerZ%Q):44—54, Sept. 1992.

L. Hammond, B. Hubbert, . Siu, M. Prabhu, M. Chen, and
K. Olukotun. The Stanford Hydra CMREEE Micro, 20(2):71-84,
March-April 2000.

G. Hinton, D. Sager, M. Upton, D. Bo?gs, D. Carmean, A. Kyker, and
P. Roussel. The microarchitecture of the Pentium 4 procegsiad.
Technolog%;vJourn_aFeb. 2001. .)
R.Ho, K'W. Mai, and M.A. Horowitz. The Future of Wires.
Proceedings of the IEEB9(4):490-504, Apr. 2001.)
T.Horel and G. Lauterbach. UltraSPARC-III: _ Designing Third
Generation 64-Bit PerformanciEEE Micro, 19(3):73-85, May/June

1072-4451/04 $20.00 © 2004 1EEE

]
[44]

[45] M

ja6)
4]

(49]

1999.

D. Joseph and D. Grunwald. Prefetching Using Markov Predictors. In
Proceedings of the 24th Annual International Symposium on Computer
Architecture pages 252-263, June 1997.

N. P. Jouppi. Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers. In
Proceedings of the 17th' Annual International Symposium on Computer
Architecture ga%es 364-373, Ma¥ 1990.)

R. Kalla, B. Sinharay, and J. M. Tendler. IBM Power5 Chip: A Dual
(2:00(5?1 Multithreaded” ProcessdEEE Micro, 24(2):40-47, Mar/Apr

M. Karlsson, K. E. Moore, E. Hagersten, and D. A. Wood. Memory
System Behavior of Java-Based Middleware.Proceedings of the
Ninth IEEE S)émposmm on High-Performance Computer Architecture
E{a%es 217-228, Feb. 2003.))
.E. Kessler, R.Jooss, A.Lebeck, and M. D. Hill. Inexpensive
Implementations of Set-Associativityl6th Annual International
Symposium on Computer Architectukéay 1989.)
C. Kim, D. Burger, and S. W. Keckler."An Adaptive, Non-Uniform
Cache Structure for Wire-Dominated On-Chip Cachedth
International Conference on Architectural Support for Programming
Lar}](guage_s and Ogeratlng Systems (ASPLOS) 2002.
P. Kongetira. A 32-way Multithreaded SPARCA Processor. In
Proceedings of the 16th"HotChips Symposiéoyg. 2004.)
G. K. Konstadinidis and et. al. Implementation of a Third-Generation
1.1-GHz 64-bit MicroprocessolEEE Journal of Solid-State Circuits
37(11):1461-1469, Nov 2002. .
K. Krewell. UltraSPARC IV Mirrors PredecessoMicroprocessor
Reﬁort ages 1-3, Nov. 2003. |
P. Kundu, M. Annavaram, T. Diep, and J. Shen. A Case for Shared
Instruction Cache on Chip Multiprocessors running OLT®mputer
Architecture News32(3):11-18, 2004.) o
C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing the Last
Line of Defense before Hitting the Memory Wall for CMPs. In
Proceedings of the Tenth IE Symposium on High-Performance
Computer Architecturg=eb. 2004.))
. S. Magnusson et al. Simics: A Full System Simulation Platform.
IEEE Computer35(2):50-58, Feb. 2002. . .
C.J. Mauer, M. D. Hill, and D. A. Wood. Full System Timing-First
Simulation.2002 ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systenpages 108-116, June 2002.
C. McNairy and D. Soltis. Itanium 2 Processor Microarchitecture.
IEEE Micro, 23(2):44-55, March/April 2003. .
H.E. Mizrahi, J.-L. Baer,). Lazowska, and J.Zahorjan.
Introducing Memory into the Switch Elements of Multiprocessor
Interconnection Networks. InProceedings of the 16th Annual
International SmeJosmm on Computer Architectiviay 1989.
B. A. Nayfeh and K. Olukotun. Exploring the Design Space for a
Shared-Cache Multiprocessor. RProceedings of the 21st Annual
International Symposium on Computer Architecturpr. 1994.)
A. Pajuelo, A Gonz:lez, and M. Valero. Speculative Dynamic
Vectorization. In Proceedings of the 29th Annual International
Symposium on Cc_)me/uter_ArchltecLUloday 2002.)
A Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design Tradeoffs
for the Alpha EV8 Conditional Branch Predictor29th Annual
International S,\Ymeosmm on Computer Architectiviay 2002.
K. So and R. N. Rechtschaffen. Cache Operations by MRU Change.
IEEE Transactions on Compute&7(6§:700—709, June 1988.
V. Soundararajan, M. Heinrich, .Verghese, K. Gharachorloo,
A.Gupta, and J.Hennessy. Flexible Use of Memory for
Replication/Migration in Cache-Coherent DSM Multiprocessors. In
Proceedings of the 25th Annual International Symposium on Computer
Architecture pages 342-355, June 1998.)
D. Sylvester and K. Keutzer. Getting to the Bottom of Deep Submicron
II: a Global Wiring Paradigm. [Proceedings of the 1999 International
Symposium on Physical es#__gmges 193-200, 1999.
J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4
System Microarchitecture. IBM Server Group Whitepaper, Oct. 2001.
J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4
igsﬁzn% (l;/lolgroarcmtecturdaBM Journal of Research and Development
.(Tremblay, J. Chan, S. Chaudhry, A. W. Conitl;liaro, and S. S. Tse.
The MAJC ‘Architecture: A Synthesis of Parallelism and Scalability.
IEEE Micro, 20(6):12—25, November-December 2000.)
D. M. Tullsen and S. J. Eggers. Limitations of Cache Prefetching on a
Bus-Based Multiprocesso20th Annual International Symposium on
Computer Architecturepages 278-288, May 1993.
J. Turley.The Essential Guide to Semiconductdteentice Hall, 2003.
S.C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2. Programs: Characterization and Methodological
Considerations. InProceedings of the 22nd Annual International
Symposium on Computer Architectupages 24-37, June 1995. .
Z.Zhang and J. Torrellas. Speeding up Irregula_r Applications in
Shared-Memory Multiprocessors: Memor inding and Group
Prefetching. In Proceedings of the 22nd Annual_ International
Symposium on Computer Architectupages 188-199, June 1995.

o

YF]',F.

COMPUTER
SOCIETY

	Managing Wire Delay in Large Chip-Multiprocessor Caches
	Bradford M. Beckmann and David A. Wood
	Computer Sciences Department
	University of Wisconsin—Madison
	{beckmann, david}@cs.wisc.edu
	Abstract
	1 Introduction
	2 Managing CMP Cache Latency
	2.1 Baseline CMP Design
	2.2 Strided Prefetching
	Table 1. 2010 System Parameters

	2.3 Block Migration
	Figure 1. CMP-SNUCA Layout with CMP- DNUCA Bankcluster Regions

	2.4 On-chip Transmission Lines
	Figure 2. CMP-TLC Layout
	Figure 3. CMP-Hybrid Layout
	Figure 4. CMP-SNUCA vs. CMP-TLC vs. CMP- Hybrid Uncontended L2 Hit Latency

	3 Methodology
	Table 2. Evaluation Methodology

	4 Strided Prefetching
	Table 3. Prefetching Characteristics
	Figure 5. Normalized Execution: Strided Prefetching

	5 Block Migration
	5.1 Characterizing CMP Working Sets
	Figure 6. Cumulative Percentage of Unique L2 Blocks vs. # of Processors to Access the Block Durin...
	Figure 7. Cumulative Percentage of Total L2 Cache Hits vs. # of Processors to Access a Block Duri...
	Figure 8. Request Type Distribution vs. # of Processors to Access a Block During its L2 Cache Lif...

	5.2 Implementing CMP Block Migration
	5.3 Evaluating CMP Block Migration
	Figure 9. L2 Hit Distribution of CMP-DNUCA
	Figure 12. Avg. L2 Hit Latency: No Prefetching

	6 Targeting On-chip Latency In Isolation
	Figure 13. Normalized Execution: Latency Reduction Techniques with Prefetching

	7 Merging Latency Management Techniques
	7.1 Combining with On-chip Prefetching
	7.2 Combining All Techniques
	Figure 14. Normalized Execution: Combining All Techniques
	Figure 15. Avg. L2 Hit Latency: Combining Latency Reduction Techniques

	8 Energy Efficiency
	Figure 16. Normalized Network Energy-Delay: oltp and ocean

	9 Conclusions
	Acknowledgements
	References

