A Framework for Coarse-Grain Optimizations
in the On-Chip Memory Hierarchy

Jason Zebchuk, Elham Safi, and Andreas Moshovos
University of Toronto
{zebchuk, elham, moshovos } @eecg.toronto.edu

Abstract

Current on-chip block-centric memory hierarchies
exploit access patterns at the fine-grain scale of small
blocks. Several recently proposed techniques for
coherence traffic reduction and prefetching suggest
that further useful patterns emerge with a
macroscopic, coarse-grain view. To exploit coarse-
grain behavior, previous work extended conventional
caches with additional coarse-grain tracking and
management structures considerably increasing
overall cost and complexity.

This paper demonstrates that as multi-megabyte
caches have become commonplace, coarse-grain
tracking and management no longer needs to be an
afterthought. This functionality comes “for free” via
RegionTracker. RegionTracker is a dual-grain cache
design that maintains block-level communication while
directly supporting coarse-grain tracking and
management. Compared to a block-centric
conventional cache of the same data capacity,
RegionTracker requires less area to achieve a nearly
identical miss rate (within 1%). RegionTracker can be
used as the building block for coarse-grain
optimizations, reducing their overall cost and easing
their adoption. Using full-system simulation of a quad-
core chip multiprocessor, commercial workloads, and
area estimates based on full-custom layouts on a
130nm commercial technology, we demonstrate the
performance and cost viability of the RegionTracker
design. We also demonstrate the potential of
RegionTracker as a framework for coarse-grain
optimizations by showing that it boosts the benefits and
reduces the cost of a previously proposed snoop
reduction technique.

1. Introduction
Future on-chip caches will most likely grow to

several tens of megabytes to compensate for limited
off-chip bandwidth, large application footprints,

and to meet the demands of multiprocessing and
multithreading. This unprecedented on-chip storage
offers unique opportunities for improvements
beyond conventional cache designs. Our thesis is
that coarse-grain tracking and management, i.c.,
tracking information about multiple blocks
belonging to coarser memory regions1 and
managing the corresponding blocks, becomes
increasingly appealing as higher-level (L2 or
higher) caches grow larger. Our motivation is that a
macroscopic view of access behavior reveals useful
patterns that are hard to discern in existing fine-
grain hierarchies. Several recently proposed
techniques corroborate this observation. Region
information and management have been shown to
facilitate: 1) performance, bandwidth and power
improvements for snoop-coherent shared memory
multi-processors [2,4,12], and 2) prefetching for
applications with demanding memory footprints
[3,16]. These techniques rely on two types of
information: 1) whether any block in a region is
cached [2,12], and 2) which specific blocks of a
region are cached [3,16]. They also require support
for selectively fetching or invalidating the blocks of
a region [2,16].

Since region tracking and management are not
readily supported in existing caches, previous work
relied on separate structures. These structures are
imprecise [12], incomplete [16], or restrict data
placement [2,3]. Data placement restrictions
introduce special-case handling complexity in the
cache design, while imprecise or incomplete
information reduces the benefits of coarse-grain
optimizations. Moreover, the relative cost of these
structures can be as high as an additional area of
60% compared to a conventional tag array [3].
Commercial designs are more likely to incorporate
these optimizations if they had lower area and

A region is a continuous portion of memory comprising a
power of two number of blocks.

complexity costs. On-chip area has always been a

precious commodity, power is a limiting factor and,

thus, designers have to think long and hard before
adopting any area and power consuming techniques.

We observe that these optimizations all require
very similar functionality. Accordingly, we revisit
cache design with coarse-grain management and
tracking as first class considerations. We present
RegionTracker (RT), a framework for coarse-grain
optimizations that reduces the overhead and
eliminates the imprecision of these extraneous
tracking structures. RT introduces region-level
functionality without compromising performance,
or area compared to a conventional cache. To avoid
bandwidth explosion, communication still uses
fine-grain blocks. However, a single lookup in RT
is sufficient to determine which, if any, blocks of a
region are cached and where. Moreover, region-
level management actions such as region
invalidation, migration, and replacement are
naturally supported. Accordingly, RT is a dual-
grain cache design.

The RT design methodology starts with a
conventional cache and replaces the tag array with a
structure that facilitates region-level lookups and
management. The resulting cache requires less area
while offering nearly identical performance. As
Section 3 explains, RT combines elements from
various sector cache designs and introduces
additional mechanisms, resulting in improved
performance and additional functionality.
Compared to previous sector cache designs, RT
offers simple block and region lookups and
replacements, it does not require higher
associativity, and it does not hurt performance,
latency, complexity or area.

The key contributions of this work are twofold:
first, it articulates why incorporating region
information and management in the on-chip
hierarchy should be a priority in modern designs;
and, second, it presents a framework for
incorporating region-level optimizations in the on-
chip hierarchy “for free”, i.e., without requiring
more area or hurting performance. In more detail,
the contributions of this work are:

o« It revisits cache design with coarse-grain
tracking and management functionality as first
class considerations presenting RegionTracker.
RegionTracker is a coarse-grain replacement of
conventional tags that improves upon previous
coarse-grain cache designs in the context of
large on-chip caches and commercial
workloads. It demonstrates that given a

conventional cache design, it is possible to
replace the tags with an RT design that requires
the same or lower associativity and fewer
resources, without sacrificing hit rate or cache
latency. This work discusses two variants of the
RegionTracker design. The first provides full
support for region tracking and management.
The second builds upon the decoupled sectored
cache design [14] to achieve additional area
savings at the expense of reduced functionality
and increased complexity. For an 8MB L2
cache, using an RT design instead of a
conventional design results in a miss-rate
increase of only 0.4% while decreasing tag area
by 3%. Previous coarse-grain designs that
provide the same functionality result in a miss-
rate increase of 26% or require a 56-way set-
associative structure to achieve a 0.3% miss-
rate increase.

» It shows that it is possible to implement a
previously proposed broadcast elimination
technique for snoop coherent hierarchies with
RegionTracker [12] boosting benefits without
any of the resource overhead. The resulting
implementation eliminates 22.5% more
broadcasts than the original design while
requiring 22KB fewer resources. In fact the
proposed design uses even less resources
compared to the conventional tag array the RT
replaces. We also show that by exploiting
precise knowledge about the blocks that are
cached per region we can eliminate an
additional 13% of broadcasts while still
requiring 18KB fewer resources than the
original technique.

The rest of this paper is organized as follows:
Section 2 first describes the requirements that
guided the RegionTracker design, and then
describes the design itself; Section 3 describes
previous coarse-grain cache designs and presents
the second variation of the RegionTracker design;
Section 4 evaluates RegionTracker; and finally,
Section 5 concludes the paper.

2. RegionTracker Requirements and
Design

The starting point for our dual-grain cache
design is a conventional cache whose performance
and area have been tuned appropriately. The goal is
to replace just the tag array of this cache with a
structure that can inspect and manipulate regions

comprising several blocks without hurting
performance, area, or complexity. Compared to the
conventional cache, the resulting cache will have
the same data capacity, and, ideally, it will meet the
following performance, complexity and area
requirements:

Communication still uses fine-grain blocks.

The miss rate does not increase.
The cache latency does not increase.
The cache area does not increase.

Lookups do not require higher associativity.

AN

There is no need for additional cache accesses
as a result of regular cache operation (e.g., for
replacements).

7. Banking and interleaving are possible.

In addition, the new design will provide the
following region-level functionality:
1. A single lookup can determine whether a region
is cached.

2. A single lookup can determine which blocks of
a region are cached and where.

3. The cache supports region invalidation,
migration and replacement.

The first two are needed by previously
proposed techniques for snoop-reduction and
prefetching, respectively. The third functionality
can be useful for on-chip streaming and coherence
optimizations, e.g., [10], or for optimizing data
placement, e.g., moving regions close to where they
are accessed.

2.1. Structural Description

For clarity, in the rest of this section, we
assume an 8MB, 16-way set-associative L2 cache
with 64 byte blocks, 50-bit physical addresses and
1KB regions, Figure 1(c) shows the indexing
scheme used by a conventional cache design with
this geometry. As Figure 1(a) shows, RT comprises
three components: a region vector array (RVA), an
evicted region buffer (ERB), and a block status
table (BST). Each of these structures can be banked
and interleaved.

1) Each Region Vector Array (RVA) entry
tracks fine-grain, per block location information for
a memory region. Figure 1(b) shows that its
organization is independent of the data array. Each
entry contains a region tag and several block
information fields (BLOFs), one per block in the
region, that identify in which data way the
corresponding block is cached, if any. For a 16-way

[Region Taglv] | [------ [
> g

)
% BLOF[v[way | %

S|

[1
| |
| L1 L1 L1 L1 |
|))) 7 !
| ppp=ss=eseema T
| £ ’ | |
| & I]

=]
5 A~ ERB | | BST || | |
=)

o | |
| & | \
o
| |
\ Data Array |
| |
‘ (a) ‘
Lo - - _
" physical address a
‘ | Region Tag| RVA 1ndex1 block | | |
49 21 10 6 0
‘ RVA |
| |
| (b) |

v - - i

‘ —> match | |
‘ Region Vector Entry <2> |
| |
| |

address

(c)l Conventional Tagl Data set index | |

49 19 6 0
address

(d)l Region Tag | RVA index| block | I
49 21 10 6 0

Figure 1. (a) Block diagram of RegionTracker L2
cache design. (b) Region Vector Array. (c) Data
array indexing. (d) RVA indexing.

set-associative array, each BLOF contains a valid
bit plus four bits for the way. For non-power of two
associativities one of the unused way combinations
can be used for invalid blocks. In addition to these
RVA entries, each set in the RVA contains LRU
information. An example of the RVA indexing
scheme is shown in Figure 1(d).

2) Evicted RVA entries are copied into the
Evicted Region Buffer (ERB) eliminating the need
for multiple simultaneous block evictions. The ERB
does not contain any data blocks, and, thus, it is not
a victim buffer. A small ERB (e.g., 12 entries) is
sufficient to avoid performance losses. The ERB
evicts blocks eagerly from the oldest one third of its
entries. In practice, these eager evictions ensure that
an empty ERB entry is available anytime a region is

evicted from the RVA. When an empty entry is not
available, the cache uses standard back-pressure
mechanisms to stall the cache until one becomes
available. The ERB concept has been proposed
before but without the notion of eager evictions [8].
The ERB can be centralized or, as we assume in this
work, banked to mirror the cache’s organization.

3) The Block Status Table (BST) stores per-
block status information. The RVA stores
information for many more blocks than are actually
present in the cache (typically two to four times as
many) and since this status information is only
required for blocks that are resident in the cache,
storing this information in the BST reduces overall
storage requirements. The BST stores LRU
information and block status bits (e.g., coherence
state). The BST geometry is identical to that of the
data array, and it uses the same indexing scheme as
shown in Figure 1(c). When comparing this to the
RVA indexing scheme in Figure 1(d), note that
addresses that map to a specific BST set can map to
multiple different RVA sets. To avoid searching
multiple RVA sets when performing block
replacements, optional BST backpointers contain
the RVA index bits that are not contained in the
BST index (e.g., bits 21 and 20 in the example
shown). All the designs considered in this work, use
two-bit backpointers. The BST is an un-tagged
structure, and relies on the results of an RVA or
ERB lookup to perform the final selection of a
single way from the BST.

In principle many different RT organizations
are possible. In practice there are a lot fewer RVA
entries than blocks. This inevitably restricts data
placement and can decrease the hit rate. In practice
the RVA is less associative (e.g., 12-way vs. 16-
way) and has fewer sets (e.g., 2K vs. 8K) than the
data array. Moreover, a single data set maps to two
or four RVA sets. This is sufficient for avoiding a
performance decrease. The RVA and BST require
less area compared to a conventional tag array and
since they are smaller, and each access reads and
writes fewer bits, they will likely be faster and
consume less energy. Finally, the RT is banked to
mirror the organization of the conventional cache.
Addresses are interleaved across banks at the region
level. We found that the performance of
conventional, block- and region-interleaved caches
was within 0.7% of each other.

2.2. Functional Description

When servicing a cache request, there are
multiple different scenarios, as described in
Figure 2. The common scenario is a hit for the
region and the block. As shown, the access proceeds
in parallel to the RVA, ERB and BST. In the event
of a block hit, the result of the RVA or ERB lookup
determines which way in the BST is selected in the
final stage of the BST access. On an RVA hit and
block miss, we need to replace a block from the
same data set. Since multiple RVA entries may map
onto this data set, the BST backpointers determine
the RVA set of each block and the BLOFs of that
RVA set determine the corresponding RVA entry.
This process determines the address of the victim
block so it can be evicted, and the two RV A entries
(for the requested and victim blocks) are updated to
reflect their new states. When a region miss occurs,
that is no RVA entry or ERB entry is found with the
correct region tag, then a victim RVA entry is
selected and copied to the ERB. As a result of this
process, the backpointers in the BST for all the
blocks in the victim region become inconsistent.
These stale pointers do not impair correctness since
they are easily detected by lack of a matching
BLOF. Once the RVA entry has been copied to the
ERB, a new entry can be allocated in its place or the
requested region, at this point the access proceeds
the same as if it had originally found the newly
initialized RVA entry.

When a request hits on an entry in the ERB, the
access proceeds the same as for a hit in the RVA.
The ERB entry is updated to reflect any newly
allocated or evicted blocks. ERB entries can be
readily promoted back to the RVA since the entry
would necessarily map onto the same RVA set it
was evicted from. In this work we disallow these
promotions in lieu of a policy to determine when
this might be beneficial. Studying potential policies
is left for future work. In this work, the ERB must
evict all blocks of a region before it can be cached
again in the RVA.

Region actions are directly supported by the
RVA. A single lookup is sufficient for determining
which blocks of a region are cached and where.
This information can be used to invalidate (e.g., in
preparation for I/O DMA) or to migrate these
blocks (e.g., to another processor or to an I/O
device). Additional information can be tracked
either by introducing additional state per RVA entry
or with the unused encodings of the BLOFs. As an
additional optimization, it is not necessary to access

RVA+ERB+BST Lookup:
RVA/ERB BLOF indicates way,
BST indicates status

Found
RVA or ERB
entry?

Read victim RVA entry &
Write to empty ERB entry
v

Q/rite new RVA entry

RVA/ERB Miss

C

to identify victim block >

RVA+ERB Lookup BST Write to

update status & LRU

BST Write to
replace status

RVA/ERB write,
to evict victim block AETERE DR 1)
RVA/ERB write, Sl
Block Hit
to allocate new block

v
Access Data Way)

RVA/ERB Hit, Block Miss

Common Scenario

Figure 2. RegionTracker lookup procedure

the BST in parallel with the RVA for every lookup.
Since the BLOFs contain a valid bit, the BST is
only necessary for accesses requiring additional
state information (e.g., dirty, or exclusive). For
example, reads only require a valid copy of the data,
and do not need to access the BST. If the access
misses in the cache, another lookup will be
performed when the missing data is ready to be
allocated, and the BST lookup can be performed at
that time to select a replacement block and to
update the BST. By avoiding BST lookups for
reads, RegionTracker can reduce average power
consumption. This optimization may not always be
possible, for example if prefetch bits need to be
checked for all accesses.

2.3. Optimization Framework

The main contribution of this work is providing
a practical framework for implementing memory
hierarchy optimizations that exploit patterns in
coarse-grain memory behavior. This section
describes two different optimizations that can easily
be implemented in a RegionTracker cache.

2.3.1. Snoop Elimination

Recent works [2,12] have presented coarse-
grain optimizations which reduce power and
bandwidth in snoop-based multi-processors. Both
proposals exploit coarse-grain sharing patterns to
eliminate unnecessary broadcasts and snoops for
non-shared data. RT provides a framework for

implementing these optimizations with reduced
overhead, and with improved results. In general,
these optimizations work as follows: The first block
access into a region uses broadcast. All remote
nodes report whether they have any blocks from
that region cached, and the originating node marks
the region as non-shared if there are no remote
blocks. Subsequent requests to the region from the
same node do not use broadcast and hence to not
result in additional snoops. If another node attempts
to access a block within the region, it will use
broadcast and hence the non-shared state of the
region is invalidated.

This optimization requires the following
functionality: 1) determining whether any blocks
are cached in a region, and 2) tracking which
regions are in a non-shared state. The two previous
works use additional structures to provide this
functionality. Coarse-grain coherence tracking
(CGCT) [2] uses a Region Coherence Array (RCA)
structure to precisely track which regions have
cached blocks and to track the state of each region.
In addition to the simple non-shared state, the RCA
tracks whether any shared copies are possibly in a
modified state to further optimize accesses to
shared read-only data. This RCA structure
maintains precise information, and as a result
evicting an entry from the RCA can result in
evicting data from the cache to maintain this
precision. The RegionScout (RS) [12] approach
instead uses imprecise information, trading some
accuracy for reduced area overhead. RS uses an

imprecise Cached Region Hash (CRH) structure to
track whether a region has any blocks cached in a
region, as well as a second Non-Shared Region
Table (NSRT) structure to track which regions are
not shared by any other processors.

RT can easily support the two functions
required for this optimization via a single bit
addition per RVA entry to mark non-shared regions.
The RVA BLOFs are already capable of
determining in a single access precisely which
blocks in a region are cached. The additional region
states implemented by CGCT can also be supported
with more bits in each RVA entry. Similarly to the
original RS, the first block access in a region
determines whether there are any remotely cached
blocks. Remote nodes perform an RVA lookup to
determine whether they have any blocks in the
region cached. The originating node marks the
region as non-shared using the extra RVA bit.
Subsequent requests for other blocks in the region
from the same node need not use broadcast. If
another node requests a block in the region, it will
use broadcast invalidating the non-shared status of
the region. Section 4.7 compares this approach
directly with RS and shows that the RT approach
reduces overhead significantly while doubling the
effectiveness of RS.

Using RT, BlockScout, a new optimization,
becomes simple to implement. A single sharing bit
is added to each BLOF to indicate whether a
specific block is shared or not. In this case, the
originating nodes collect a sharing vector on the
first block access in the region and avoid broadcasts
for accesses to non-shared blocks in the region,
even if some other region blocks are shared. This
requires communicating sharing vectors in snoop
replies, which is reasonable for single chip
multiprocessors. Section 4.7 shows that this new
BlockScout design eliminates an additional 13% of
snoops while still requiring less area overhead than
the previous RegionScout design.

2.3.2. Prefetching

Stealth Prefetching [3] tracks which blocks in a
given region have been previously fetched and uses
this information to later prefetch these blocks. With
1KB regions, this approach improves performance
by an average of 20% across a variety of
commercial, scientific and multi-programmed
workloads, but at the cost of significant area
overhead (e.g., 11.6% of total cache area). This
technique extends the RCA structure of [2] with the

addition of bit-vectors to track which blocks have
been fetched and which are present in the cache.
The information in these bit-vectors can easily be
encoded in the existing RT BLOFs (using the
invalid states) and the other information stored in
the RCA of [2] only requires adding a few state bits
to each RVA entry. Although the RVA and BST
structures of RT may be larger than the RCA
structure, by replacing the tag array RT reduces the
total overhead from 11.6% to 7.4% of the overall
cache area, assuming 1KB regions and using an RT
with the same geometry as the RCA used in [3].
This design provides identical coverage and
performance as the RCA wused in [3], but it
eliminates the complexities associated with evicting
RCA entries, it streamlines lookups by using a
single cache to track all information, and it reduces
the area overhead by 4%. The evaluation of RT in
Section 4.4 suggests that a smaller RT structure
could be used without significantly decreasing the
hit-rate of the cache. To maintain the effectiveness
of the prefetching technique, a smaller RCA could
be used in conjunction with the RT cache to track
regions that are no longer cached. Such a design
would again maintain the coverage and performance
obtained in [3], it would still eliminate the
complexities of evicting RCA entries, and it would
further reduce the overhead to just 5.3% of total
cache area.

3. Relation to Previous Coarse-Grain
Cache Designs

RT builds upon previous dual-grain caches
namely the sectored cache (SC) [9], sector pool
cache (SPC) [13], and the decoupled-sectored cache
(DSC) [14]. These designs focused solely on
reducing tag requirements and they do not meet all
of the different goals of this work.

3.1. Sector Caches and Sector Pool Caches

SC, SPC and RT all use a region1 vector array
(RVA) and hence provide precise region-level
information. These designs inevitably restrict the
mix of blocks that can co-exist in the cache because
they use fewer RVA entries than blocks. Figure 3
illustrates the differences amongst SC, SPC and RT
showing the relationship amongst RVA entries and

! The definition of sectors and regions is the same, however,
we opt for the term region to signify that we focus on much
larger regions of memory than those considered in previous
works.

D-way Data D-way Region Tags M-way Region Tags L-way Region Tags
' L— 1 1
/\/ /\/- =
/
| [[[| [| [B
//\//
/\/' :/\/_
& - -
(]
- L 1
RVA
\
(a) SC (b) SPC (c) RT
|
Data Array Typically: L <=D <M

Figure 3. Dual-grain tracking cache designs: (a) sector cache, (b) sector pool cache, (c) RegionTracker.

data array blocks. Assuming a direct indexing
scheme, the blocks belonging to a region will all
map to a data set region (DSR) which is a
continuous portion of data array sets. SC is the most
restrictive as it allocates a single RVA entry for
each data way in each DSR. SPC adds flexibility by
having more RVA entries per DSR. In SPC, these
additional entries form a single, highly associative
set in the RVA. RT offers flexibility similar to SPC,
but RT increases the number of RVA sets instead of
just increasing associativity. As our experiments
show, depending on cache size, SC increases miss
rate by up to 142%, while a 32-way to 56-way RVA
is necessary for SPC to approach within 1% the hit
rate of a 16-way cache.

3.2. Decoupled-Sectored Cache

DSC combines a region tag array (RTA) with a
status table (BST). Each BST entry contains a
pointer which, when combined with the set index of
that entry, uniquely identifies an RTA tag. These
pointers are longer than the BST backpointers of RT
(e.g., for the 8MB cache considered in Section 2.1,
a DSC would require six bits per backpointer) DSC
lookups proceed into two phases. The first accesses
the RTA, comparing region tags against the address,
and, in parallel, it accesses the BST. The second
phase compares the BST pointers against the way of
the matching region tag.

DSC overcomes the problems of poor miss-
rates and high associativity suffered by SC and SPC
respectively. However, the original DSC design
cannot be used directly for our purposes for two
reasons. First, when a region tag is replaced, all
BST sets in a DSR must be scanned on-the-spot to
evict the corresponding blocks. This must be done

irrespective of whether there are any blocks left or
not, consuming cache bandwidth and increasing
cache latency for concurrent accesses in non-
blocking caches. Second, DSC cannot identify with
a single access whether a given region is cached or
which blocks in a region are cached. The presence
of a region tag in DSC indicates that some blocks
from that region may be cached, but DSC must scan
multiple sets to identify which, if any, blocks are
cached. While this imprecise information may be
sufficient for optimizations such as RS [12], it is
not for optimizations such as CGCT [2], prefetching
[3,16] and sector evictions.

This paper discusses two extensions to DSC.
The first smooths out region evictions (please see
the Acknowledgments section). The second
extension introduces per-region block information.

3.2.1. Smoothing Out Evictions

The optimized DSC (0DSC) smooths out region
evictions via the use of a modified ERB. In the
original DSC design a region tag cannot be evicted
without first invalidating all matching BST entries.
By adding a version tag to each BST entry and to
each region tag, it becomes possible to evict a
region tag to the ERB while deferring the
invalidation of all matching BST entries. The ERB
can then scan and evict the region’s blocks in the
background.

When replacing a region tag, its original
location and version tag are copied along with the
tag itself into an ERB entry. A new region tag must
use a different version tag value to prevent a match
against the BST entries belonging to the evicted
region. Eager evictions can now be performed by
scanning the BST for blocks belonging to the tags

in the ERB. Version tags can be recycled once a
region is evicted from the ERB. If no version tags
are available, a new region must wait until one
becomes available. oDSC still needs to scan for all
blocks within an evicted region, cached or not, and
hence still consumes the same bandwidth as the
original DSC.

3.2.2. Precise Dual-Grain Tracking

The second extension provides some of the
missing coarse-grain tracking functionality. The
RegionTracker-DSC, or RT-DSC extends oDSC by
adding single-bit BLOFs to each region tag. RT-
DSC can now easily identify which, if any, blocks
are cached for a given region. However, the RT
design described in Section2 still provides
additional functionality. The RT BLOFs identify
the precise location of each block in the data array.
This allows RT to avoid BST accesses on reads, and
to overlap some BST and data array accesses.
Provided that the application has sufficient spatial
locality, a single RT access can be used to service
many subsequent cache requests as it reveals the
location of all blocks within the region.
Furthermore, RT accesses do not require the two
phase lookup of DSC.

4. Experimental Analysis

This section is organized as follows:
Section 4.1 describes the simulation methodology.
Section 4.2 compares the miss rates of
RegionTracker and traditional sector caches.
Section 4.3 demonstrates that RegionTracker can be
implemented in the same area required for a
conventional tag array. Section 4.4 compares the
area and miss rate trade-offs of various cache
designs. Section 4.5 demonstrates that
RegionTracker does not hurt performance while
Section 4.6 shows that RegionTracker reduces
energy compared to a conventional tag array.
Finally, Section 4.7 demonstrates how
RegionTracker performs when implementing a
snoop elimination policy.

4.1. Methodology

We simulated a four-core CMP with a shared
L2 cache based on the Piranha cache design [1]
using the Flexus simulator [7]. Table 1 details the
processor cores. Table 2 describes the simulated
workloads. These include: (1) The TPC-C v.3.0
online transaction processing workload running on

Table 1. Base processor configuration
Branch Predictor Fetch Unit
8k GShare +16K bi-modal + Up to 16 instr. per cycle
16K selector 64-entry Fetch Buffer
2k entry, 16-way BTB, Scheduler
2 branches per cycle 256-entry/64-entry LSQ
ISA & Pipeline Issue/Decode/Commit
UltraSPARC IlI ISA, 4GHz, any 8 instr./cycle
8-stage pipeline, out-of-order Main Memory

execution 3 GB, 300 cycles
L1D/L1I UL2
32kB 4-way set-associative 8-256MB, 16-way set-
64B blocks, associative, 8 banks, 64B

LRU replacement
2 cycle latency

blocks, LRU replacement,
6/18 cycle tag/data latency

Table 2. Workload Descriptions
Online Transaction Processing (TPC-C) (OLTP)

Oracle | 100 warehouses (10GB), 16 clients, 1.4 GB SGA
DB2 100 warehouses (10GB), 64 clients,
450 MB buffer pool
Decision Support (TPC-H on DB2) (DSS)
Qry 1 Scan-dominated, 450 MB buffer pool
Qry 2 Join-dominated, 450 MB buffer pool
Qry 6 Scan-dominated, 450 MB buffer pool
Qry 16 Join-dominated, 450 MB buffer pool
Qry 17 Balanced scan-join, 450 MB buffer pool
Web Server (WEB)
Apache | 16K connections, FastCGl, worker threading model
Zeus 16K connections, FastCGl

both IBM DB2 v8 ESE and Oracle 10g Enterprise
Database Server. (2) Five queries from the TPC-H
DSS workload running on /BM DB2 v8 ESE.
(3) The SPECweb99 benchmark running over
Apache HTTP Server v2.0 and Zeus Web Server
v4.3. The web servers were driven with separate
simulated client systems, but client activity is not
included.

Performance simulations use the SMARTS
sampling methodology [18]. Each sample
measurement involves 100K cycles of detailed
warming followed by 50K cycles of measurement
collection. Results are reported with errors with a
95% confidence interval. We used matched-pair
sampling to measure change in performance [5].
Performance is measured as the aggregate number
of user instructions committed each cycle [17].
Miss rates are measured using functional simulation
of two billion cycles, with each core executing one
instruction per cycle. We take measurements only
for the second billion. Two of the workloads
complete in less than two billion cycles; therefore,
for TPC-H queries 2 and 17, after warming up for
one billion cycles, we take measurements for 209
million and 259 million cycles respectively. The
base L2 uses block interleaving.

L2 Size: m8 MB

m16 MB

@32 MB 064 MB 0128 MB N 256 MB I

L2 Misses Per 1K Instr

Apache Zeus DB2 Oracle Qry 1 Qry 2 Qry 6 Qry 16 Qry 17
Figure 4. Misses Per 1K Instructions for conventional cache with size from 8MB to 256MB
Sector Cache RegionTracker
---A--- Apache
---0--- Zeus
—a—DB2

Relative Miss Rate

0.9

See0- - Qry 1
i ---0--- Qry 2
——Qry 6

R e x

8 MB ‘ 16 MB ‘ 32 MB ‘ 64 MB ‘128MB ‘ 256 MB

512 byte sectors

8 MB ‘ 16 MB ‘ 32 MB ‘ 64 MB ‘128MB‘ 256 MB

RT: 12-way with 1KB regions

L2 Size/Type

Figure 5. Relative Miss Rate for sector cache with 512-byte sectors (left) and a RegionTracker cache with 1kB
regions (right), with capacities of 8MB to 256 MB.

Figure 4 presents the misses per 1K instructions
(MPKI) for all workloads with L2 cache sizes from
8MB to 256MB. Most of these workloads show
continuing benefits from increasing cache sizes all
the way to 256MB, but still exhibit considerable
miss rates even for the larger caches. Although such
large L2 caches may never be practical, L3 caches
with these capacities will soon become practical.
For clarity, the remaining results report miss rates
relative to the results shown in Figure 4. When
results are averaged across all workloads, we first
calculate the harmonic mean of each workload class
(e.g., web, oltp, dss), and then find the harmonic
mean of these three means. This avoids over
representation of the DSS workloads in the
aggregate results. We restrict our attention to 16-
way set-associative caches since we found that
reducing associativity further impacts performance
considerably. For example, reducing its
associativity from 16-way to 15-way increases
average miss rate by 2.6% for an 8MB cache.

4.2. RegionTracker vs. Sector Cache

First, we compare the miss rate of a traditional
sector cache with the RegionTracker design.
Figure 5 shows the relative miss rates of SC (left)
and RT (right). While the RT design uses 1KB
regions, we show results for an SC design with 512-
byte sectors because SC performs much worse with
IKB sectors (e.g., as much as an additional 50%
increase in miss-rate for some benchmarks). The RT
design chosen for Figure 5 has 2K to 64K, 12-way
set-associative RVA sets, depending on the cache
size. The data array for both the SC and RT designs
is 16-way set-associative. We chose this design to
demonstrate that RT performs well even when its
RVA associativity is lower than the original cache’s
associativity. The y-axis shows miss rate relative to
a conventional cache with equal capacity. For each
cache, the x-axis shows cache capacities from 8MB
to 256MB. There is a separate curve for each
workload, with a final, thick solid curve showing
the harmonic mean of the three workload types.

As shown in Figure 5, sector caches can result
in miss rate increases of up to 90% with 512-byte
sectors. Note that increasing cache size improves

the relative performance of SC for most cases, but
not all. Taking Zeus for example, the relative miss
rate goes from 1.68 for an 8MB SC, to 1.90 for a
16MB SC. Figure 4 shows a steep decline in
absolute miss rate for Zeus when going from an
8MB to a 16MB L2. Thus, the increase in relative
miss rate for the SC can be explained by a particular
working-set being able to fit into the 16MB
conventional cache, but not fitting into a 16MB SC.
This implies that a portion of the working set
contains many sparsely populated sectors.

Looking at the different types of workloads, the
WEB and OLTP workloads perform much worse
than the DSS workloads. The harmonic mean
increases for the WEB and OLTP workloads go
from 41% and 42% respectively for an 8MB SC, to
7% and 5.4% respectively for the 256MB SC. The
DSS workloads, on the other hand, only increase
miss rate by 4.7% for an 8MB SC, and for the large
256MB SC, they perform identically using either a
normal cache or SC. Thus, sector caches result in
significant miss rate increases for WEB and OLT
workloads.

When comparing SC to RT, RT demonstrates
similar trends, but the relative miss rates are much
lower. In fact, for the 128MB and 256MB caches,
RT has the exact same miss-rate as a conventional
cache. Across all cache sizes and all workloads, the
RT design never increases the miss rate by more
than 3.4%, which occurs for DB2 at 8MB.

4.3. Area Estimation

We estimated the relative size from full-custom
implementations of the cache structures on a 130nm
commercial technology. This is the best commercial
technology that was available to us at the time of
this writing. While commercial designs use highly-
optimized special-purpose SRAM designs, these
should primarily affect only absolute area. We
believe that our methodology is sufficiently
accurate for comparing the relative area of the
various designs.

Table 3 shows the area occupied by various
lookup structure designs. The columns show the
type of cache used, the number of Kbits of storage
required, the actual size of the tag array, the relative
size compared to the conventional tag array, and the
relative bit-density (where bit density is the number
of bits stored in lmmz) compared to the
conventional tag array. The rows in Table 3 show,
in order, a conventional tag array, an SC tag array
with 512-byte sectors, a 52-way set-associative SPC

tag array with 1kB sectors, an oDSC tag array and
BST, an RT-DSC RVA and BST, and an RT RVA
and BST. The last three designs all have 2K, 15-
way associative sets with 1KB regions.

Table 3. Storage and area requirements for 8MB tag
arrays.

Design | KBits| gjze (mm?)| Relative | Relative

Size Density
Tag Array| 4352 37.6 1.0 1.0
SC 880 9.4 0.25 0.81
SPC | 3718 36.8 0.98 0.87
oDSC | 2180 19.8 0.53 0.95
RT-DSC | 2660 24.3 0.64 0.95
RT 3940 36.3 0.97 0.94

We show the largest RT design that is smaller
than a conventional tag array, a 16-way set-
associative RT results in a tag array area increase of
2%, which represents an increase of 0.1% in total
cache area. Our performance results demonstrate
that lower RVA associativities are needed in
practice and hence the area of RT would compare
even more favorably. All designs use an 8MB, 16-
way set-associative data array. The number of bits
required for each structure was calculated assuming
50-bit addresses, three state bits per block, and 64-
byte blocks. The RT and RT-DSC designs could use
only two state bits, but this would complicate the
process of selecting invalid blocks for replacement.
The Itanium 2 is an example of a modern processor
that uses 50 bits for physical addresses [11]. The
measurements do not include ERB area since this is
a very small structure that is compatible with all
caches shown except for the conventional one.
Additional overheads, such as LRU information and
ECC checksums where not included in these
estimates but these apply to all structures equally
and often represent a small fraction of overall area.

The results show that the SC and SPC designs
are the least area efficient (i.e., have the lowest bit-
density). This results mostly from having similar
comparator and sense amp overhead combined with
a much smaller number of bit cells. Although the
RT design is smaller than the tag array, it is slightly
less efficient. Our implementation uses more sense-
amplifiers and more routing than a conventional
cache to support two types of read operations: either
read all the BLOFs for a particular block for all the
regions in a given set, or read all the BLOFs for a
single region. The sense-amps occupy roughly 5.2%
of the total area in the RT design compared to 1.6%
in the conventional tag array. While RT uses more

a) 8MB L2 Cache
1.05

A s —o—SPC
\ 10-way —o—oDSC
1.04 - t -
| \ ---@-- RT
| \ N
. \ \ —4—RT-DSC
- 1 A ®-
5'® f‘) ! - - -~ Sqrt(2) Rule
0 \ \
2 \ \ N
= 102 ! :
° \ A i L)
£ T\ 15-way - 16-way
b\<><> A o
1 \/I\
- 16-way 56-way 60-way
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
Relative Area

Relative Miss Rate

b) 128MB L2 Cache

1.08 -
X SC
——SPC
106 4 —o—0DSC
--@-- RT
—A—RT-DSC
104 —-——--Sqrt(2) Rule
8-wa
1.02 7 y
12-way
N o-~-if.i;_~_ SuN—
0.98 :
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Relative Area

Figure 6. Relative miss rate vs. tag area. a) 8MB caches, and b) 128MB caches.

sense amplifiers, for any given access it activates
fewer sense amplifiers compared to the
conventional tag array.

4.4. Relative Size and Miss Rate

Figure 6 reports the relative miss rate for SC,
SPC, oDSC, RT and RT-DSC designs as a function
of the relative area of each design and the RVA
associativity. The x-axis shows the relative area of
the structure compared to the area of a conventional
tag array. The y-axis shows the miss rate relative to
the conventional cache. Figure 6a shows results for
an 8MB cache, and Figure 6b shows results for a
128MB cache (we omit results for other sizes due to
space limitations). The annotations indicate the
actual associativities used for a few of the designs,
the associativities of the remaining points can easily
be inferred as the difference in associativity of
consecutive points is constant for each curve. The
oDSC, RT-DSC, and RT designs all use the same
set of associativities, and these designs all have 2K
RVA sets for the 8MB cache and 32K RVA sets for
the 128MB cache. The SC design shown in
Figure 6b uses 512-byte sectors. For clarity,
Figure 6a omits all SC designs, but we note that
these designs would be above and to the left of the
limits shown. Finally, the two lines labeled “Sqrt(2)
Rule” indicate the extrapolated trend of miss-rate
vs. cache size. Specifically, the lines represent a
cache whose miss-rate is M = M0A70'4, where 4 is
cache area, and -0.4 and M, are empirically
determined constants based on the miss rates of our
workloads for cache sizes from 8MB to 128MB.
Points beneath this line perform better than a
conventional cache with the same total area.

As Figure 6a shows, the 14-way and 15-way
RT designs increase the miss-rate less than 1%
compared to conventional caches and require 3-9%
less area. For the 128MB caches shown in
Figure 6b, even the 8-way RT design increases the
miss-rate by less than 1%, and the 12-way RT
designs achieves miss-rates identical to the
conventional cache. These RT designs require 14-
37% less area than a conventional tag array. While
SPC provides designs with comparable miss rate
and area trade-offs, they require at least a 28-way
set-associative RVA for the 128MB cache, and at
least a 52-way set-associative RVA for the 8MB
cache. The RT-DSC design provides an additional
area savings of 12% to 35% compared to RT, but at
the cost of reduced functionality and increased
complexity. For completeness we show the oDSC
design as well.

Normalized Execution Time
o o
O ©
(2] [e] -
I s |

< o Vv <
RIS DA e
‘?90 12" 9 S

Figure 7. Slowdown for 8MB RT Cache with
2Kx12way RVA sets.

4.5. RegionTracker Performance

Figure 7 shows the percent slowdown of an
8MB RegionTracker cache for each workload, as

well as the harmonic mean across the three types of
workloads. The error bars indicate the 95%
confidence interval. The RT design used has 2K,
12-way set-associative RVA sets. RegionTracker
has a negligible performance impact, with an
overall slowdown of 0.2% = 1.0%. Apache suffers
the largest slowdown of 0.95% + 2.9%, and TPC-H
Query 17 actually sees a speedup of 0.9% = 1.3%.
When the error is considered, any performance
differences between RT and a conventional cache
are statistically insignificant.

4.6. RegionTracker Energy

Figure 8 shows the percent reduction in total
energy consumed by tag array lookups for RT
compared to a conventional 8MB cache. The error
bars indicate a 95% confidence interval. The
RegionTracker design uses 2K, 12-way set-
associative RVA sets, with 1KB regions. All
workloads see a reduction close to the average of
33% 16 %.

60%

50% -
40% A

30% - {»

20% 1 —

10% 7

0%

Percent Tag Energy Reduction

T e N 9 6 o A
W I S S \%@‘3

Figure 8. Percent reduction in tag energy for 8MB
RT Cache with 2Kx12way RVA sets.

4.7. Snoop Broadcast Elimination

This section evaluates the implementation of
the RegionScout technique [12] under the RT
framework. Figure 9 shows the reduction in
coherence traffic for a 4-way CMP with 512KB
private L2 caches. Results are averaged across all
the workloads described in Section 4.1. The first
three bars show conventional RegionScout
implementations with 4K, 8K and 16K CRH tables
and 8KB regions [12] (using smaller regions
reduces benefits). The Ilast, black bar shows
reduction with an RT implementation that uses 1KB
regions. The RT implementation reduces traffic
even further with less resources because it uses
precise sharing information. Per node, the original
RS requires approximately 178.3Kbits while the RT
requires just 2K non-shared bits. Assuming the

60%
B 50% |
5 BlockScout—>
.E 400/0,
0 300 Conventional RegionScout
& v
S 20%
i
(7]
< 10%
0% T T
RS4K CRH RS-8K CRH RS-16K CRH RSRT

Figure 9. Coherence traffic reduction with original
RegionScout (RS), RegionTracker-embedded
RegionScout (RSRT), and RegionTracker-
embedded BlockScout.
same relative bit-density as shown in Table 3, the
RT implementation requires 5% /less area than a

conventional tag array.

The top, stripped portion of the last bar in
Figure 9 shows the additional improvement
obtained with the BlockScout optimization
described in Section 2.3.1. For 512KB L2 with 1KB
regions, the BlockScout optimization requires an
additional 32Kbits of overhead, which results in a
total overhead that is still 144.3Kbits less than the
size of the original RS. This BlockScout
implementation only increases tag array area by
5.5%, which represents an increase of only 0.4% in
total cache area. Using this optimization results in
an additional 13% reduction in broadcasts
compared to the RT implementation of RS.

5. Conclusion

Several recently proposed techniques rely on
coarse-grain memory information for improving
various aspects of memory hierarchy performance
and power. As caches grow larger, we anticipate
that such coarse-grain optimization techniques will
play an increasingly important role. Accordingly,
this work set a goal of developing a framework, in
the form of a new cache tag array design, that
readily exposes coarse-grain information while
maintaining the flexibility and benefits of fine-grain
block management and communication. It proposed
RegionTracker, which offers virtually identical
miss rates and performance compared to a
conventional cache, while reducing resource
requirements. Compared to previous dual-grain
tracking cache designs RegionTracker offers the
following advantages: 1) It avoids the significant
miss rate increase suffered by sectored caches; and
2) it avoids the need for a highly associative RVA

lookups that are required by the sector pool design.
Additionally, this paper described a variation of the
RT design that extends the decoupled sector cache
to provide some of the functionality of our base RT.

For an 8MB cache, RT reduces area by 3-9%
and uses lower associativity for lookups, while
increasing miss-rate by less than 1% with only a
statistically insignificant difference in performance.
In addition, using RT to implement an existing
snoop broadcast elimination technique doubles the
effectiveness of the technique while completely
eliminating any area overhead, and in fact reducing
tag array area by 5.5% compared to a conventional
cache.

We believe that as caches grow larger, coarse-
grain management and optimization techniques will
become increasingly important. We believe that
such optimizations will be key in optimizing
coherence, communication, data placement and
management for large on-chip memory hierarchies.
RegionTracker has the potential of becoming the
key building block for such techniques, alleviating
the need for many auxiliary structures and
facilitating their adoption while reducing costs and
complexity.

Acknowledgements

We would like to thank the anonymous reviewers for
their insightful comments. We thank André Seznec for
suggesting the oDSC design and for his insightful
comments on the final version of this paper. loana Burcea
has patiently read and commented on earlier versions of
this paper. Jason Zebchuk is partially supported by an
NSERC Postgraduate Scholarship. This work is supported
by an Intel Research Council grant, an NSERC Discovery
Grant, an equipment donation from the Intel Corporation,
and a Canada Foundation for Innovations New
Opportunities equipment grant.

References

[1] L. A. Barroso, K. Gharachorloo, R. McNamara, A.
Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and
B. Verghese. Piranha: a scalable architecture based on
single-chip multiprocessing. Proc. Int’l Symposium on
Computer Architecture, June 2000.

[2] J. Cantin, M. Lipasti, and J. Smith. Improving
Multiprocessor Performance with — Coarse-Grain
Coherence Tracking. In Proc. Int’l Symposium on
Computer Architecture, June 2005.

[3] J. Cantin, M. Lipasti, and J. Smith. Stealth Prefetching.
In Proc. Int’l Conference on Architectural Support for
Programming Languages and Operating Systems, Oct.
2006.

[4] M. Ekman, F. Dahlgren, and P. Stenstrom. 7LB and
Snoop Energy-Reduction using Virtual Caches in Low
Power Chip-Multiprocessors. Proc. ACM Int’l Symp.
on Low Power Electronics and Design, August 2002.

[5] M. Ekman and P. Stenstrom. Enhancing multiprocessor
architecture simulation speed using matched-pair
comparison. Proc. Int’l Symposium on the Performance
Analysis of Systems and Software, March 2005.

[6] K. Gharachorloo, A. Gupta, and J. Hennessy. Two
techniques to enhance the performance of memory
consistency models. In Proc. Int’l Conference on
Parallel Processing, Aug. 1991.

[71 N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E.
Wunderlich, S. Chen, J. Kim, B. Falsafi, J. C. Hoe, and
A. G. Nowatzyk. SimFlex: A fast, accurate, flexible full-
system simulation framework for performance
evaluation of server architecture. SIGMETRICS
Performance Evaluation Review, Apr. 2004.

[8] C. Lai and S-L Lu. Efficient Victim Mechanism on
Sector Cache Organization. Advances in Computer
Systems Architecture, Lecture Notes in Computer
Science 3189: 16-29, 2004.

[9] I.S.Liptay. Structural Aspects of the System/360 Model
85 Part II: The Cache. IBM Systems Journal, 7:15-21,
1968.

[10] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill,
D. A. Woods. Using Destination-Set Prediction to
Improve the Latency/Bandwidth Tradeoff in Shared
Memory Multiprocessors. In Proc. Int’l Symposium on
Computer Architecture, June 2003.

[11] C. McNairy, D. Soltis. [ltanium 2 Processor
Microarchitecture. IEEE Micro, 23(2): 44-55, March
2003.

[12] A. Moshovos. RegionScout: Exploiting Coarse-Grain
Sharing in Snoop Coherence. Proc. Int’l Symposium on
Computer Architecture, June 2005.

[13] J. B. Rothman and A. J. Smith. The Pool of Subsectors
Cache Design. In Proc. Int’l Conference on
Supercomputing, June 1999.

[14] A. Seznec. Decoupled sectored caches: Conciliating
low tag implementation cost and low miss ratio. In Proc.
Intl” Symposium on Computer Architecture, June 1994.

[15] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J.
Eickenmeyer, J. B. Joyner. POWERS5 System
Microarchitecture. IBM Journal of Research and
Development, 49(4): 505-522, 2005.

[16] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, A.
Moshovos. Spatial Memory Streaming. In Proc. Intl’
Symposium on Computer Architecture, June 2006.

[17] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A.
Ailamaki, B. Falsafi. Temporal streaming of shared
memory. In Proc. Intl’ Symposium on Computer
Architecture, June 2005.

[18] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, J. C. Hoe.
SMARTS: Accelerating microarchitecture simulation
via rigorous statistical sampling. In Proc. Intl’
Symposium on Computer Architecture, June 2003

