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Abstract—High density memory is becoming more important
as many execution streams are consolidated onto single chip
many-core processors. DRAM is ubiquitous as a main memory
technology, but while DRAM’s per-chip density and frequency
continue to scale, the time required to refresh its dynamic
cells has grown at an alarming rate. This paper shows how
currently-employed methods to schedule refresh operations are
ineffective in mitigating the significant performance degradation
caused by longer refresh times. Current approaches are deficient
– they do not effectively exploit the flexibility of DRAMs to
postpone refresh operations. This work proposes dynamically re-
configurable predictive mechanisms that exploit the full dynamic
range allowed in the JEDEC DDRx SDRAM specifications. The
proposed mechanisms are shown to mitigate much of the penalties
seen with dense DRAM devices. We refer to the overall scheme
as Elastic Refresh, in that the refresh policy is stretched to fit the
currently executing workload, such that the maximum benefit of
the DRAM flexibility is realized.

We extend the GEMS on SIMICS tool-set to include Elastic
Refresh. Simulations show the proposed solution provides a
∼10% average performance improvement over existing tech-
niques across the entire SPEC CPU suite, and up to a 41%
improvement for certain workloads.

I. INTRODUCTION

Since its invention in the 1970’s, the dynamic memory
cell has become an indispensable part of modern computer
systems. From smartphones to mainframes, these simple one-
transistor-one-capacitor structures provide data storage which
is fast (as compared to disk) and dense (as compared to
on-processor SRAM memory). In the server space, JEDEC-
standardized DDR3 DRAMs are currently prevalent, and
DDR4 is forecast to emerge within the next several years [1].

The frequency and power “walls” of silicon logic tech-
nology scaling have been broadly discussed in recent lit-
erature, and processor designs have been accordingly re-
targeted for throughput, ushering in the many-core era. In
contrast, DRAM, which is manufactured with a different set
of technology steps, and which runs at lower frequencies
than high-performance logic, has continued to scale in several
ways, providing roughly 2x bit-density every 2 years, and
stretching to twice its current frequency within the next 3-
4 years [2]. For example, the specified frequencies for DDR,
DDR2, DDR3, and DDR4 are 200–400 MHz, 400–1066 MHz,

800–1600 MHz, and 1600–3200 MHz, respectively. Despite
this optimism, examining bit-density and frequency does not
tell the full story; one must also consider the overhead of
maintaining these cells’ stored values. While DRAM has not
been declared to have met a “scaling wall,” manufacturers are
continually challenged to find new materials and processes
to create hi-capacity capacitors, small/fast/low-leakage access
transistors, and robust means of supplying power in commod-
ity system environments. Each of these challenges, along with
the total number of bits per DRAM chip, directly impact the
specification of DRAM refresh, the process by which cells’
values are kept readable.

In this paper, we identify a troublesome trend in DRAM
refresh characteristics and show how refresh impacts perfor-
mance, especially for many-core processors. We propose a
new approach to refresh scheduling and provide dynamic,
configurable algorithms which more effectively address the
“refresh wall” than approaches commonly employed in today’s
memory controllers.

II. MOTIVATION

In order to retain the contents of dynamic memory,
refresh operations must be periodically issued. JEDEC-
standard DRAMs maintain an internal counter which des-
ignates the next segment of the chip to be refreshed, and
the processor memory controller simply issues an address-
less refresh command. As more bits have been added to
each DRAM chip, changes have occurred in two key JEDEC
parameters—tREFI and tRFC—which specify the interval at
which refresh commands must be sent to each DRAM and
the amount of time that each refresh ties-up the DRAM
interface, respectively.

Most prior work on memory controller scheduling algo-
rithms has assumed that refresh operations are simply sent
whenever the tREFI-dictated “refresh timer” expires. This is
a sufficient assumption for historical systems, where refresh
overhead is relatively low, i.e. refresh completes quickly, and
does not block read and write commands for very long.
However, for the 4Gb DRAM chips which have been recently
demonstrated [3], and would be anticipated to appear on the



!"#

$"#

%!"#

%$"#

&!"#

&$"#

'!"#

()
*+
,)

-.
/#

,0
1(
&#

2.
.#

3
.4
#

25
,3

6#

/3
3
)*
#

78
)-

2#

+1,
9:

;-
<:
3
#

/&
=>
*)
4#

53
-)

<(
(#

;7
<;
*#

?;
+;
-.
,3

6#

@
A#B

);
-#

,C
;D
)7
#

2;
3
)7
7#

3
1+.
#

0)
:7
3
(#

2*
53

;.
7#

.;
.<
:7
E
F
B
#

+)
7+
1)
'G

#

-;
3
G#

G)
;+
HH#

75
(+
)?
#

(5
D*
;I
#

.;
+.
:+
1?
#

@
)3

7J
F
KF

#

<5
-<
5#

+,
3
#

C
*4
#

7(
/1
?'
#

@
A#B

);
-#

H-<)2)*# J+5;L-2#M51-<#

!"
#$
%
&'
()
*)

+
,-

$,
.&
($
/
,0
1&

2(
&3
4$

&#@,1<# >#@,1<# N#@,1<#

Fig. 1. Refresh performance penalty for emerging DRAM sizes (four-core). See Section V-A for a description of the modeled architecture.

mass market soon, a refresh command takes a very long
time to complete (300ns). The net effect is a measurable
increase in effective memory latency, as reads and writes are
forced to stall while refresh operations complete in the
DRAM. The baseline performance impact of 2Gb, 4Gb, and
8Gb chips is shown across the Spec2006 benchmark suite [17]
in Figure 1, normalized to application performance when run
without DRAM refresh commands. This penalty grows
from negligible to quite severe: up to 30% for memory latency
sensitive workloads with a geometric mean of 13% for integer
and 6% for floating point. As denser memory chips come to
market, this problem will only become worse [4].

A. DRAM Refresh Requirements and Thermal Environment of
Modern Servers

The temperature at which a device is operated significantly
impacts its leakage. For DRAM cells, which consist of a
storage capacitor gated by an access transistor, their ability
to retain charge is directly related to leakage through the
transistor, and thus to temperature. While processors have hit
a power-related “frequency wall,” and have stopped scaling
their clock rates, DRAMs have continued to be offered at
faster speeds, resulting in increased DRAM power dissipation.
At the same time, server designs have become increasingly
dense (e.g., the popularity of blade form-factors), and so main
memory is increasingly thermally-challenged. The baseline
server DRAM operating temperature range is 0◦C – 85◦C, but
the JEDEC standard now includes an extended temperature
range of (85◦C – 95◦C), and this has become the common
realm of server operation [5], [6]. In this extended range,
DRAM retention time is specified to be one-half that of the
standard thermal environment.

In the standard thermal range, each DRAM cell requires
a refresh every 64ms. As the memory controller issues
refresh operations, the DRAM’s internal refresh control
logic sequentially steps through all addresses, ensuring that all
rows in the DRAM are refreshed within this 64ms interval. The
rate at which the memory controller must issue refreshes

was initially determined by dividing 64ms by the number
of rows in the DRAM. This value, referred to as tREFI
(REFresh Interval), was specified to be 7.8µs for 256M DDR2
DRAM. As DRAM density doubles every several lithography
generations, the number of rows also doubles. As such, using
this traditional method, the rate at which refresh commands
must be sent would need to double with each generation.

Instead, in order to reduce the volume of refresh traffic,
DRAM vendors have designed their devices such that multiple
rows are refreshed with one command [7]. While this does
reduce the command bandwidth, the time required to execute
a refresh increases with each generation, as more bits
are handled in response to each refresh command [4].
Ideally, DRAM devices would simply refresh more bits with
each operation, but this would over-tax the current delivery
available. The length of time of this delay is the parameter
tRFC (ReFresh Cycle time). Table I shows the worsening of
tRFC as DRAMs become more dense, along with the impact
of temperature on tREFI. Note that initially the increase in
tRFC was significantly less than 2x (i.e., 512Mb to 1Gb). This
was possible due to constant-time aspects of refresh such as
decoding the command and initiating the engine.

TABLE I
REFRESH PARAMETERS AS DENSITY INCREASES [8]

DRAM type tRFC tREFI@85◦C tREFI@95◦C

512Mb 90ns 7.8µs 3.9µs

1Gb 110ns 7.8µs 3.9µs

2Gb 160ns 7.8µs 3.9µs

4Gb 300ns 7.8µs 3.9µs

8Gb 350ns 7.8µs 3.9µs
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Fig. 2. tRFC Across DDR3 Generations

B. Refresh Cycle Time Beyond JEDEC DDR3

Table I contains the JEDEC DDR3 tRFC values. Pro-
jections to future values are difficult due to the seeming
discontinuity between the trend lines shown in Figure 2. The
linear regression from 512Mbit–4 Gbit would project 550 ns
for 8 Gbit. The actual DDR3 JEDEC value is specified at 350
ns. There is debate in the DRAM community as to what tRFC
values will be required for even higher density DDR4 memory,
especially as new materials must be used to scale DRAM to
higher densities and lower lithographies.

III. BACKGROUND

A. Effective Memory Latency

Baseline memory latency is generally quoted as the time
from a load’s issue until data is returned (from DRAMs
in main memory) to the load/store unit. While average or
cold-start metrics are sometimes used, “memory latency” is
more commonly an optimistic/lower-bound value, and actual
memory commands can be delayed by many architectural and
system-level factors. This brings about the concept of effective
memory latency, which is an average load service time from
memory, and is impacted by collisions at, and delays in,
queues, buses, DRAM banks, and other physical resources.
These factors can be significant, and must be included for
accurate performance projection [9]. In this paper, we focus
on the emerging impact of refresh on effective memory
latency.

Memory-Level Parallelism (MLP) is the degree to which
computation can continue on a processor, despite delays as
data is fetched from memory. For workloads with low MLP,
memory latency becomes a significant contributor to overall
performance, and we later demonstrate that such workloads
require new approaches to refresh scheduling, in order to avoid
detrimental effects of future DRAM refresh durations.

B. Deferral of Refresh Operations

The JEDEC DDRx standards allow flexibility in the spacing
of refresh operations. Delaying a specific command for
small numbers of tREFI periods does not result in loss of
data, assuming the overall average refresh rate is maintained
(i.e., all bits of the DRAM are touched within their retention

!"#$"%&'()")"

*+,)-'()")" ./+0'()")"%'1'2

!/+0'()")"%'1'3
!"4)"%-
*+,)-

*+-"$#/5"

!"#$"%&'
65&"7)8"$

9)-,)-
:;'<!=>
*9'<$?@"$%

-!AB*'C;)+-"$

Fig. 3. Baseline Memory Controller

time). For this reason, commodity DRAMs allow deferral of
some number of refresh operations, presuming that the
memory controller then “catches up” when the maximum
deferral count is reached. For the current DDR3 standard, this
maximum refresh deferral count is eight [8]. In this work
we use the term postponed to describe the number of tREFI
intervals across which a refresh operation was deferred.
Exploiting this elasticity in the scheduling of refresh oper-
ations is the key focus of this work.

C. Baseline Memory Controller

Figure 3 shows the queue structure of the memory controller
used in this work. The read and write operations accepted
by the controller from the CPUs (via the cache controller) are
first placed in the Input Queue. Operations are moved to the
appropriate Bank Queue as space is available. In our analysis
in Section V-A, we specified 32 entries for each of these
queues. The memory controller must also execute refresh
operations; these are created as the tREFI counter expires,
and stored in the Refresh Queue until they are executed.
Selection between the various operations in the Bank Queues
and the Refresh Queue is managed by the overall memory
scheduler, of which only the Refresh Scheduler is shown. The
Refresh Scheduler is explicitly shown, as the focus of this
work explores the policy and priority with which refresh
operations are intersperse with read and write requests.

D. Typical Approach to Refresh Scheduling

As previously suggested, most memory controllers have
paid little attention to the scheduling of refresh commands,
as the penalties have not warranted the complexity of a sophis-
ticated algorithm. In this section, we examine current policies,
referring to the memory controller logic which decides when
to issue refresh commands as the refresh scheduler (shown
in Figure 3).

The most straight-forward refresh scheduling algorithm
simply forces a refresh operation to be sent as soon as
the tREFI interval expires. This approach is commonplace
due to the simplicity of the required hardware control logic.
Historically, tRFC penalties were low enough to not warrant
additional complexity. This algorithm can be found in readily-
available memory simulators, such as DRAMsim [10] and
GEMS [11]. In addition, even work dealing in sophisticated
operation schedulers have employed this method [12]. This
paper refers to this common policy as Demand Refresh (DR).
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Fig. 4. Refresh Latency Penalty Example

In a more sophisticated policy that exploits the ability to
postpone refresh commands [13], refresh operations are
treated as low priority (never chosen over read or write
traffic) until the postponed count reaches seven refresh
operations. At this point, refreshes become higher priority
than all other operations, to ensure the maximum deferral
limit (eight) is not reached. Deferral-based designs do enable
bursts of operations to proceed without refresh penalties, but
as described in the next section, they fall short of isolating
refresh penalties in several important scenarios. We refer to
this policy as Defer Until Empty (DUE).

E. Examples of Where Typical Approaches Break Down

In the following sections, we describe several examples
in which current refresh scheduling approaches fail to iso-
late refresh operations, including cases where ample idle
DRAM cycles are available.

1) Low-MLP Workloads: Traditional approaches behave
poorly while running low-MLP workloads. In low-MLP work-
loads, memory utilization is often quite light, but each ref-
erence to memory is critical to the workload’s execution
progress. A classic example of such an algorithm/workload is
the traversal of pointer-based large data structures. For these
applications, each execution thread generates only one miss
to memory at a time. As such, there are many periods of
time where the memory controller Bank Queues are empty. In
these cases, the refresh scheduler will often execute refreshes
immediately when the tREFI counter expires. The problem is
that even though the scheduler is often empty, memory traffic
is still present. This, combined with the very long refresh
completion delay of high-density DRAMs (300 ns+), results
in large penalties for operations received by the memory
controller in the interval after the refresh was scheduled.

The magnitude of this effect is significantly larger than ex-
pected when only considering the fraction of time the DRAM
is executing the refresh. In Figure 4(a), we graphically
show the magnitude of the delay experienced by a read
received just after a 300ns refresh operation of 4Gbit
DRAM, compared to the typical closed page access latency of
26ns to accomplish a typical read operation. In Figure 4(b),
we show graphically the fraction of time the DRAM bus
is executing refresh operations over a tREFI interval.
DRAM read operations are shown to give a scale of the
relative bus busy time. This disproportionate busy time drives

the very significant latency penalties.
Table II shows the first-order refresh-associated perfor-

mance penalties across DRAM types. Bandwidth overhead is
calculated by taking the refresh time (tRFC) over the refresh
interval (tREFI). This gives the fraction of time that a DRAM
chip is off-line from mainline traffic to execute refresh
operations. This grows to over a 9% bandwidth tax in the
densest DDR3 technology.

The latency overhead of refresh is more disruptive. To
illustrate this, the first-order latency overhead, as shown in the
fourth and sixth columns of Table II, is calculated assuming an
idle system. In an idle system, a read request would incur
a latency penalty if the DRAM scheduler had recently sent
a refresh request to the needed DRAM device. Note that, in
general, the scheduler would delay a refresh if a read
operation was queued; the values shown represent the case
where the read is unlucky. In this case, the latency penalty
is on average one-half the tRFC time. The rate at which this
higher effective read latency event occurs is indicated by
the bandwidth overhead calculation. As Table II illustrates,
this latency penalty can be very significant. For example, a
modern processor might achieve a baseline memory latency
of ∼50ns. For 8Gb DRAM, the penalty of 15.7ns represents a
31% memory latency increase due to refresh. Beyond the sheer
magnitude of a 31% latency penalty, the cost in performance is
higher in modern, speculative, out-of-order processors than the
average latencies implies [9]. While in general memory latency
can be hidden through hardware features such as prefetch
and out-of-order execution, the reach of such mechanisms is
limited by total hardware capacity. As such, designing for high
latency events requires much larger structures than needed
when latency is more uniform.

2) Medium to High Utilization Workloads: The general
problem of refresh penalties due to scheduler inefficiencies
also applies to workloads with high DRAM bus utilization.
While the refresh timer may expire when the operation queues
are not empty, in many cases the memory controller becomes
idle for at least some period of time relatively soon compared
to the tREFI interval. Though the bus may be idle, new opera-
tions could arrive shortly after the refresh is sent, incurring
the large refresh penalty. Current designs do nothing to judge
how long the controller will be empty, and are ineffective at
avoiding these penalties. Our analysis indicates that traditional
refresh deferral solutions reach significant backlogs only in



TABLE II
REFRESH PENALTY AS DENSITY INCREASES

DDR3
DRAM
capacity

tRFC
bandwidth
overhead
(85◦C)

latency
overhead
(85◦C)

bandwidth
overhead
(95◦C)

latency
overhead
(95◦C)

512Mb 90ns 1.3% 0.7ns 2.7% 1.4ns

1Gb 110ns 1.6% 1.0ns 3.3% 2.1ns

2Gb 160ns 2.5% 2.4ns 5.0% 4.9ns

4Gb 300ns 3.8% 5.8ns 7.7% 11.5ns

8Gb 350ns 4.5% 7.9ns 9% 15.7ns

workloads with saturated memory buses. In these cases, the
refresh scheduler is constantly forcing refresh operations,
since there are never free intervals to hide the refresh.

F. Refresh Beyond DDRx SDRAM

In addition to the emerging tRFC penalties we have iden-
tified for dense commodity DRAM, there has been much
interest in non-DRAM memory technologies which may come
to market in the next 10 years (such as PCM, RRAM, and
STT-RAM). Many recent works have assumed a primary
advantage of these technologies is their non-volatility. While
these are indeed “non-volatile” technologies at traditional
Flash temperatures (≤ 55◦C), several of these suffer from
accelerated drift effects at temperatures in the range of server
main memory (≤ 95◦C) [14]. Drift causes a change in the
memory cell’s resistance value. While drift may be manage-
able in the initial single-bit-per-cell PCM implementations
which are currently on the market, dense multi-level cell PCM
relies on storing and sensing finer resistance granularities,
and drift will become more of an issue. Dense, multi-bit
implementations which are currently envisioned for hybrid
and tiered memory systems, are thus likely to require a
refresh-like command to combat drift in high-temperature
server environments. The length of such an operation may be
similar to these technologies’ write/programming times (much
longer than DRAM, generally). For one leading emerging
memory contender, phase-change memory, its write time could
result in a drift-compensating tRFC easily 3x that currently
specified for DRAMs. From the above, it is clear that simple
refresh scheduling mechanisms will not be sufficient for future
memory.

IV. ELASTIC REFRESH SCHEDULING

We address the behavior observed in current refresh
scheduling algorithms by decreasing the aggressiveness with
which refresh operations are scheduled. In being less ag-
gressive, the proposed mechanisms more effectively exploit the
available refresh deferral dynamic range. This is accomplished
by waiting to issue a refresh command, even when the bus
is idle. At the most fundamental level, we use predictive mech-
anisms that decrease the probability of a read or write’s
collision with a recently issued refresh operation.
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Fig. 5. Idle Delay Function (IDF)

The Elastic Refresh algorithm we propose differs from
the best existing approach (DUE) in the mechanism used to
issue low priority refresh operations. Current mechanisms
consider low priority refresh operations eligible to be sent
when all Bank Queues for a rank are empty (structure in
Figure 3). In our method we wait an additional period of time
for the rank to be idle before issuing the refresh com-
mand. The usage of this additional delay, effectively lowering
refresh priority further, exploits typical system behavior where
memory operations arrive in bursts. Using this assumption, as
the time since a prior operation increases, the probability of
receiving future memory operations decreases. This reduces
the likelihood that a new operation will collide with an
executing refresh. We extend this idea with the following
observation: at low postponed refresh counts, the prediction
can aggressively choose to not send an operation. As the
postponed refresh count increases, this bias is reduced by
decreasing the idle delay period.

A. Idle Delay Function

We can express the idle delay as a function of the refresh
postponed count. The general form of this function, referred to
as the Idle Delay Function (IDF), is shown in Figure 5. Note,
in our proposal, the parameters of the IDF are dynamically
adjusted based on the workload characteristics. We define three
regions of delay characteristics:
1) Constant: In our analysis, we found many workloads have

a characteristic idle delay period, where the probability of
receiving a future command in the tRFC interval is very
low. The constant region effectively sets the maximum IDF
at this value.

2) Proportional: This region represents the area where the
postponed refresh count approaches the maximum allowed
value, and we must begin to more aggressive issuing of
refresh operations. The slope of the proportional region
is tuned such that the full dynamic range of postponed
operations is exploited.

3) High Priority: As the number of postponed requests ap-
proaches the maximum, the delay strategy must be aban-
doned, as the refresh must be issued within one ad-
ditional tREFI interval. From this perspective, the High
Priority region has two phases, both with an idle delay
of zero. At a count of seven, the scheduler will send
the refresh as the bank queue becomes empty. At a



TABLE III
IDLE DELAY FUNCTION PARAMETERS

Parameter Units Description

Max Delay Memory Clocks Sets the delay in the
constant region

Proportional
Slope

Memory Clocks
Postponed Step

Sets slope of the
proportional region

High Priority
Pivot Postponed Step Point where the idle delay

goes to zero

count of eight, the refresh will be sent before any other
commands, as soon as the DRAM bus parameters allow.

B. Idle Delay Function Control

As the optimal characteristics of the idle delay function are
workload-dependent, we must define a set of parameters to
configure the delay equation. These are listed in Table III.
The Max Delay and Proportional Slope parameters are de-
termined with the use of two hardware structures that profile
the references. The High Priority Pivot (the transition from
Proportional to High Priority) is fixed at seven postponed
refreshes, as this was effective to prevent forcing High Priority
unnecessarily.

1) Max Delay Control: We found that delays greater than
some threshold were counter-productive in exploiting the full
dynamic range of the DRAM postponed refresh capability.
Through manual exploration of a range of delays, we found
the average delay of all idle periods was an effective value
across a range of workloads. As such, we devised a circuit to
estimate the average delay value. This is accomplished without
the logic complexity of a true integer divide circuit. The
circuit maintains a 20-bit accumulator and a 10-bit counter.
As every idle interval ends, the counter increments by one,
while the number of idle cycles in the interval are added to the
accumulator. The average is calculated every 210 = 1024 idle
intervals with a simple shift-left of 10 bits. If the accumulator
overflows, a maximum average value of 1024 is used.

2) Proportional Slope Control: The goal of the proportional
region is to dynamically center the distribution of refresh
operations in the postponed spectrum. This is accomplished by
tracking the relative frequency of refresh operations across
a postponed pivot point. This postponed point is the target
average refresh execution point. We used a postponed count
threshold of four in our system, reflecting the midpoint of the
deferral range.

The hardware structure to implement this function is shown
in Figure 6. The structure maintains two counters containing
the frequency of operations that fall on the low and high sides
of the pivot threshold. When either of the counters overflow,
all related counters (the Low and High counters of Figure 6(a),
in this case) are divided in half by right-shifting each register
by one. The scheme operates over profiling intervals, which
are followed by adjustments at the end of each interval. At
each adjustment interval, the logic subtracts the values of the
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(b) Proportional Slope control circuit

Fig. 6. Proportional Slope Control Circuit

High and Low counters. The value is applied to a Proportional
Integral (PI) (shown in Figure 6(b)) control circuit to update
the Proportional Slope parameter for the subsequent interval.
Not shown in Figure 6 is the reset of the High and Low
counters after each adjustment interval.

For our analysis, we use the following parameters which
were determined to be effective through simulation analysis.
The High, Low, and Integral counters are 16 bits in width. A
relatively short adjustment interval of 128k memory clocks is
used, since the profiling structure has a fairly small amount of
state and stabilizes quickly. The Proportional Slope value is a
7-bit register, which represents the slope of the proportional
region (units of decrease in delay cycles per postponed step).
The w(p) and w(i) weighting functions of the PI controller
use simple power-of-two division accomplished by truncating
the value to largest 5-bit value (shifting off up to 11 leading
zeros).

C. Elastic Refresh Queue Overhead

Table IV shows a summary of all the components of the
Elastic Refresh scheduler. The overhead of the Elastic Refresh
Queue can be divided into the basic static control mechanism



TABLE IV
REFRESH SCHEDULING MECHANISMS

Name Description Dynamic Control

Fixed
Delay

Sets the maximum
delay value of the Idle

Delay Function

Detection of average
delay of workload

Proportional
Delay

Idle Delay which scales
based on number of
deferred refresh

operations

Adjust with PI based
control of Figure 6 to
exploit full deferral

capability

(FD) and the additional hardware to dynamically tune the pa-
rameters (DD). For the FD system, each memory rank requires
a 10 bit idle counter. In addition, the max delay, proportional
slope, and high priority pivot parameters require 10, 7, and
3 bit registers. In total this overhead is negligible (an 8 rank
memory control would gain 100 register bits). The hardware
to dynamically adjust the Max Delay parameter requires the
addition of a 20 bit wide, 10 bit input accumulator and a 10
bit counters. The Proportional Slope logic consist of two 16
bit High/Low counters, a 16 bit Integral accumulator, and a
7 bit two input accumulator for the Proportional Slope term
generation. All of these components are negligible compared
to the size of a typical memory controller which would contain
this logic.

V. EVALUATION

A. Simulation Methodology

To evaluate the proposed Elastic Refresh policies, we
utilized the Gems toolset [11], built on top of the Simics
[15] functional simulator. Gems provides a cycle-accurate
out-of-order processor model along with a detailed memory
subsystem. Gems was configured to simulate from 1 to 8
aggressive out-of-order cores. The memory subsystem model
uses a directory-based MOESI cache coherence protocol and
a detailed memory controller. The Gems default memory con-
troller was augmented to simulate a First-Ready, First-Come-
First-Served (FR FCFS) [16] memory controller that supports
two separate baseline refresh policies: a) Demand Refresh
(DR) and b) Defer Until Empty (DUE) (see Section III-D)
along with the proposed Elastic Refresh policies. Table V
includes the basic system parameters.

For the memory refresh parameters, we evaluated a configu-
ration representing what tRFC could be in the 16Gbit DRAM
time-frame. The exact value of tRFC is difficult to narrow
down due to the irregularities between DDR3 values for 4
GBit and 8 GBit devices (described in Section II-B). Based
on this, we chose a value of 550ns for tRFC. For tREFI,
we selected the 95◦C interval of 3.9µs, as this reflects usage
in dense server environments, where CMP systems and large
memory configurations are common [5], [6].

The SPEC CPU2006 benchmark suite [17] was compiled
to the SPARC ISA with full optimizations (peak flags). To
estimate representative average behavior, for each experiment
eight segments of 100M instructions were simulated, selected

TABLE V
CORE AND MEMORY-SUBSYSTEM PARAMETERS USED FOR

CYCLE-ACCURATE SIMULATIONS

CPU Frequency Pipeline Branch
Predictor

4 GHz
30 stages /

4-wide fetch /
decode

Direct YAGS
/ indirect 256

entries

L1 Data &
Inst. Cache L2 Cache Memory

Bandwidth

Memory

64 KB, 2-way
associative, 3
cycles access

time, 64 Bytes
block size, LRU

8 MB, 8 ways
associative, 12

cycles bank
access, 64 Bytes
block size, LRU

21.33 GB/s

DRAM Controller
Organization

Controller
Queue Sizes

8GB
DDR3-1333

8-8-8

2 Memory
Controllers
2 Ranks per
Controller

8 DRAM chips
per Rank

32 Read
Queue & 32
Write Queue

Entries

evenly along the whole execution of the benchmark. To do so,
each benchmark was fast-forwarded to the beginning of each
segment; the next 100M instructions were used to warm up the
last-level cache and memory controller structures; and finally
the following 100M instructions were used to evaluate the
Elastic Refresh policies. The performance of each experiment
is estimated based on the average behavior along the eight
100M instructions segments. In simulations involving multiple
cores, each processor’s instruction count can drift, though this
effect is extremely small amounts in the homogeneous SPEC
Rate benchmarks. In any case, we measured the total IPC
across all cores in the interval in which core 0 executed 100M
instructions.

B. Performance of Refresh Mitigation Policies

The net performance benefit of the Elastic Refresh scheme
are analyzed in this section. All results are relative to the best
known algorithm DUE. Single core SPEC Speed [17] results
are shown in Figure 7; four core SPEC Rate [17] results
in Figure 8; and eight core SPEC Rate results in Figure 9.
In general, we observe the most significant throughput gains
on workloads that exhibit high levels of memory traffic.
Interestingly, these workloads include the classic high memory
bandwidth workloads libquantum and bwaves, but also
include more moderate bandwidth workloads that exhibit low
MLP, such as omnetpp and xalancbmk. This reflects the
refresh problem is more tied to latency penalties rather than
simply bandwidth overhead.

1) Fixed Delay Results: For the Fixed Delay runs we
selected static values for each of the parameters that seemed to
be effective for most workloads (an exhaustive search would
be prohibitive, considering the number of simulation cycles
required). These values were a Constant region value of 400
memory clocks and a Proportional Slope value of 40 memory
clocks per deferral. On average, we observed performance
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Fig. 7. IPC improvement of proposed refresh policy techniques over baseline refresh policy on 1 core

1 

1.05 

1.1 

1.15 

1.2 

1.25 

1.3 

1.35 

1.4 

1.45 

pe
rlb

en
ch

 

bz
ip

2 

gc
c 

m
cf

 

go
bm

k 

hm
m

er
 

sj
en

g 

lib
qu

an
tu

m
 

h2
64

re
f 

om
ne

tp
p 

as
ta

r 

xa
la

nc
bm

k 

G
eo

 M
ea

n 

bw
av

es
 

ga
m

es
s 

m
ilc

 

ze
us

m
p 

gr
om

ac
s 

ca
ct

us
A

D
M

 

le
sl

ie
3d

 

na
m

d 

de
al

II 

so
pl

ex
 

po
vr

ay
 

ca
lc

ul
ix

 

G
em

sF
D

TD
 

to
nt

o 

lb
m

 

w
rf 

sp
hi

nx
3 

G
eo

M
ea

n 

Integer Floating Point 

IP
C

 Im
pr

ov
em

en
t 

Fixed Delay (FD) Dynamic Delay (DD) 

Fig. 8. Relative IPC improvement of proposed refresh policy techniques over baseline refresh policy on 4 cores
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Fig. 9. Relative IPC improvement of proposed refresh policy techniques over baseline refresh policy on 8 cores



improvements of Integer (5.9%, 4.1%, 3.7%) and Floating-
Point (6.5%, 2.8%, 1.6%) across one, four, and eight CPUs.
These improvements are quite significant given the very simple
mechanism and extremely low logic required. That said, as
the delay intervals present in high bandwidth workloads (more
pervasive as the core count is increased) are inherently shorter,
a a static setting simply cannot work across all cases. Note
the most effective static settings favored lower bandwidth
workloads as the improvements were larger in these cases.
This biased the selection of the static parameters for the single
core runs.

2) Dynamic Delay Results: The Dynamic Delay results
show greater gains across the different workloads and system
sizes with improvements of Integer (9.8%, 10.3%, 11.2%)
and Floating-Point (10.2%, 7.0%, 7.9%) across one, four, and
eight CPUs simulations. As expected, the improvements for
high bandwidth single core workloads such as libquatum,
bwaves, and milc are significant with Dynamic Delay. The
improvement using dynamic parameters is very significant
in the 8 core simulations, increasing the meager 3% fixed
delay to a 9% gain. These results are particularly impressive
considering the trivial logic area overhead of the mechanisms.

VI. RELATED WORK

Avoiding Refresh: One option to help reduce refresh penal-
ties is to avoid sending some fraction of the operations that are
determined to be unneeded. In the Smart Refresh work, the
authors propose taking advantage of the inherent refresh that
occurs through existing read and write operations when
ranks are precharged [18]. In ESKIMO, methods are proposed
to utilize semantic knowledge, such as “deleted” dynamically
allocated memory, to avoid refreshing memory regions which
the program is no longer using [19]. While both of these
refresh avoidance techniques are potentially quite useful, they
are incompatible with existing commodity DRAM devices.
In addition, the significant design changes required would be
difficult and timely to negotiate through JEDEC committees,
and proprietary DRAM designs, such as Rambus DRAM, have
been challenging to bring to market.

Hiding Refresh: It is straight-forward to envision a DRAM
architected such that read and write commands may be
completed in other sections of the memory at the same time
as refresh is taking place elsewhere in the bit-arrays or
banks. Indeed, such concurrent refresh schemes have been
implemented outside the commodity server DRAM space [20].
However, for commodity DRAMs, this approach has not been
taken, due to the high current draw of a refresh operation,
and the added design and system expense that might be
required to support multiple simultaneous operations, from a
power supply/noise perspective.

As irregular memory latency can be detrimental to real
time systems, memory refresh prevents dynamic memory
adoption in many embedded application spaces. In “Making
Refresh Predictable” [21], the program itself can specify when
refresh operations can be sent, thus avoiding penalties.
Extending this idea to the more general server computation

space may be possible, but the irregularity and complexity of
multi-programmed system operation increases the difficulties
of deploying this solution compared to more explicitly con-
trolled real time systems.

Memory Request Prediction: The concept of predicting
future memory references has been proposed as a method to
decide when to enter latency-penalizing lower power DRAM
states [22]. The fundamental difference between the prediction
for low power states as compared to refresh is centered in the
functional requirement of refresh (to prevent loss of memory
data). As such, the urgency aspect of refresh, which drove the
dynamic nature of the prediction in this work is very different
from this prior work. Another important difference between
refresh and powerdown scheduling policies is highlighted by
Fan et al. in [23], which demonstrates lower DRAM power
if idle-time predictors are ignored, and memory is put in
low power states as soon as possible. With powerdown, it
is beneficial to drive to the lower power state as often as
possible, whereas refresh must be driven at a specific rate.
Fan’s observations about powerdown essentially reflect the
traditional Demand Refresh scheduling policy, which we found
to be quite poor.

VII. CONCLUSIONS

This work has shown that Elastic Refresh mechanisms
are effective in mitigating much of the increasing penalty
of DRAM refresh, providing a ∼10% average performance
improvement across the SPEC CPU suite on one, four, and
eight core simulations. These gains were achieved using very
low overhead mechanisms, that are easily incorporated into
existing memory schedulers, and are effective on commodity
JEDEC DDRx SDRAM memory devices.

The relatively large gains compared to the very small logic
overhead highlight the importance of the memory interface in
multi-core designs, and particularly “background” operations
such as memory refresh. As memory technologies become
more complex, operations beyond typical reads and writes will
become more important. These future memories include both
future DDRx memories (and more complex 3D packagings),
but also non-DRAM memories such as PCM, RRAM, and
STT-RAM.
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