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Abstract—We present Task Superscalar, an abstraction of
instruction-level out-of-order pipeline that operates at the task-
level. Like ILP pipelines, which uncover parallelism in a
sequential instruction stream, task superscalar uncovers task-
level parallelism among tasks generated by a sequential thread.
Utilizing intuitive programmer annotations of task inputs and
outputs, the task superscalar pipeline dynamically detects inter-
task data dependencies, identifies task-level parallelism, and
executes tasks out-of-order.

Furthermore, we propose a design for a distributed task
superscalar pipeline frontend, that can be embedded into any
manycore fabric, and manages cores as functional units.

We show that our proposed mechanism is capable of driving
hundreds of cores simultaneously with non-speculative tasks,
which allows our pipeline to sustain work windows consisting of
tens of thousands of tasks. We further show that our pipeline
can maintain a decode rate faster than 60ns per task and
dynamically uncover data dependencies among as many as
∼50,000 in-flight tasks, using 7MB of on-chip eDRAM storage.
This configuration achieves speedups of 95–255x (average
183x) over sequential execution for nine scientific benchmarks,
running on a simulated CMP with 256 cores.

Task superscalar thus enables programmers to exploit many-
core systems effectively, while simultaneously simplifying their
programming model.

Keywords-Out-of-order execution, CMP/manycore, task su-
perscalar, parallel programming

I. INTRODUCTION

The move to on-chip parallelism has motivated research
into simplified parallel programming models. Now, we
witness a growing popularity of task-based programming
models such as Cilk [3], OpenMP 3.0, Intel TBB, CUDA,
and OpenCL, suggesting that the task abstraction is an
intuitive programming construct.

But a major drawback of common task-based models is
burdening the programmer with the non-trivial assignment
of resolving inter-task data dependencies. Moreover, many
task-based models utilize (possibly partial) barrier synchro-
nization, which inhibits utilization of distant parallelism.
Figure 1 illustrates both problems. It depicts the dependency
graph for a Cholesky decomposition of a 5x5 matrix, show-
ing that even a small input set may result in an irregular

dependency graph, which accommodates distant parallelism
— for example, the graph shows that the 6th and 23rd tasks
(of 35) can, in fact, run in parallel.

An emerging class of task-based dataflow programming
models automates data dependency resolution. These models
use programmer annotations of input and output operands to
kernel functions1to dynamically construct the inter-task data
dependency graph, and extract task parallelism at runtime.
Such models include Jade [20], StarSs [2], [17], Intel Rapid-
Mind [14], OoOJava [10], and Sequoia [7]. However, these
models rely on software-based dependency analysis, which
is inherently slow, and impedes their scalability [19].

In contrast, traditional out-of-order pipelines excel in fast
decoding of inter-instruction data dependencies. Adapting
out-of-order pipelines to operate at the task-level will pro-
vide a methodology to effectively utilize large manycore
fabrics, as well as greatly simplify their programming.

In this paper, we present task superscalar multiprocessors,
a task-level abstraction of dynamically scheduled out-of-
order processors that manages cores as functional units.
By employing task-based dataflow programming constructs,
task superscalar multiprocessors identify inter-task depen-
dencies, construct the data dependency graph, and schedule
tasks for execution. Task superscalar multiprocessors, there-
fore, provide programmers with the same abstraction that
makes out-of-order processors so appealing: a seemingly
sequential interface for a parallel execution engine.

To demonstrate the effectiveness of task superscalar multi-
processors, this paper also presents a design for a distributed
task superscalar pipeline frontend, which can be embedded
into virtually any manycore fabric, and manage it as a task
superscalar multiprocessor. We show that the dependency
decode rate provided by the proposed design, enables driving
large manycores with relatively fine-grain tasks.

The high-level operational flow of task superscalar is illus-
trated in Figure 2. A task-generating thread sends tasks to the

1Throughout this paper, we use the term task to refer to a dynamic
instance created when invoking specially annotated kernel functions (which,
in general, can also consist of independent code blocks [10]).
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Figure 1. Task graph for a 5x5 Cholesky decomposition. The numbers
indicate the task creation order, and the shades represent different
kernels.

ReadyQ

P

P

P

P

W
o
rker P

ro
cesso

rs

1

4

2
3

5

6

7

Queuing System

Frontend Backend

Task Window

ta
sk

−
g

en
er

a
ti

n
g

 t
h

re
a

d

T
as

k 
S

ch
ed

ul
er

135 2764

Figure 2. High-level view of Task Superscalar.

pipeline frontend for dependency decoding. However, as the
execution of the task-generating thread is decoupled from
that of the tasks themselves, the inter-task control path is
resolved by the task-generating thread, and the tasks received
by the pipeline are non-speculative. The pipeline frontend
maintains a window of recently generated tasks, for which
it generates the data dependency graph, and uncovers task-
level parallelism. Importantly, as tasks are non-speculative,
the task window can consist of tens-of-thousands of tasks,
which enables it to uncover large amounts of parallelism [6].
Furthermore, the pipeline increases available parallelism by
renaming memory objects, thus breaking anti- and output-
dependencies. Finally, ready tasks are sent to the execution
backend, which consists of a task scheduler, a queuing
system, and a manycore fabric. Still, the backend can also
function as a regular chip multiprocessor (CMP).

In addition, through its inherent support of task-based
dataflow execution, task superscalar facilitates high-level
programming paradigms, such as MapReduce, Intel Ct [8],
and Intel CnC [12].

We evaluate the scalability of the task superscalar
pipeline, and explore the effect of its distributed design
on the decode rate of data dependencies. In addition, we
evaluate the effectiveness of the task window size on the
amount of parallelism uncovered and the resulting speedups.
Finally, we compare the pipeline’s scalability to that of the
highly tuned software dependency decoder of the StarSs
programming model. Our evaluation workload consists of
9 scientific applications and kernels (listed in Table I), that
were parallelized using the StarSs programming model.

The paper is organized as follows: the following section
motivates fast decoding of data dependencies as the key
to the scalability of task-based dataflow models. Next,
Section III discusses the implications of applying ILP
techniques at the task-level, and presents the StarSs pro-
gramming model. Section IV presents the design of the
task superscalar pipeline. Our experimental methodology is
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Figure 3. The maximal amortized decode latency allowed in order to
maintain best machine utilization: given a fixed task of runtime T , and a
machine with P processors, the decode rate R must not exceed T

P
.

discussed in Section V, and the evaluation is presented in
Section VI. Finally, Section VII discusses related work, and
we conclude in Section VIII.

II. MOTIVATION: FAST DEPENDENCY DECODE RATE

Following the creation of a task, its data dependencies
must be identified, so it can be added to the task graph.
We refer to this as task decode. Effective utilization of a
CMP thus requires that tasks be decoded faster than they are
consumed by the processing units. Fast decoding of tasks is
thus essential for utilizing large CMPs.

Figure 3 illustrates this balance by depicting an ideal
scheduling of tasks with runtime T , on a machine with
P = 4 processors. To maintain good utilization, P tasks
must be dispatched every T time units, or one task every
R =

T
P

. Correspondingly, this is the target decode rate.
Scaling the number of processors P thus requires either
increasing the decode rate, or decreasing the execution rate
by programming longer tasks.

Increasing task runtimes, however, will degrade overall
system performance as the computation will quickly become
memory bound: as the runtime of a given code, running on
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a given processor, is determined by the size of its input
dataset (through a relation approximated by its algorithmic
computational complexity), longer runtimes mandate larger
datasets. However, once the dataset exceeds the capacity of
the per-core L1 cache, the code will start suffering from
memory stalls, and performance will degrade.

The application set, listed in Table I, was therefore opti-
mized (when possible) for L1-sized 64KB blocks. The table
lists the task runtimes and memory usage for the selected
application set, as measured on the simulation platform.
For example, MatMul tasks process 48KB of data in 23µs.
Therefore, for P = 256, a new MatMul task must be
decoded every R = 90 ns.

Furthermore, the target decode rate is not determined
by the average task runtime, but rather by runtime of
the shortest tasks of an application — which are the first
to affect the overall utilization. Therefore, given that the
shortest tasks of all benchmarks average at 15µs, the rule of
thumb suggests a pipeline targeting a 256-way CMP should
maintain decode rate in the order of 15µs

256
= 58 ns/task.

But such decode rates are more than an order of mag-
nitude faster than what is achievable in software. As a
baseline, we have measured the average decode rate for
the highly tuned decoder of StarSs, to be just over 700ns,
running on a 2.66GHz Intel Core Duo. Moreover, Rico et
al. reported a rate of ∼2.5µs for the Cell BE version of
same decoder [19].

This gap between the required decode rate, and that
achievable in software, is the focus of this paper.

III. TASKS AS ABSTRACT INSTRUCTIONS

Traditional out-of-order pipelines provide programmers
with a sequential interface, yet internally execute instructions
in parallel, based on dynamic analysis of data dependencies
[16]. This section, therefore, discusses how dynamic depen-
dency analysis can be extended to operate at the task-level.

Dynamic identification of data dependencies in out-of-
order processors operates by matching each input register
of a newly fetched instruction (data consumer), with the
most recent instruction that writes data to that register (data
producer). The instruction is then sent to a reservation station
to wait until all its operands are ready for execution. The
reservation stations thus effectively store the instruction de-
pendency graph, which consists of all in-flight instructions.

Processors supporting register renaming, typically match
consumers to producers through a lookup in the register
renaming table, which maps an architected register name to
its assigned physical register. By remapping architected reg-
ister names to free physical registers, such processors break
anti- and output-dependencies (WaR and WaW). Renaming
a register thus creates a new version of an architected reg-
ister. Therefore, register files effectively maintain multiple
versions of architected registers.

The matching of data consumers to producers thus relies
on two requirements:

• The instruction/task decode mechanism must identify
all possible effects an instruction might have on the
shared processor state. This requirement enables the
decode mechanism to correctly identify data producers
and consumers, and maintain a consistent view of the
different data versions.

• Instructions/tasks are decoded in-order2. This require-
ment guarantees correct ordering of data producers and
consumers, and specifically, that the decoding of an
instruction producing a datum updates the renaming
table, before any instruction consuming the datum
performs a table lookup.

Applying these two principles to tasks, enables the design of
an equivalent dynamic decode mechanism that tracks data
dependencies at the task-level.

A. Exposing Task Effects on Shared State

Instructions interact with the shared state of a proces-
sor, either explicitly or implicitly. Explicit interactions are
specified as the source and destination register operands
(we simplify the discussion by assuming a load/store ISA),
whereas implicit interactions typically consist of access-
ing the processor status register (reading/writing condition
codes, for example). But since all instructions, their operand
directionality, and side-effects, are part of the ISA definition,
this information is encoded into the processor design.

Applying these principles to tasks, however, implies that
all their interactions with shared state must be explicitly
exposed as task operands, whose directionality — whether
it is an input or an output operands — must be explicitly
specified. Therefore, tasks may not have hidden side-effects.

Unlike instruction operands, which consist of architected
register names and immediate values, task operands consist
of memory objects and scalar values. The pipeline must
therefore identify data dependencies among memory objects.
While said objects need not be consecutive, our analysis is
currently limited to consecutive memory, in order to simplify
the pipeline design.

Memory operands are therefore represented as tuples
consisting of operand type, base pointer, object size, and
directionality. The type field indicates whether the operand
is a memory object or a scalar value, and the directionality
indicates whether the operand is an input operand, output
operand, or both. Scalars are equivalent to immediate values,
and can only be used as inputs.

Exposing the task operands is therefore a static operation,
and is either performed by the programmer when writing
the kernel function, or deduced by the compiler. Although
seemingly restrictive, the model is in fact quite powerful, as
described below.

2This definition also covers speculative instruction fetch, as it is the
instruction path that is speculated, not the order of instructions in the path.
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Table I
THE BENCHMARK APPLICATIONS USED IN THE PAPER, AND THEIR RESPECTIVE TASK INFORMATION, MEASURED ON THE SIMULATION PLATFORM.

Name Class Description Task Information Decode
Data Sz. Runtime (µs) Rate1

Avg. Min Med Avg (ns/task)
Cholesky Math. kernel Blocked Cholesky decomposition 47 KB 16 33 31 63
MatMul Math. kernel Blocked matrix multiplication 48 KB 23 23 23 90
FFT Signal Processing 2D Fast Fourier Transform 10 KB 13 14 26 51
H264 Multimedia Decoding a HD clip 97 KB 2 115 130 8
KMeans Machine Learning K-Means clustering 38 KB 24 59 55 94
Knn Pattern Recognition K-Nearest Neighbors 10 KB 17 107 109 66
PBPI Bioinformatics Bayesian Phylogenetic Inference 32 KB 28 29 29 108
SPECFEM Physics (Earth) Seismic wave propagation 770 KB 9 14 49 35
STAP Physics (Radar) Space-Time Adaptive Processing 8 KB 1 9 28 4

Average2 110 KB 15 45 53 58
1Decode rate limit is calculated for a for a 256-way CMP. 2The average data size excluding SPECFEM is 32KB.

B. In-order Task Decode

Tasks that are generated by a single thread maintain this
property by definition, as the thread itself is sequential. This
is in fact analogue to a processor operating on a single in-
struction stream. The single-threaded case is easily extended
to support multiple task-generating threads by partitioning
data between threads. Data partitioning maintains the in-
order property at the thread level, as tasks emanating from
different threads have no data dependencies. Still, as this
paper focuses on the concept of task superscalar pipelines,
we limit the discussion the single-threaded case.

C. The StarSs Programming Model

The StarSs programming model [2], [17] supports out-of-
order execution of tasks, by enabling programmers to explic-
itly expose task side-effects, through annotating operands of
kernel functions as input, output, or inout (bidirectional).
The model can thus decouple the execution of the thread
generating the tasks, from their decoding and execution.

Figure 4 shows an example of a blocked Cholesky matrix
decomposition, programmed with StarSs. The top of the
figure shows the StarSs annotations of the kernels, describ-
ing the directionality of each kernel operand. The task-
generating code itself, shown on the bottom, is identical to
a sequential implementation of the algorithm.

At runtime, whenever the task-generating thread reaches a
call site to one of the kernels, task creation code (injected by
a source-to-source compiler) packs the kernel code pointer
and all the task operand values, and writes the data to the
task pipeline. As the execution of the task-generating thread
is decoupled from the execution of the tasks, it can then
resume execution, and continue to spawn additional tasks
(the thread is only stalled when the task window becomes).
The pipeline, on the other hand, asynchronously decodes the
task dependencies, generates the data dependency graph, and
schedules tasks as they become ready.

#pragma css task input(a, b) inout(c)

void sgemm_t(float a[M][M], float b[M][M],

float c[M][M]);

#pragma css task inout(a)

void spotrf_t(float a[M][M]);

#pragma css task input(a) inout(b)

void strsm_t(float a[M][M], float b[M][M]);

#pragma css task input(a) inout(b)

void ssyrk_t(float a[M][M], float b[M][M]);

float A[N][N][M][M]; // NxN blocked matrix,

// with MxM blocks

for (int j = 0; j<N; j++) {

for (int k = 0; k<j; k++)

for (int i = j+1; i<N; i++)

sgemm_t(A[i][k], A[j][k], A[i][j]);

for (int i = 0; i<j; i++)

ssyrk_t(A[j][i], A[j][j]);

spotrf_t(A[j][j]);

for (int i = j+1; i<N; i++)

strsm_t(A[j][j], A[i][j]);

}

Figure 4. Example of a blocked Cholesky decomposition, programmed
with StarSs. Declarations of kernel functions (top) define the building
blocks for the task-generating thread (bottom). Note the task-generating
code itself is sequential, and the task dependencies graph, facilitating
parallelization, is constructed at runtime using only the operand annotations.
The kernels themselves comprise of routines from the stock BLAS library,
operating on memory blocks.

Such a dependency graph, generated for a Cholesky
decomposition of a 5x5 matrix is presented in Figure 1.
The graph’s highly irregular structure, demonstrates the
expressive power of StarSs.

The sequential code flow of StarSs, together with the
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Figure 5. The task superscalar frontend, and organization of the different
module types.

implicit synchronizations and data transfers provided by the
runtime, guarantees that the results of a parallel execution
will be equivalent to a sequential one.

IV. PIPELINE FRONTEND DESIGN

We describe the frontend top-down, discussing its high-
level organization, its operational flow, and key issues in the
design of the its constituent modules. As depicted in Figure
5, the frontend employs a tiled design, and is managed by
an asynchronous point-to-point protocol. The frontend is
composed of four module types:

• A Pipeline gateway controls the flow of tasks into the
pipeline.

• Task reservation stations (TRS), store the in-flight task
information and track the readiness of task operands.
As such, TRSs are effectively embedded with the
data dependency graph. Inter-TRSs communication is
used to register consumers with producers, and notify
consumers when data is ready.

• Object renaming tables (ORT), map operands to their
latest version and data producer.

• Object versioning tables (OVT), track live operand
versions, created whenever a new data producer is de-
coded. Each OVT is associated with exactly one ORT.
The functionality of the OVTs therefore resembles that
of a physical register file (although unlike a register
file, they only maintain operand meta-data). Further-
more, the OVTs break anti- and output-dependencies
by renaming operands. Temporary operand buffers are
allocated from an OS assigned memory space, and are
copied back to the original object address using an
external DMA engine.

All modules include a controller, which mostly consists of
1–2KB of transient state. Additionally, the ORTs, OVTs,
and TRSs, employ 256–768KB eDRAM blocks to store
the various task and operand information. Of these, only
the ORTs require associative lookups. All other modules
are directly addressed, and protocol messages include the
location of the queried datum in the destination module.
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Figure 6. Task allocation.
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Figure 7. Decoding an output operand.

The overall performance of the pipeline is largely deter-
mined by its configuration: the number of ORTs, OVTs, and
TRSs, as well as their overall storage capacity. We evaluate
these tradeoffs in Section VI.

A. Operational Flow

The operational flow of the proposed pipeline is an adapta-
tion of traditional out-of-order pipelines. Tasks are decoded,
and stored in the TRS until all their operands are ready, at
which time they are sent to the ready queue. Whenever a task
finishes, the TRS traverses all the task operands and sends
data ready messages to all its data consumers. In addition,
it notifies the OVTs managing its operands to decrement the
usage count of the associated data versions. Finally, it frees
the space occupied by the task meta-data.

We now turn to describe key elements of the operational
flow in more detail.

Processing of tasks begins by allocating task storage space
for task meta-data, as depicted in in Figure 6. The gateway
sends an allocation request, consisting of the number of
task operands, to one of the TRSs (the number of operands
determines the storage size). The TRS replies with the task
slot number — the TRS internal address of the allocated
space. Each task is thus represented by a unique task ID
tuple composed of the TRS index and the slot number. For
example, the resulting task ID for the allocation shown in
Figure 6 would be < TRS,SLOT >=< 1,17 >. The task
ID is also used to derive unique operand IDs, consisting of
the task ID and the operand index. The first operand for task
< 1,17 > is therefore < 1,17,0 >.

Once a TRS slot is allocated, the gateway initiates the
dependency decoding by distributing operands to the ORTs
(the target ORT is extracted from the hashed operand
address). Scalar operands, which do not require dependency
tracking, are sent directly to the allocated TRS.

The ORTs mimic the functionality of the register re-
naming table. Therefore, the ORTs map formal datum ad-
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Figure 9. Decoding an inout operand.

dresses to operand IDs of data producers (the corresponding
output/inout operand of the task generating the data). The
exact event flow, however, is determined by the operand
directionality.

The decode flows for output, input and inout operands
are described in Figures 7, 8, and 9, respectively. When
decoding output operands, the ORT first sends the basic
operand information to the designated TRS. In addition,
the ORT initiates an operand renaming request from its
associated OVT. The OVT then allocates a new datum
version and rename buffer for the operand (analogue to
allocating a free physical register, to store the latest version
of an architected register, in out-of-order pipelines). Once
renamed, the output operand is considered ready, and the
OVT sends a data ready message to the designated TRS,
which includes the address of the rename buffer — memory
address 7164 in our example.

Input operands, on the other hand, have to wait for the
data producing task to complete, as depicted in Figure 8.
The ORT looks up the ID of the last output or inout operand
referring to the memory object in question. In the example
shown in the figure, the data producer is operand < 2,5,2 >
(operand no. 2 of the task stored in slot 5 in TRS 2). The
ORT sends the operand ID to the designated TRS. Upon
receiving the operand, the TRS sends a register consumer

request to the TRS storing the producer task, requesting to be
notified when the task finishes. Still, only when the producer
task finishes, and a data ready message is received, will the
operand be considered ready.

The event flow for inout operands is a combination of
the flows for both input and output operands, as depicted in
Figure 9 (note that in this case the operand is not renamed, as
it is part of a true dependency). Therefore, the operand needs
to receive two data ready messages before it is considered
ready — one indicating that the input data is in place, and
the other indicating that the output buffer is not in use by

C

C

C

C

C

C

P P

1

2 2

1

3 3

Figure 10. Consumer chaining: all tasks using an operands version are
chained, and forward the ready message from one to another.

any reader task. The latter message is received from the OVT
after the all tasks using the previous data version finish.

Although the above description focuses on decoding of
individual operands, the pipeline performance stems from
its concurrency. As the gateway asynchronously pushes
operands to the ORTs, the different decoding flows, task
executions, and task terminations, occur in parallel.

B. Module Organization and Design

1) The Pipeline Gateway: The gateway is responsible for
allocating TRS space for new tasks, distributing tasks to
the different modules, as well as blocking task generating
threads whenever the pipeline fills.

New tasks are stored in a dedicated 1KB buffer, which
holds over 20 incoming tasks (the exact number depends
on the number of operands for each task), and accounts for
most of the gateway’s size.

For each task, the gateway sends an allocation request
to one of the TRSs. As TRSs manage their own storage,
the gateway only maintains a queue of TRSs with free
space, and selects the first in the queue. Furthermore, the
request includes the address of the task in the gateway’s
internal buffer, which is sent back with the TRS reply, and
enables the gateway to directly access the pending task
buffer, thus avoiding an associative lookup. Thanks to the
non-blocking protocol, the gateway can continue sending
allocation requests for newly arrived tasks while waiting for
TRS replies.

When the TRS reply is received, the gateway begins
issuing task operands to the ORTs, with the designated
ORT selected based the operand’s base address. However, as
memory objects’ sizes may vary, basing the ORT selection
directly on address bits creates load imbalances, and the
address must therefore be hashed. To minimize latencies,
hashing is pipelined, and begins as soon as the task arrives
at the gateway.

2) Task Reservation Stations (TRS): The TRSs store
the meta-data of all in-flight tasks, including the IDs of
operands’ data consumers, and thereby effectively embed
the task dependency graph.

But embedding an irregular structure, such as the task
dependency graph, into a distributed memory grid, is non-
trivial. Specifically, each task (a graph node) incorporates
two degrees of freedom, as both the number of operands
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may vary, as well as the number per-operand consumers.
We therefore employ a graph transformation referred to as
consumer chaining, which eliminates one degree of freedom.

The transformation, illustrated in Figure 10, chains the
consumers as a linked list. This requires storing only the
operand ID of the first data consumer, instead of a per-
operand consumer list. The chaining effectively blurs the
roles of producer and consumer, as each consumer serves as
its successor’s producer. In Figure 10, for example, task C1

is a consumer from task P ’s point of view, but a producer
for task C2. When a real producer task finishes, it sends a
data ready message to the first consumer in the chain, which
immediately forwards the message on. Although chaining
induces increasingly longer message latencies, we have not
witnessed any impact on performance, as chains are typically
very short: for all but two of the benchmarks, 95% of the
chains are no more than 2 tasks long, and no more than 7
for the other two.

TRSs store task meta-data in a private eDRAM memory,
managed as an array of fixed 128B blocks. To accommodate
the variable number of operands, we have used a storage
layout inspired by UNIX filesystem inodes, as shown in
Figure 11. Each task is allocated one main block, which
stores the task-global data and the first 4 operands. In
addition, the main block may point to three more blocks,
each containing up to 5 extra operands, and thereby support
up to 19 operands per task. When a task allocation request
arrives — which includes the number of task operands — the
TRS allocates the required number of blocks, and organizes
the task storage space. Although such an allocation method
yields internal fragmentation, we have found that the average
waste is only ∼20% of the allocated memory.

Free blocks are chained as a list, with each node storing 63
pointers to other free blocks, and a pointer to the next node.
In addition, the address of the first 64 free blocks are stored
in a special 128B SRAM buffer. A typical block allocation
is therefore satisfied by the SRAM buffer, and takes only 1
cycle.

Importantly, TRSs do not require associative lookups, as
incoming messages contains a task ID tuple, which includes
the address of the task’s main block.

3) Object Renaming Tables (ORT): The object renam-
ing tables map memory operands to the most recent task

accessing the same memory object, and thereby detect
object dependencies. Storing any user (either producer or
consumer), rather than only storing real data producers,
facilitates TRS consumer chaining.

ORT maps, stored in a private eDRAM, are organized
as 16-way cache of memory objects, and are looked up
using the objects’ base address. Tags for each cache set are
stored in two 64B blocks, which are read sequentially, and
matched against the real operand address. Unlike common
caches, however, ORTs never evict entries. If an allocation
is requested from a full set, the ORT stalls the gateway until
an entry is released. An ORT is therefore a logical cache
structure, mapped on top of a standard eDRAM block.

If the evaluated operand read-only, and a match in the
cache exists (RaR or RaW), the ORT sends the previous
user’s operand ID to the designated TRS (as shown in
Figures 8 and 9). On the other hand, if the evaluated operand
is a writer (output or inout), a new operand version must be
created and the OVT is notified. Finally, if no match is found
(miss), a new version is created.

4) Object Versioning Tables (OVT): The object ver-
sioning tables account for the different live versions of
operands. Effectively, the OVT manages data anti- and
output-dependencies, either through operand renaming, or
by chaining different inout operands and unblocking them
in-order (sending a data ready message whenever a version
is released).

Each OVT entry represents a version of an operand, and
mainly includes a usage count (reported by the ORT), a
pointer to the next version, and a pointer to the first element
in the consumer chain. (the OVT memory management is
similar to that of the TRS).

Rename buffer allocation is implemented using a fixed
number of buckets, assigned to allocate predetermined
power-of-2 sizes. Initially, the operating system assigns
each OVT a region in main memory, which is broken into
fixed size chunks, and are stored as an in-memory linked
list. During allocation, the OVT grabs a buffer from the
appropriate bucket, which is refilled with a new memory
chunk if empty.

5) Pipeline Backend: The generic CMP substrate in-
cludes the execution cores, on-chip network, and cache
hierarchy. The pipeline pushes runnable tasks into a queuing
system similar to Carbon [13] (although the system currently
does not support task stealing). Effectively, processor cores
thus serve as functional units.

V. EXPERIMENTAL METHODOLOGY

System model: We evaluate task superscalar using
TaskSim, a trace-driven cycle-accurate CMP simulator, val-
idated against the Cell BE [18].

Our CMP model, summarized in Table II, consists of 32–
256 in-order cores with private L1 caches and a shared
L2. Coherence is maintained using a directory-based MSI
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Table II
SUMMARY OF THE SIMULATED SYSTEM PARAMETERS.

Cores 32–256 cores, in-order, dual-issue, 3.2GHz

L1 private, 64KB, 4-way set-associative, 3 cy-
cle latency, split D/I

L2 shared, 32 banks with 4MB per bank, 8-way
set-associative, 22 cycles latency

Memory 4 memory controllers (MC), 2 channels per
MC, single 800MHz DDR3 DIMM per ch.

Interconnect segmented two-level ring, 16 bytes/cycle, 4
concurrent connections per segment

Task pipeline 22 cycles eDRAM latency, in addition to
each module’s processing time of 16 cycles

protocol, embedded in the L2. The interconnect is a two-
level ring topology. Each core is connected to a processor
rings (8 cores per ring), and a global ring connects the
processor rings, L2 banks, and the task superscalar frontend.

The task superscalar frontend has an eDRAM access time
of 22 cycles. Each pipeline module charges 16 cycles for
processing a packet on top of any eDRAM access overheads.
Moreover, if packet processing involves multiple operands,
the processing overhead is multiplied by the number of
operands involved.

Applications: The set of benchmark applications used
in our evaluation is listed in Table I. The applications were
chosen to represent a broad range of scientific domains, and
were ported to the StarSs programming model [17]. The
parallelization strategy mainly focused on programmability,
attempting to naturally decompose algorithms into tasks. As
a result, tasks typically consist of no more than a dozen lines
of code.

The StarSs source-to-source compiler replaces calls to
kernels with task generation code. The injected code packs
kernel information and operand values onto a stack-based
memory buffer, which is passed to the software runtime.
When interfacing with the task superscalar pipeline, the task
generation code maintains the same memory layout, and the
buffer is sent to the pipeline.

VI. EVALUATION

The amount of parallelism the task superscalar pipeline
can uncover, and its performance, depends on the effective
task window size it can sustain. This size not only depends
on the amount of physical resources allocated to storing task
meta-data, but more importantly, requires that new tasks are
decoded and added to the window faster than existing tasks
are consumed by the processing units.

We therefore begin our evaluation by exploring the effect
of pipeline parallelism (i.e. the number of TRSs, ORTs, and
OVTs), on the task decode rate. Following, we evaluate
the required storage capacity of the different components,
and finally conclude by exploring the scalability of the task
superscalar pipeline.
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Figure 12. Task decode rate for Cholesky (top) and H264 (bottom).
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Figure 13. Average task decode rate. The horizontal lines show the rate
limits for 128 and 256 processors.

A. Task Decode Rate

The distributed design of the pipeline facilitates speeding
up the overall decode rate, by overlapping the decoding
of multiple tasks. Specifically, replicating the ORTs (and
associated OVTs) enables multiple operands to be decoded
in parallel, whereas TRS replication reduces the per-TRS
load, and thereby increases the overall processing rate of
inter-TRS communication.

Figures 12 and 13 depict the effect of pipeline parallelism
on decode rate, measured as the average time between
two successive additions to the task graph. The first figure
focuses on Cholesky and H264, whereas the second shows
the average over all benchmarks. Importantly, both figures
show that increasing pipeline parallelism yields consistently
faster task decode rates.

Figure 12 demonstrates how the rate varies between
benchmarks: with 4 TRSs and 4 ORTs, the average decode
rate for Cholesky is less than 185 cycles, or 58ns for
our 3.2GHz simulation platform. The same configuration,
however, only achieves an average rate of ∼300 cycles for
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H264. This is caused by the variance in the number of
task operands between the two benchmarks: while Cholesky
tasks have at most 3 operands, ∼94% of H264 tasks have
more than 6. With only 4 ORTs, H264 tasks thus require
two ORT iterations, while Cholesky tasks only require
one. For the same reason, H264 generates more inter-TRS
communication, thereby stressing the TRSs and exerting
back-pressure on the ORTs/OVTs. Increasing the number of
TRSs reduces their load, alleviates the back-pressure they
exert on the ORTs/OVTs, and enables the ORT parallelism
to manifest.

Finally, Figure 13 compares the average decode rate with
the target rates for 128 and 256 processors, deduced in
Section II. Again, it is evident that increasing the pipeline
parallelism speeds up the decode rate. Specifically, the figure
demonstrates the importance of the distributed embedding
of the dependency graph over multiple TRSs: while using
multiple ORTs does not affect performance if only a single
TRS is present, employing multiple TRSs reduces the task
decode rate even if only a single ORT is used. The reason for
this effect is that using a single ORT increases the operand
decode time, but still allows for concurrent operations on the
dependency graph. In contrast, using a single TRS serializes
all operations on the task graph.

In conclusion, we determine that using 8 TRSs and 2
ORTs/OVTs is sufficient to support a 256 processor system.
We thus use this configuration in our following experiments.

B. Task Window Size

The window size, a product of the aggregate capacity of
its constituent modules, poses an important design tradeoff.
While large task windows can potentially uncover more
parallelism, they also require more on-chip resources. We
therefore explore the effects of the task window size on
performance, starting with an infinite window, and advancing
along the different stages.

ORT and OVT Storage Size: The ORTs maintain an
entry for each memory object used by in-flight tasks. As
such, their capacity, and the number of operands they can
store, affects the number of in-flight tasks.

Figure 14 presents the performance impact of increasing
the total capacity of the ORTs. As expected, increasing the
ORT capacity facilitates greater speedups, as it increases the
task window size, and thereby uncovers more parallelism.
The speedups flatten, however, as the ORT capacity reaches
a certain level — 128KB for Cholesky, and 512KB for H264
and the average case. At this high-point, the amount of
parallelism uncovered by the larger task window increases
the rate of task execution, such that it equals the rate in
which new tasks arrive at the pipeline. From this point on,
performance is no longer limited by the task window, but
rather by the task-generating thread which cannot keep up
with the increased execution throughput.

This equilibrium is application dependent, and is a combi-
nation of the amount of parallelism available, its depth, and
the number of operands per task. H264 therefore requires a
larger ORT capacity than Cholesky does, both because of its
larger number of operands per task, and because it embeds
more distant parallelism, which can only be uncovered by a
larger task window.

Based on these results, we determine that a total ORT
capacity of 512KB provides a good operating point. An
equivalent exploration of the OVT design space (not shown),
suggests they require a similar capacity.

TRS Storage Size: The TRSs comprise the task window
itself. However, it should be emphasized that their storage
size does not exclusively determine the effective size of the
task window, as the utilization of the task window might be
limited by the capacity of earlier pipeline stages — namely
the ORTs and OVTs.

Figure 15 therefore shows how increasing the TRS capac-
ities affects the speedups achieved. Once again, the H264
represents the extreme, as the distant parallelism it embeds
calls for a total 6MB of TRS memory. Cholesky, on the
other hand, has more modest requirements, and peaks at
a TRS capacity of 2MB. Finally, on average, the increase
is gradual, and while 2MB of TRS memory already provide
most of the potential speedup, performance peaks only when
the capacity reaches 6MB.

Importantly, a TRS capacity of 6MB provides a the task
window of 12,000–50,000 tasks, and is imperative to the
pipeline’s ability to uncover large amount of parallelism.

C. Task Decode Rate vs. Task Window Size

Task superscalar trades off the size of the task window for
fast decoding of data dependencies. In contrast, software-
based runtimes provide an effectively infinite window size,
that can potentially uncover more parallelism, but are limited
in their decode rate.

Figure 16 evaluates this tradeoff, by comparing the scal-
ability of task superscalar with that of the StarSs software
runtime. The figure shows that the pipeline scales better than
a software runtime for all but one benchmark, and that the
software runtime cannot typically utilize more than 32–64
processors.

The only benchmarks for which the software decoder
scales up to 128 processors are Knn and H264. The reason
is that these two benchmarks consist of relatively long tasks.
In both cases, ∼95% of the tasks run for more than 100µs,
which implies a rate limit close to 800ns for 128 processors.
As a result, the baseline software decode rate of 700ns
becomes adequate.

Furthermore, in the case of H264, the software’s infinite
task window plays a key role. The H264 decoder has a diag-
onal wavefront parallelism in each frame, and the decoding
of each of a frame’s macroblocks depends on the decoding
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Figure 14. The effect of total ORT size on performance. Results are shown for Cholesky (left), H264 (middle), and the average for all benchmarks (right).
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Figure 15. The effect of total TRS size on performance. Results are shown for Cholesky (left), H264 (middle), and the average for all benchmarks (right).

of the macroblocks to its west, north-west, north, and north-
east. In addition, each macroblock also depends on the
decoding of nearby blocks from its predecessor frame. With
over 2000 tasks per frame, and chains of inter-macroblock
RaW dependencies that can span up to 60 frames, H264
embeds very distant parallelism which cannot be uncovered
by the hardware pipeline. As a result, software’s infinite
window size prevails, and the software decoder outperforms
the hardware pipeline by a small margin.

However, taking advantage of the infinite task window,
provided by the software runtime, requires tuning applica-
tions for very long tasks. Furthermore, algorithms do not
commonly have a computational complexity that requires
such long computations for L1-sized inputs. Therefore,
increasing task runtime will inevitably require input sets
larger than the L1 cache, and might thereby degrade overall
system performance by inducing memory stalls.

In conclusion, the fast decode rate provided by the task
superscalar pipeline, together with its reasonably large task
window, generally outweigh the benefits of the software
decoder’s infinite task window.

VII. RELATED WORK

The performance scalability of hardware parallelism,
alongside the notoriety of explicit parallel programming,
pushed the job of uncovering parallelism down to the

compiler and hardware, which operate at ILP level. Per-
haps most common among ILP designs, are dynamically-
scheduled out-of-order processors, which maintain a window
of pending instructions, and dynamically schedule them in
a dataflow manner [16].

The amount of ILP uncovered by an out-of-order proces-
sor directly depends on the size of its instruction window.
However, the need for aggressive control-flow speculation,
and the quadratic relation between the size of a window and
the number of possible dependencies, typically complicate
the design of large instruction windows, and limit their
effective utilization.

Alternatively, designs such as Multiscalar [24], Trace
Processors [21], and the Standford Hydra CMP [9] (to name
a few) target coarser parallelism using thread-level specula-
tion (TLS). These designs split a large instruction window
into small speculatively independent threads, that can be
executed in parallel. The performance benefits of many TLS
architectures, however, is impeded by mis-speculated data
(in)dependencies.

In contrast, TRIPS [23] and WaveScalar [26], combine
both static and dynamic dataflow analysis in order to exploit
more parallelism. But these designs, like previous dataflow
architectures [1], [5], [15], [28], are still susceptible to
memory and communication latencies [4].

The move to parallel architectures, coupled with cumber-
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Figure 16. Speedups achieved by the task superscalar pipeline driving 32, 64, 128, and 256 processors, over sequential execution. The speedups are
compared with those achieved by a software-based runtime.

someness of existing parallel programming models, raised
interest in task-based models. The increasing popularity of
models such as Cilk [3], OpenMP 3.0, Intel TBB, CUDA,
and OpenCL, attest that tasks provide an intuitive program-
ming construct.

The growing popularity of task-based models has already
motivated research into explicit hardware support for tasks.
Carbon [13] and ADM [22] use hardware task queues
to support fast task dispatch and stealing, whereas the
Hyperprocessor [11] manages global dependencies using a
universal register file.

However, common task-based models still require pro-
grammers to explicitly manage inter-task dependencies,
which is far from trivial (OpenCL, for example, supports
dynamic scheduling of explicit task graph, but still burdens
programmers with manually generating the graph itself).
This, in turn, motivated the development of task-based
dataflow programming models such as Jade [20], StarSs [2],
[17], Intel RapidMind [14], Sequoia [7], OoOJava [10],
application specific dataflow backends [25], as well as
streaming models such as StreamIt [27]. These models,
which are targeted in this paper, take the task abstraction one
step further, and use explicit programmer annotations as to
the directionality of task operands, in order to dynamically
construct the data dependency graph.

Task superscalar, proposed in this paper, generalizes the
operational flow of dynamically scheduled out-of-order pro-
cessors, and provides a native, task-based, dataflow execu-
tion engine. Task superscalar therefore combines the effec-

tiveness of out-of-order processors in uncovering parallelism
together with the task abstraction, and thereby provides a
unified management layer for CMPs — which effectively
employs processors as functional units.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented the Task Superscalar pipeline, an
abstraction of out-of-order superscalar pipelines, that op-
erates at the task-level. Building on an emerging class of
programming models that allow programmers to annotate
task inputs and outputs, task superscalar facilitates runtime
analysis of inter-task data dependencies, and out-of-order
task execution. Our experiments show that 7MB of on-
chip eDRAM blocks enable the pipeline to store tens-of-
thousands of in-flight tasks. Such a large task window
enables the pipeline to uncover distant parallelism, and
manage large CMPs as a unity.

Furthermore, we show that task superscalar provides fast
decoding of data dependencies, and adds new tasks to the
task window in less than 60 ns on average. Fast decoding
thus enables the pipeline to support fine-grain tasks that
execute in whole from the L1 cache, thereby minimizing
memory stalls.

Finally, we believe that task superscalar pipelines opens
new research directions into managing heterogeneous CMPs
at a higher level of abstraction, while leveraging existing
knowledge on out-of-order execution.
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