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Abstract—Today, nearly all general-purpose computers are
parallel, but nearly all software running on them is serial.
However bridging this disconnect by manually rewriting source
code in parallel is prohibitively expensive. Automatic paral-
lelization technology is therefore an attractive alternative.

We present a method to perform automatic parallelization
in a binary rewriter. The input to the binary rewriter is the
serial binary executable program and the output is a parallel
binary executable. The advantages of parallelization in a binary
rewriter versus a compiler include (i) compatibility with all
compilers and languages; (ii) high economic feasibility from
avoiding repeated compiler implementation; (iii) applicability
to legacy binaries; and (iv) applicability to assembly-language
programs.

Adapting existing parallelizing compiler methods that work
on source code to work on binary programs instead is a
significant challenge. This is primarily because symbolic and
array index information used in existing compiler parallelizers
is not available in a binary. We show how to adapt existing
parallelization methods to achieve equivalent parallelization
from a binary without such information. Preliminary results
using our x86 binary rewriter called SecondWrite on a suite
of dense-matrix regular programs including the externally
developed Polybench suite of benchmarks shows an average
speedup of 5.1 from binary and 5.7 from source with 8 threads
compared to the input serial binary on an x86 Xeon E5530
machine; and 14.7 from binary and 15.4 from source with 32
threads compared to the input serial binary on a SPARC T2.
Such regular loops are an important component of scientific
and multi-media workloads, and are even present to a limited
extent in otherwise non-regular programs.
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I. INTRODUCTION

Since about 2004, semiconductor trends show that the
astonishing improvements in clock speeds over the last few
decades have come to end. However improvements in silicon
area, as per Moore’s law, are still being realized. As a natural
consequence of these trends, microprocessor vendors have
turned to multi-core processors to remain competitive. For
example, Intel corporation has replaced its Pentium line of
uniprocessors with the Intel Core processor family, virtually
all of which have multiple cores. AMD corporation offers
the Athlon Dual-core and Phenom Quad-core processors. By
the end of 2009, multi-cores accounted for 100% of all new
desktop and notebook processors [1]. The CPU road maps
of both Intel and AMD show trends towards further multiple
cores.

One way to obtain parallel software is to use parallel
language directives such as OpenMP [2], [3] to implicitly
specify parallelism using comments in high-level language
programs. The other way to obtain parallel software is to
write programs in an explicitly parallel manner. This is
done using a set of APIs, such as MPI [4], posix complaint
pthreads or Intel’s TBB, to extend existing languages such
as C, C++ and Fortran. Although the use of such explicitly
parallel programming is increasing, the adoption of parallel
programming has been slowed by the following factors: (i)
huge amounts of serial code represent most of the world’s
programs; (ii) rewriting code manually in parallel is time
consuming and expensive; (iii) dearth of engineers trained
in parallel programming and algorithms; and (iv) parallel
programming productivity per line of code is lower than for
serial [5]. For this reason, except for the most performance-
critical code, it is not likely that most of the world’s existing
serial code will be rewritten in parallel.

The other way to obtain parallel software is to auto-
matically parallelize serial source code in a parallelizing
compiler. Automatic parallelization overcomes the above-
mentioned drawbacks of explicitly parallel code. Indeed,
since the introduction of parallel machines in the early
1970s, many strides have been made in parallelizing com-
piler technology. Most efforts to date have focused on paral-
lelism in loops, primarily in regular, dense-matrix codes. In
particular, techniques have been developed for parallelizing
loops with array accesses whose indices are affine (linear)
functions of enclosing loop induction variables [6]. This
work is particularly interesting as most scientific and multi-
media codes are affine and the maximum run time is spent
in these loops. Hence parallelizing these loops can result in
significant speedups.

In this paper we develop methods to implement automatic
parallelization inside a binary rewriter, instead of a compiler.
A binary rewriter is a software tool that takes a binary
executable program as input, and outputs an improved
executable as output. In our case, the input code will be
serial, and the output will be parallel. As far as we know,
there are no existing methods for automatic parallelization
in a static binary rewriter. Further, there are no existing
binary automatic parallelization tools (static or dynamic)
that perform affine based parallelization. Parallelization in
a binary rewriter has several advantages over parallelization



in a compiler:

o Works for all compilers and languages A parallelizer
in a binary rewriter works for all binaries produced
using any compiler from any source language. This
compatibility is a huge practical advantage versus a
compiler implementation.

o No need to change software toolchains A binary
rewriter is a simple add-on to any existing software
development toolchain. Developers and their compa-
nies, typically very resistant to changing the toolchains
they are most familiar with, will not have to. This is
important since many existing compilers do not perform
automatic parallelization.

o High economic feasibility A parallelizer in a binary
rewriter needs to be implemented only once for an
instruction set, rather than repeatedly for each compiler.

o Applies to legacy code Legacy binaries for which no
source is available, either because the developer is out
of business, or the code is lost. can be parallelized using
a binary rewriter. No compiler can do this.

o Works for assembly-language programs A binary
rewriter, unlike a compiler can parallelize assembly
code, regardless of whether it is part of the pro-
gram with inlined assembly or all of it. Assembly
code is used sometimes to write device drivers, code
for multi-media extensions, memory-mapped I/O, and
time-critical code portions.

o Can perform platform-specific tuning Since a binary
rewriter can tune the output program for the particular
platform it is executing on, it is possible to tune the
same input executable differently for different platforms
which share the same ISA, but may have widely differ-
ent runtime costs. For example, we already choose the
best barrier and broadcast mechanism for the end-user
platform, and are investigating specific optimizations
for the instruction set enhancements and instruction
latencies of that platform.

o Can be used by end user of software Unlike compiler-
provided parallelization which can only be done by the
software developer, parallelization in a binary rewriter
can be done by the end user of the system depending
upon his or her specific needs, constraints and environ-
ment.

The above advantages argue that it is useful to provide
automatic parallelization in a binary rewriter, despite com-
piler implementation being possible. By allowing automatic
parallelization to be done on arbitrary binaries from any
source, we hope to make this technology universal, ac-
cessible, portable, customizable to the end-user’s platform,
and usable by any computer user, not just developers.
In this vision, our hope is that the parallelizing rewriter
will be a transparent utility that is automatically triggered
for all programs at install-time. This transparent rewrite

may perform other services for the end-user in addition to
parallelization such as serial platform-specific optimization
and site-specific security.

Our approach to automatic parallelization is not to invent
entirely new parallelization methods, but to investigate how
best to adopt ideas from existing compiler methods to a
binary rewriter. This adoption is not trivial, since binary
rewriters pose challenges not present in a compiler, including
primarily, the lack of high-level information in binaries.
Parallelizing compilers rely on symbolic information, for
identifying arrays, affine function indices, and induction
variables; for renaming to eliminate anti and output de-
pendencies; and for pointer analysis to prove that memory
references cannot alias, allowing their parallel execution.
Binaries lack symbolic information, making all these tasks
more difficult. A central contribution of this paper are
parallelization methods in a binary rewriter that can work
effectively without using any symbolic or array index infor-
mation.

On the flip side, binary rewriters also enjoy an advantage
compared to a compiler: they have access to the entire
program including library code. The need for separate
compilation — an important practical requirement — has
meant that commercial compilers typically have access to
only one file at a time. For large programs with many
files, this represents a tiny sliver of the total code. Whole-
program parallelization is important since parallelization in
one procedure may inhibit parallelization at containing or
contained procedures, and moreover, parallel code blocks
may be in different files. Currently we look at loop-level
parallelism as most execution time is spent in loops.

Of course, we recognize that parallelizing affine programs
is only one step towards the goal of parallelizing all pro-
grams, albeit an important one. Many programs have non-
affine parallelism, and others have little or no parallelism.
Our collaborators and we are actively working on techniques
to parallelize non-affine codes as well, and have seen early
indications of very promising results. When that work is
ready it will be separately published. This work should be
seen as what it is: a first successful attempt to parallelize
binaries using affine analysis, rather than the last word. We
hope to open up a new field of research with this significant
step.

Yardimci and Franz [7] is the only method we are
aware of that has done automatic parallelism in a binary
rewriter. However unlike our method their method focuses
on non-affine parallelism, and is dynamic. We decided to
statically parallelize since the complex and time-intensive
affine parallelization analysis is infeasible dynamically at
run-time. Further, in the future, we envision integrating an
affine decision algorithm combining various loop transfor-
mation techniques such as loop interchange, loop fusion,
loop fission, reductions, array privatization, loop reversal and
others.



This paper is further arranged in the following way.
Section II shows how dependence vectors can be calculated
from a binary, contrasting the method from source code.
Section III and IV show how aliasing problems are resolved
and scalar dependencies detected, respectively, from a bi-
nary. Sections V and VI discuss how loop partitioning and
code generation may be accomplished from binaries, respec-
tively. Section VII describes our implementation strategy.
Section VIII describes our experimental setup and results.
Section IX presents the related work and section X presents
conclusions and future work.

II. CALCULATING DEPENDENCE VECTORS

The greatest challenge in parallelizing binaries is in cal-
culating dependence vectors. We first show how this is done
from source code, and then consider how the same can be
done from binary code.

A. From source

This section overviews the strategy to calculate depen-
dence vectors in the form of distance or direction vectors
from affine loops (source-code loops containing array ac-
cesses whose indices are affine (linear) functions of en-
closing loop induction variables). For example, if i and j
are loop induction variables, then array accesses A[i] and
A[2i+j+3][i-3j+7] are affine, whereas A[i/2] is not. We will
present the techniques first from the source and then we
will adapt it from a binary in section II-B. The source-level
techniques reviewed in this section are well documented in
the literature of affine loop parallelism.

To understand how parallelization can be done for affine-
based loops, consider that dependencies between the instruc-
tions limit the parallelism that we can extract in code. For
loops, loop-carried dependencies are the major inhibitors
of parallelism, and occur when a loop iteration cannot be
initiated before some previous set of loop iterations has
completed. Just like scalar dependencies, loop-carried de-
pendencies can be classified into three types: true, anti, and
output loop-carried dependencies. Figure 1 shows examples
of each type.

As in existing work, based on the formulation in [8],
a dependence vector(ﬁ) for loops is defined as an n-
dimensional vector, where n is the nesting depth of the loop.
The most common formulation of a dependence vector is a
distance vector, where each entry is the step of the loop
dependence in that induction variable. For example, for the
code in figure 1(a) and 1(c) the distance vector is D =
(1,0), indicating that there is a dependence in steps of 1
along i, whereas there is no dependence along induction
variable j. Conversely, in figure 1(b) the distance vector is
D = (0,2), indicating that there is a dependence in steps
of two along induction variable j, and no dependence along
induction variable i.

Distance vectors are calculated using the GCD and Single
Index Variable (SIV) test [8]. The linear system of equations
is obtained from the symbolic array index expressions and
array declarations present in source code. Other source
techniques for calculating distance vectors are presented in
Section IX. Further when the distance cannot be found or
is not deterministic, we can represent the dependence in
loops by direction vectors [9], a less precise formulation
of dependence vectors.

B. From Binary

This section presents our method of doing dependence
analysis from low-level code obtained from binary code,
which does not contain any symbolic information or affine
expressions. The analysis will be successful when the under-
lying access patterns are affine, even when the array indices
needed for traditional dependence analysis for parallelization
are absent, such as in binary code.

A source-code fragment and one of its possible binaries
is shown in Figure 2. The binary is shown in pseudo-code
for comprehensibility, but actually represents machine code.
Other binaries are also possible, but we will be able to
illustrate the general principles of our method with this
example. The binary code assumes that the array is laid
out in row-major form, with the address of Ali,j] being
computed as:

&A[i,j]=A+ixsize_j+ j*elem size (1)

where elem_size is the size of an individual array element,
and size_j is the size of the second array dimension, both
in bytes. We assume row-major accesses to understand our
techniques , but in no way are these techniques going to be
effected if the code was arranged in a column-major format.

To see how to parallelize the binary code, the following
intuition is helpful: it is a simple proof to show that for any
affine array access, its address variable is provably always
an induction variable in its immediately enclosing loop. Of
course, it is usually a derived induction variable [10], derived
from the basic induction variables like i and j in the source'.

Loops in a binary can be recognized by analyzing the
control flow graph that we obtain from a binary. Every
back edge in the control flow graph defines a loop [10].
We know that the address of every affine access in the
body of the loop is a derived induction variable. In the
binary code in figure 2, addr_reg is the address register,
which must be an induction variable since it came from an
affine access in source. Starting from this address induction
variable addr_reg, we can define the following six special
statements in the binary ((A) to (F)) for every address
variable in a loop that is an induction variable. This six

!Basic induction variables are those which are incremented by a constant
in every loop iteration. A derived induction variable d is of the form d =
c1 * % + c2, where i is a basic or derived induction variable with step s;
hence d too is an induction variable with step ¢ * s.



for i from lb; to ub;
for j from lb; to wubj

for i from lb; to ub;
for j from lb; to wubj

for i from lb; to ub;
for j from lb; to wubj

A[i+1,3] += A[i,3] + 1 Ali,j] += A[i,j+2] + 1 Ali,J] = oo
Ali-1,31 = ...t
end for end for end for
end for end for end for

(a) True-loop carried dependence
Figure 1.
Source Code

for i from 1lb; to ubj
for j from 1lbj to ubj

Ali,3] = A[i,3] + 1
end for
end for
Binary Code
1 reg lb; < 1b;

reg ub; < ubj

i’ « 1b; * size_j

reg_ubl « ub; * size_j
loopi:reg lbj «— 1bj

reg _ubj < lbj

o U1 i W DN

(b) Anti-loop carried dependence

(¢) Output-loop carried dependence

Loop-Carried Dependencies in Source Code

7 j’ < 1bj % elem_size

8 addr_reg « Base + i’ + j’ -—(B)
9 reg_ub_addr < Base + i’ + ubj * elem_size

10 loopj:load reg « [addr_reg]

11 reg «— reg+1

12 store [addr_reg] <« reg

13 addr_reg < addr_reg + elem_size —-—(A)
14 CMP addr_reg < reg_ub_addr ——(C)
15 Branch if true to loopj

16 i’ « i’ + size_j -—(D)
17 cMP i’ < reg ubj ——(F)
18 Branch if true to loopi

Figure 2. Example showing source code and it’s binary code

statements will help us parallelize the binary, regardless of
the exact binary code available:

e (A) — Address variable increment The rewriter
searches for the increment of the address induction
variable in the loop, and names it (A). See the example
binary in figure 2 to find (A) to (F).

e (B) — Address variable lower bound The incoming
value of the address induction variable (addr_reg in
the example) is its lower bound; it is marked (B).

e (C) — Address variable upper bound The upper-
bound comparison of the address variable for the loop-
ending branch identifies the upper-bound of the address
variable. It is searched for and marked (C).

e (D) — Outer loop induction variable increment
We check if stmt (B)’s right-hand side value contains
another induction variable. If it does, it is distinguished
as the induction variable of the next-outer loop. In the
example it is i’. The increment which reveals this
induction variable is marked (D).

¢ (E) — Outer loop induction variable lower bound The
incoming value of the outer loop induction variable (1’
in the example) is its lower bound; it is marked (E).

¢ (F) — Outer loop induction variable upper bound
The upper-bound comparison of the outer loop induc-
tion variable for the loop-ending branch identifies the
upper-bound of the address variable. It is searched for
and marked (F).

Statements (A) to (C) are for the inner loop; and (D) to
(F) are for the outer loop, if present. For loops nested to
depth three or more, additional statements can be identified
(e.g. (G) to (I) and so on). These special statements can
be identified from almost any binary compiled from affine
accesses, regardless of its exact form. Recognizing state-
ments (A) to (F) in the binary relies primarily on effective
induction variable analysis, which is easy for registers in

binaries. By the definition of an induction variable, once it
is recognized, its increment (or set of increments) reveal the
statements (A) and (D). The incoming values ((B) and (E))
immediately follow, as well as the exit conditions ((C) and
).

Our recognizer will recognize not only virtually all affine
accesses written as such, but also affine accesses through
pointers, since the pointers themselves will be induction
variables. The only non-recognized case is when the constant
increment of the induction variable is hidden by layers of in-
direction, e.g. when the constant is in a memory location, or
when the induction variable is not virtual-register-allocated
in the binary rewriter’s intermediate representation, but we
have found such cases to be extraordinarily rare.

Let us define the address variables’s lower bound value
(RHS of (B)) as Initial_addr_regq, defined as:

Initial_addr_reg = Base + 1lb; * size_j

+1b; x elem_size )

From this we can rewrite addr_reg as:
addr_reg = Initial_addr_reg + num_i * size_j

+num_j * elem_size 3

where num_i and num_j are the number of iterations on loop
i and loop j respectively.

The special statements (A) to (F) are helpful since they
will help us in doing the remaining tasks in the rewriter
— (i) deriving dependence vectors; (ii) deciding which loop
dimensions can be partitioned; and (iii) actually performing
the partitioning to generate parallel code. These are done in
turn below.

Deriving dependence vectors Next we aim to define
the dependence vector between pairs of array accesses in
the loop. To do so, we consider any two derived induction
variable references in a loop (not necessarily the two in
the code example above) with addresses addr_regl and



addr_reg?2. Their expressions can be derived by substituting
Initial_addr_reg in addr_reg above, yielding:

addr_regy = Base; + 1b; * size_j + num_i * size_j+

1b; * elem_size +num_j * elem_size (4)
addr_reg, = Basej; + 1b; * size_j + num_i’ * size_j+

1b; * elem_size + num_j’ * elem_size (5)

After deriving these equations, the next step is to calculate
the distance vector (d1 , d2) associated with these accesses.
Say that (num_i , num_j) and (num_i’ , num_j’) are the
iterations where add_reg; and addr_reg, alias to the same
memory location, then by definition (num_i - num_i’ ,
num_j - num_j’) is the distance vector associated with these
accesses 2. Hence, to calculate this distance vector we need
to equate the R.H.S of 4 and 5. The unknowns in the
equation are num_i , num_j , num_i’ and num_j’. We now
have four unknowns and one equation. But we also have
the following bounds for these unknowns , as they are the
number of iterations of loop i and j.

b; — 1b;
0 < num_i,num_i’ < Luij (6)
size_j
ub; — 1Db;
0 < num_j,num_j’ < L¥J (N
elem_size

We derive these bounds from statements (B), (C), (E), (F).
For loops nested with higher depths there will be statements
H) , (D, ... to determine the bounds. We now solve for the
distance vectors using the equation and bound conditions.
One of the following four conditions may happen:

o There is no solution to this equation in the given space.
This means that the two addresses do not alias with one
another. We add a distance vector of (0, 0) to this loop.

e There is a deterministic solution (X,Y) for (d1, d2).
This means that the loop refer to the same memory
address after X iterations of i and Y iterations of j. We
add the constant (X,Y) to the distance vector of this
loop.

o There are multiple deterministic solutions to this equa-
tion. Then we add all the deterministic solutions to the
distance vectors of this loop.

e In all other cases, when there are countably many
solutions or when we are unable to determine the
solution, the direction vector added has elements per
loop dimension that are a combination of <, >, = and
* [9]depending on the dimension that is uncountable
and the direction in which it is uncountable.

Traditional affine theory defines the (Greatest Common

Divisor) GCD test [11], [8] , Banerjee test [12], Delta
Array tests [13] and the Single Index Variable (SIV) and
Multiple Index Variable (MIV) tests [12], [6] to solve the
linear equations that we derive from source. We use the

ZDistance vectors need to be lexicographically positive, hence if (num_i
- num_i’) is negative then the distance vector is (num_i’ - num_i , num_j’
- num_j)

same techniques to solve the equations from low-level code.
Multiple tests have been defined as the techniques evolved
to more precise solutions in increasing order of complexity.

If the bounds of num_i and num_j are unknown we can
still say something about these equations in the infinite
space. But of course this is not always true. Hence, we have
developed techniques specific to a binary in case of unknown
bounds and these are presented in section III.

The techniques presented in this section are different from
source in the following way:

o The equations to be solved are directly derived from the
binary as against the symbolic array index expressions
readily available from source but absent in binaries.

« From source we derive the distance vectors by solving
each dimension separately, where as from binary we
derive the equations equivalent to linearizing the array.
We do this since there is no symbolic information in the
binary to determine array bounds and dimensions. We
have found that these techniques are nearly as powerful
as source techniques on the Polybench benchmark suite.
We have been able to discover the same dependence
vectors from source as well as the corresponding bi-
naries. In extremely rare cases, the dependence vectors
from binaries are less precise than from source, but
still conservative and correct. This impact is measured
in section VIIL

III. RESOLVING ALIASING UNCERTAINTIES

In compiling source code, the compiler only looks for
data dependencies between references to the same array.
References to different arrays are assumed to never alias
— for example, references A[x] and B[y] are assumed to
never alias, regardless of the values of x and y. In non-array-
bounds-checking languages like C, in the actual layout the
two might actually alias if one of the arrays is accessed out-
of-bounds, but all compilers presume this never happens.
This is legitimate since in ANSI C, no layout assumptions
are allowed. Hence compilers can (and do) legitimately
ignore aliases between different accesses to different arrays.

However, a binary rewriter cannot easily disregard such
false aliasing dependencies between different arrays. The
reason is that, in a binary rewriter, the location and size
of arrays is unknown, so we do not know where one array
ends and another begins. It is incorrect to assume that the
base of each array reference is a different array, since, as
mentioned below, the base may include constant offsets in
the array indices. For example, the source reference A[i+5]
will have the constant base address of A[5] in the binary,
which is not the start of an array. Of course we will not know
if the address really represents the middle of one array or
a different array. Left unsolved, this problem will lead to
far more dependencies in the binary than in source, hurting
parallelizability.



Fortunately it is possible to remove such false aliasing
dependencies between references using optimizations in the
binary rewriter. First, if Base; and Basey provably access
different segments (e.g. one is the stack pointer plus a con-
stant, and the other is an address in the global segment), then
they access non-intersecting addresses, and any dependence
between their references. Second, if Base; and Bases are
different addresses in the same segment but the loop bounds
are constants, then we use one of the tests (GCD , SIV
, MIV ) described above to compute if the two accesses
are independent. Intuitively, when the base values differ by
greater than the size of the arrays, these tests return to us
that these two accesses are not dependent on each other.
This represents the case when the address ranges of the
references are non-intersecting, i.e. Base; + lb; * size_j +
Ibj x elem_size > Basey + ub; * size_j + ub; * elem_size
or Basey + Ib; * size_j + lb; * elem_size > Bases +
ub; * size_j + ub; x elem_size is true. We can check these
conditions when the lower and upper bounds of loops are
known constants in the binary rewriter. If the ranges are non-
intersecting, the false aliasing dependence can be deleted.

Non-Constant Loop Bounds If the loop bounds are not
constants then we will not be able to use the last-mentioned
technique to eliminate false dependencies. Although we will
still be able to use Banerjee’s inequalities in a limited
number of cases to prove independence between different
arrays, they do not always work. Hence, we have also
developed techniques specific to binaries to help us prove
independence between possibly different arrays when the
loop bounds are unknowns.

To explain our strategy for non-constant loop bounds
consider figure 3. Figure 3(a) shows the source code for
a simple loop with three memory accesses: two to array A
and one to array B. Figure 3(b) shows the corresponding
binary code with accesses to three different addresses. The
three address variables will have the following form from
the theory developed in section II:

addrl = Base; + 1b; * size_j +num_i * size_j+

1b; * elem_size +num_j * elem_size (8)
addr2 = Basej + 1b; * size_j + num_i’ * size_j+

1b; * elem_size + num_j’ * elem_size (9)
addr3 = Basez + 1b; * size_j + num_i” x size_j+

1b; x elem_size + num_j” x elem_size (10)

The above address expressions are identical except for
different constant base values. These addresses are analyzed
to form Reference Groups(RG) by comparing the values of
Basey, Basea, Bases. If the bases differ by less than a
pre-determined constant threshold we group them together
into an RG. In this example addrl and addr2 will form
one reference group (say RG1) and addr3 will belong to
a different reference group (say RG2). Intuitively the idea
will be that references in different RGs will be checked
at run-time to see if they indeed alias using a low-cost

loop-invariant range check; parallel code is executed only
when no dependence is found at run-time. References within
the same RG are assumed to likely access the same array
with high probability, and hence are not checked at run-
time for independence, since that check will rarely find
independence.

To see what the run-time check looks like, for each
reference group we calculate the lowest and highest address
that this reference group can reference as a symbolic ex-
pression of unknown loop bounds. For example in RGlI
the lower bound on the address will be Base; + [b; *
size_j + lb; * elem_size and the upper bound will be
Basey + ub; * size_j + ub; x elem_size as Base; will
be surely less than Bases. For RG2 the lower bound is
Bases +1b; x size_j + 1b; * elem_size and upper bound is
Bases +ub; x size_j +ubj; * elem_size as there is only one
reference in RG2.

The code generated in this method is shown in figure 3(c).
The loop is cloned for each of the two outcomes of the run-
time check. The run-time code checks that every pair of RGs
have non-intersecting address ranges. If the check succeeds
then we execute the loop that obeys all dependencies within
RGs but none between them; else we assume that all RGs
are dependent on each other. More sophisticated versions of
the check are possible and will be considered in the future.
We will succeed on the run-time checks for a majority of the
cases as we will be trying to prove independence between
different arrays which is true. Further the number of run-time
checks will be limited as in scientific codes the number of
arrays accessed in the body of one loop are limited to three
or four in most cases. Finally the run-time check is done
outside loops, minimizing their overhead to near negligible
levels.

IV. SCALAR DEPENDENCIES

A scalar dependence is present in a loop if a location
is defined in one iteration of the loop and used in another
iteration of the loop. Conceptually, detecting and handling
scalar dependencies is similar in source code and binaries.
One minor difference is that whereas the possibly dependent
locations in source code are variables, in binaries they
are registers and memory locations. Our scalar dependence
analysis for binaries is outlined below.

We recognize register/scalar dependencies from a binary
by analyzing def-use chains. All registers are checked to
see if they are defined in one iteration and used in a later
iteration. This is a check on def-use chains of registers,
to see if the register is live at the exit block of the loop.
Traditional data flow can be run on low-level code from
binaries. We leverage this to check the presence of loop-
carried register dependencies. We check for the presence
of register dependencies at every loop depth as a certain
dependence may be present at one depth and not at another
loop depth. For example in the code in figure 4 sum has a



for i from Ilb; to ub; Loop; : ........ if (non-intersecting ranges between
for j from lb; to ub; Loop; : ...... all pairs of RGs)
Ali, 3] = .... xaddrl = . Loop with no dependencies
... = A[i,J+3] .... = xaddr2 between all pairs of RGs
B[i,]J] = . *addr3 = else
end for end Loop; Loop with dependencies
end for end Loop; between all pairs of RGs
(a) Source Code (b) Binary Code (c) Code Generated
Figure 3. Algorithm for unknown loop bounds in Binaries
Loop; ¢ «.vuiiiii... — 1 — g — i
for i from Ilb; to ub; sum_r = 0;
sum = 0; Loopj : .......... 4 + L
for j from lb; to ub; tmp_r = xaddrl ! ! !
sum += sum + A[i, J] sum_r += sum_r + tmp_r
end for end for
end for end for (a) Partition I (b) Partition 2 (c) Partition 3
(a) Source code with (b) Binary Code with Figure 5. Different partitions of the iteration space

scalar dependence scalar dependence

Figure 4. Scalar Dependence in code

scalar dependence on Loop;, but not a scalar dependence
on Loop;. Hence Loop; can be parallelized in this code.
Variable sum may be register allocated in a binary (say to
sum_reg) and data flow will tell us that it is live across the
Loop; but not live across Loop;.

Some variables in the source code may be allocated to
memory; these will be analyzed as memory references by
theory presented in section II-B. They will likely appear as
addresses with a constant base and no offset. The theory
will handle their dependencies in a simple, degenerate case.
However the dependencies get analyzed, every dependency
that is present in a binary is analyzed and its effect on
parallelization is accounted for.

V. DECIDING PARTITIONS

As we have shown in section II for the code in figure 1(a)
and 1(c) the dependence vector is D = (1,0), indicating
that there is a dependence in steps of 1 along i, whereas
there is no dependence along induction variable j. So, if
we execute all iterations of i on one processor then we can
parallelize the iterations along j among all the processors.
Pictorially, this is represented as Partition 1 in figure 5,
which shows the iteration space as a 2-D matrix of i and
j values. Conversely, in figure 1(b) the dependence vector
is D =(0,2), indicating that there is a dependence in steps
of two along induction variable j, and no dependence along
induction variable i. So, if we execute all iterations of j on
one processor then we can parallelize the iterations along
i among all the processors. Pictorially, this is represented
as Partition 2 in figure 5. Partition 3 in that figure can be
used when there is no loop-carried dependence on either
loop dimension (i.e. D = (0,0)). We also check that there
is no register dependence at this dimension of the loop, as
register dependencies prevent parallelism.

Improved performance is possible when loop transforma-
tions are included in the system, such as reduction, loop
interchange, loop fusion, loop fission, strip mining, and loop
skewing [6]. Once dependence vectors are computed, trans-
formations can be applied much like from source code using
any of the decision algorithms in the literature such as [6],
which decide which transformations to apply and in what
order. The choice of decision algorithm is orthogonal to this
paper. For now we implement a simple decision algorithm
for two transformations — reduction and strip mining — that
we have found to work adequately for the benchmarks that
we target. Implementing more transformations and a better
decision algorithm can only improve our presented results
further.

VI. CODE GENERATION

After the the distance vectors are calculated, transforma-
tions done, and the loop dimension(s) to be parallelized
are decided, code needs to be generated for each parallel
loop dimension. Since the body of the loop is executed
on all parallel threads, the most convenient and efficient
code generation model is the Single Program Multiple Data
(SPMD) model. The underlying idea is that the iterations
of the loop are divided among threads; hence to keep the
code-size increase to a minimum, the same code is executed
on all threads using different loop bounds.

From source code, SPMD code can be generated by
simply replacing the symbolic values of the lower and
upper bounds of loop induction variables by new values.
These methods are fairly straight forward as the symbolic
information is readily available in source.

From binary code, code generation is conceptually similar
to that from source. For each loop dimension to parallelize
we calculate the new lower and upper bound using the
formulae below.

new_lbaddr_reg = Base + 1b; x size_j + lbj *x elem_size
+PROC_ID * (ubj — 1bj) * elem_size
NPROC

(1)



new_ubagdar reg = Min(ub_j,new_lbaadr reg
(ub; — 1b;) x elem_size
J J > (12)
NPROC

Replacing the bounds in (B) and (C) generates the parallel
code to be executed on all NPROC processors. If the outer
loop is partitioned, then statements (E) and (F) are sim-
ilarly modified. Unlike loop partitioning, data partitioning
is not necessary since we primarily target shared memory
platforms common in multi-cores.

Generating parallel code requires the use of some parallel
thread library. We implement POSIX-compliant pthreads
calls, given that POSIX is a widely used portable indus-
try standard, although any library can be used. POSIX-
complaint parallel threads are created once at the start of
main() in the binary, rather than at each loop to avoid paying
the steep thread-creation cost multiple times. Only the main
thread executes serial code between parallel loops. Parallel
threads only execute loop code. When a parallel thread
finishes one loop it waits for the main thread to inform it
which loop to execute next in a broadcast. The broadcast
also contains the values of registers calculated by the main
thread that are needed by the parallel loop threads. A barrier
is inserted into the binary at the end of every loop.

VII. USING LLVM FOR IMPLEMENTATION

Our binary rewriter translates the input x86 binary to
the intermediate format of the LLVM Compiler [14], and
then uses the x86 back-end LLVM to write the output
binary. LLVM, which stands for Low-Level Virtual Machine,
is a well-known, open-source compiler developed at the
University of Illinois; it is now maintained by Apple Inc.
This conversion back to compiler IR is not a necessity for
the work we present in this paper; any binary rewriter can
use our theory. However using LLVM IR enables us to use
LLVM’s rich infrastructure, such as control-flow analysis,
dataflow analysis, and optimization passes, so that we did not
have to write our own for the rewriter. Each instruction in the
binary is converted to its equivalent LLVM IR instruction.
The pushes and pops are analyzed to determine function
arguments, caller and callee saves and stack accesses. Each
stack frame present in the original binary is converted to an
stack array in the intermediate IR. These techniques enable
the addition of new stack variables in functions. The globals
are accessed from their original addresses as we retain the
original segments. Register allocated variables in the binary
are converted to virtual registers.

The Loop Simplify and Loop Unswitch passes in LLVM
are run to help the scalar evolution and induction variables
on our code. Scalar Evolution and Induction Variable anal-
ysis in LLVM [14] help us in identifying the induction
and derived induction variables in code. This helps us
determine (A) to (F) required for distance vector calculation

as described in section II. We also use the control flow and
data flow information present in LLVM to our leverage to
identify scalar dependencies, affine loops and shared/private
variables for each loop.

An important side benefit of using LLVM is that it enabled
us to do cross-ISA translation of code. We used LLVM’s C
backend to convert an input x86 binary to equivalent func-
tional C code. This code (which is parallel using pthreads
in our case) was then compiled using GCC on a 64-threaded
SPARC T2 machine, and speedup was measured (see results
section). The reason we did this was because SecondWrite
presently implements only an X86 front-end. Of course
this cross-ISA translation will not work in the general case
when the code uses machine-specific library calls. However
it worked for our programs since they only used only the
platform-independent C and pthreads libraries.

To be clear, our LLVM’s output C code generated from
binaries is quite low-level and lacks array declarations and
index expressions. Hence source parallelism methods will
not work on it, necessitating our method.

VIII. EXPERIMENTAL FRAMEWORK AND RESULTS

The input to our binary parallelizer are highly optimized (-
03) binaries compiled by GCC. These binaries don’t contain
any relocation or symbolic information. We have tested our
parallelizer on benchmarks from Polybench (the Polyhedral
Benchmark suite) and Stream(from the HPCC suite). We use
three different machines to test our benchmarks. The ma-
chine descriptions are provided in table I. The benchmarks
represent heavily used kernels in scientific and multi-media
workloads.

Name CPUs | Cores/ | Threads/ | Total Model
CPU Core Threads
DASH | 1 4 2 8 Xeon E5530
BUZZ | 4 6 1 24 Xeon E7450
T2 1 8 8 64 Ultra SPARC T2

Table 1
TEST MACHINES

Our source parallelizer is implemented by feeding the
parallelizer with the symbolic information present in a
source. We then apply the same dependence analysis, parti-
tion techniques and code generation methodologies we have
presented above. As the symbolic information is exploited to
the fullest, we compare to state of the art affine parallelizers.

The speedups when parallelizing source and when paral-
lelizing binaries with increasing number of threads on the
different machines are presented in tables II, III, and IV; one
figure per machine. Table II shows the speedup averages
5.7 when parallelizing from source code versus 5.1 when
parallelizing from the x86 binary on the x86 DASH machine
with 8 threads. This shows that (a) the speedups are nearly as
effective from binaries as from source code, validating our
theory; and (b) the speedups scale well. Table III shows the
speedups from source and binary on 24 threads on the x86



BUZZ machine are 8.51 are 7.28 respectively. The speedups
on BUZZ scale less well than DASH beyond 4 cores since
the communication is out of the chip beyond 6 threads.

Table IV shows the speedups on a SPARC T2 machine
average 15.37 when parallelizing source and 14.7 when
parallelizing an x86 binary and using our rewriter to convert
it to a SPARC binary. This cross-ISA-translation is done as
described in section VII.

Further performance-related observations are as follows.
On T2 beyond 8 threads the communication costs increase as
we need to communicate between different cores. Also for
some benchmarks (e.g. gemver) we observed that 64 threads
run slower than 32 threads. The reasons for this could
include the high communication costs between different
cores or resource sharing (such as ALUs) between the 8
hardware-supported hyperthreads-like threads per core. We
have collaborators are helping us collect system character-
istics on different machines, which we will integrate in the
future to do machine- and thread-specific optimizations; for
example by not spawning more threads than the hardware
can efficiently support for applications with certain charac-
teristics.

Some benchmarks do not scale as well as others (such
as atax) . The reason for this is that we parallelize the
inner loop, and the resulting fine-grained threads for the
comparatively small data set are not able to overcome barrier
and broadcast latencies for the loop. In the future we plan
to implement various loop transformations to improve these
numbers further. The covariance benchmark parallelizes
well from source but poorly from a binary. From source,
the compiler can detect that different memory operations
in the loop access different portions of the same array (
upper triangle and lower triangle of a 2-D array), and hence
are independent allowing parallelization. From a binary, the
array’s linearization prevents such discovery, so the accesses
are conservatively deemed dependent. However we expect
such cases to be very rare, and also with further linear
algebraic techniques we will be able to correctly derive
dependence vectors for most of these cases.

We present the statistical count of number of loops present
in each benchmark and the number of loops parallelized
successfully from source and binary in table V. The total
number of loops counted are the outer loops present in
benchmarks. Each outer loop may contain several nesting
levels. Loops parallelized refers to one nesting level of the
loop being parallelized.

IX. RELATED WORK

This related work is short since it only lists potentially
competing related work. Supporting related work is listed
throughout the paper as appropriate. Here we discuss related
work pertaining to (i) Binary rewriters and their applications.
(ii))Dynamic Binary Automatic Parallelization Methods (iii)
Affine based automatic parallelizing compilers from source

B 1 7 4 gJBenchmark 1 ] 4 g
) Source 1 185 378 47g Source 1 1.93 353 6.47)
mm
IR T N L B EE
o e | v 2 o o | | imlam oo
B T I I T I L I
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Table II
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Table 11T
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Table V
ANALYSIS OF LOOPS PRESENT IN THE BENCHMARKS

and (iv) Techniques to calculate distance and direction
vectors.

Binary rewriters Existing binary and object-code rewrit-
ers include Etch [15], squeeze and squeeze++ [16], [17],
PLTO [18], DIABLO [19], ALTO [20] and spike [21], [22].
These infrastructures have been used for a variety of code
improvements including code size reduction, performance
improvement and security enhancements.

Dynamic Binary Automatic Parallelization Methods
Existing Binary Automatic Parallelization techniques are
limited to dynamic methods and do not perform sophisti-
cated affine analysis like we do. Yardimci and Franz [7]
present a method to dynamically compile a sequential binary
to a parallelized or vectorized code. Their techniques are
mostly complementary to ours, in that instead of affine
parallelism, their techniques include control speculation,
loop distribution and automatic parallelization of recursive
techniques. They parallelize loops that do not have loop
carried dependencies, which limits the scope of loops paral-
lelized drastically. As, we are able to perform sophisticated
affine analysis on memory strides present in loops, the scope
of loops parallelized by us is higher. Further, their techniques
are dynamic preventing them from integrating sophisticated
decision algorithm into their system.

Affine based Automatic Parallelizers Affine-based par-
allelizing compilers such as Polaris [23], SUIF [24], [25],
[26], and pHPF [27], PROMIS [28] and Parafrase-2 [29]
have been built in the past. All these automatic parallelizing
compilers parallelize code from source, unlike our method.
As acknowledged throughout this paper, our method builds
on existing methods, but has significant differences allowing
it to work on binaries for the first time.

Distance and Direction Vector Calculation Affine loop
parallelism has required solving systems of linear diophan-
tine equations [12] to calculate distance vectors. Various
techniques have been proposed in literature to solve these
equations. These include the Greatest Common Divisor
(GCD) test [11], [8] , Banerjee’s inequalities [8], Single
Index and Multiple Index Tests [12], [9], Multidimensional
GCD [8], the delta test [13] and the omega test [30]. We
adopt these tests from the source to our binary automatic
parallelizer. We have presently implemented the Greatest
Common Denominator, Single and Multiple Index tests

to solve the linear diophantine equations that we recover
directly from a binary.

X. CONCLUSIONS AND FUTURE WORK

We have taken binary programs without relocation or
symbolic information and parallelized them by recognizing
affine loops. This work to our knowledge is the first of
its kind, as no past work has performed affine analysis
directly from binaries. We take ideas from source affine loop
parallelism but adapt them to binaries. This is a significant
step to understanding all the information present in compiled
binaries and leveraging it to parallelizing them.

In the future we intend to add many more transformations,
such as loop fusion, loop fission, loop interchange, loop
reversal, and loop skewing to our parallelizer. We do not
foresee any theoretical issues in adopting these techniques
to binaries, but due to lack of time we have not implemented
them for this paper. We have implemented the recognition
of commutative reduction from binaries and the results
presented includes it.

In future, we also intend to apply graph-based parallelizers
to binaries, to extend the scope beyond affine loops. We will
adapt the work on graph-based parallelism [31] to a binary
rewriter since ours are limited to scientific programs and
theirs are not.

The other scope of research that we are focusing on is
platform specific parallelizing. Our collaborators help us
collect system characteristics such as effective number of
contexts, best barriers, cache characteristics etc that we
include in our parallelizer. We already have techniques to
use the best barrier and effective number of contexts for
different platforms. We view this work as opening up a new
direction of research that will enable further optimizations
directly on a binary.
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