
AtomTracker: A Comprehensive Approach to Atomic
Region Inference and Violation Detection

∗

Abdullah Muzahid, Norimasa Otsuki†, and Josep Torrellas
University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

Abstract

A particularly insidious type of concurrency bug is atomicity

violations. While there has been substantial work on automatic de-

tection of atomicity violations, each existing technique has focused

on a certain type of atomic region. To address this limitation, this

paper presents AtomTracker, a comprehensive approach to atomic

region inference and violation detection. AtomTracker is the first

scheme to (1) automatically infer generic atomic regions (not lim-

ited by issues such as the number of variables accessed, the number

of instructions included, or the type of code construct the region

is embedded in) and (2) automatically detect violations of them at

runtime with negligible execution overhead. AtomTracker provides

novel algorithms to infer generic atomic regions and to detect atom-

icity violations of them. Moreover, we present a hardware imple-

mentation of the violation detection algorithm that leverages cache

coherence state transitions in a multiprocessor. In our evaluation,

we take eight atomicity violation bugs from real-world codes like

Apache, MySql, and Mozilla, and show that AtomTracker detects

them all. In addition, AtomTracker automatically infers all of the

atomic regions in a set of microbenchmarks accurately. Finally,

we also show that the hardware implementation induces a negligi-

ble execution time overhead of 0.2–4.0% and, therefore, enables

AtomTracker to find atomicity violations on-the-fly in production

runs.

1. Introduction

Multicore machines have brought into broad light how difficult

it is to debug concurrency bugs — bugs such as deadlocks, live-

locks, data races or atomicity violations. Of these bugs, atomicity

violations are particularly hard to isolate, and have received little

attention compared to their importance [7]. An atomicity violation

can occur when the programmer fails to enclose in the same criti-

cal section all of the memory accesses that should occur atomically.

During execution, such accesses get interleaved with accesses from

another thread that alter the program state, making it inconsistent.

Figure 1 shows an example of an atomicity violation bug in the

MySql program. Variables t->rows and binlog need to be accessed

together to generate the correct logging order of concurrent oper-

ations in the database (Figure 1(a)). However, the variables are

protected by different critical sections. It is possible that, in be-

tween the accesses to the two variables by a thread, a second thread

accesses them (Figure 1(b)). This is an atomicity violation, which

results in a wrong logging order. Note that this program is incorrect

∗ This work was supported in part by the National Science Foundation un-

der grant CNS 07-20593, and by Intel and Microsoft under the Universal

Parallel Computing Research Center (UPCRC).
†N. Otsuki is a visiting scholar from Renesas Electronics Corp, Japan.

even though there is no data race. In practice, atomicity violations

are hard to debug.

= 0;t−>rows = 0;t−>rows

DELETE & INSERT recorded
in correct order

DELETE & INSERT recorded
in wrong order

 lock(l);

 unlock(l);
. . .

 lock(b);

 binlog

Thread 1

(1)

 unlock(b);

.write(

"DELETE");
(2)

. . .

 lock(l);

 unlock(l);

 lock(b);

 binlog

Thread 1

(1)

 unlock(b);

.write(

"DELETE");(2)

(b)(a)

 lock(l);

 unlock(l);

 lock(b);

t−>rows ++;

binlog

. . .

Thread 2

(3)

 unlock(b);

.write(

"INSERT");(4)

 lock(l);

 unlock(l);

 lock(b);

t−>rows ++;

binlog

. . .

Thread 2

(3)

 unlock(b);

.write(

"INSERT");(4)

Figure 1. Atomicity violation in MySql. The variables involved

in the bug are in bold.

Existing approaches to find these bugs can be classified into two

groups. The first one are techniques that require the programmer

to annotate the Atomic Regions (AR) [3, 4, 5, 17]. Providing this

information may be too tedious and error prone on the part of the

programmer. The second group are techniques that attempt to de-

tect atomicity violations automatically. They include, among oth-

ers, SVD [18], AVIO [8], AtomFuzzer [15], and Atom-Aid [11].

These techniques are often effective. However, as we will discuss

in detail, they are all constrained in the types of ARs that they can

support — typically limited by the number of variables that they

access, the number of instructions that they execute, or the type of

code construct in which they are embedded (e.g., a function). For

example, AVIO only finds ARs with two instructions and a single

variable. A substantial improvement in the state of the art would be

to devise an approach that identifies violations of any type of AR.

This paper proposes such an approach, which we call Atom-

Tracker. AtomTracker is a comprehensive approach to AR infer-

ence and violation detection. It is the first scheme to (1) automat-

ically infer generic non-nested ARs (not limited by issues such as

the number of variables accessed, the number of instructions in-

cluded, or the type of code construct beyond avoiding AR nesting)

and (2) automatically detect violations of them at runtime with neg-

ligible execution overhead. No programmer input or annotations

are needed.

AtomTracker has two parts: one that automatically infers ARs

(AtomTracker-I) and one that automatically detects violations of

their atomicity (AtomTracker-D). AtomTracker-I infers generic

ARs by analyzing annotation-free memory traces of test runs of the

program. AtomTracker-I’s main contribution is a novel algorithm

that works by greedily joining successive references of a thread into

an AR if the other threads do not conflict. AtomTracker-I does not

require any semantic knowledge of the program. It is the first algo-

rithm of its kind.

AtomTracker-D takes the set of ARs and detects violations

of their atomicity at runtime. AtomTracker-D’s first contribution

is an algorithm for atomicity violation detection. It checks if

concurrently-executing ARs can be made to appear to execute in

sequence by taking one reference at a time and reconsidering the

relative order of the ARs. The second contribution is a hardware

implementation of AtomTracker-D in a shared-memory multipro-

cessor that leverages cache coherence state transitions. It induces a

negligible execution time overhead and, therefore, can be on during

production runs.

We evaluate AtomTracker by using eight atomicity violation

bugs from real-world applications such as Apache, MySql and

Mozilla. The results show that AtomTracker correctly detects them

all, which is not possible with any of the existing schemes. In ad-

dition, AtomTracker automatically infers all of the ARs in a set

of microbenchmarks accurately. Finally, the hardware implemen-

tation induces an execution time overhead of 0.2–4.0% and, there-

fore, enables AtomTracker to find atomicity violations on-the-fly in

production runs.

This paper is organized as follows: Section 2 gives a

background; Sections 3 and 4 describe the AtomTracker-I and

AtomTracker-D algorithms; Section 5 presents the hardware im-

plementation; Section 6 shows our evaluation; Section 7 discusses

our scheme’s main limitation; and Section 8 concludes.

2. Background: Atomicity Violation Detection

The state of the art in atomicity violation detection without

annotations is set by SVD [18], AVIO [8], MUVI [6], Atom-

Fuzzer [15], PSet [19], Atom-Aid [11], and Bugaboo [9]. SVD [18]

proposes the Computational Unit (CU) concept, which approxi-

mates a limited type of AR. The idea is that, after a thread has writ-

ten to a shared variable, when it reads it again, it starts a new CU.

As a program runs, SVD computes CUs based on the observed de-

pendencies. SVD reports violations when CUs are interleaved with

unserializable writes from other threads. While SVD is effective, it

only looks for violations of the limited set of ARs considered.

AVIO [8] looks for ARs composed of only a single variable and

two instructions. AVIO uses memory traces of correct executions

of the program to train the algorithm. If two instructions in a thread

that access the same shared variable are never found to be inter-

leaved unserializably by an access from another thread while train-

ing, then AVIO assumes that these two instructions are intended

to be atomic by the programmer. Consequently, AVIO reports vi-

olations when these instructions are interleaved unserializably in

production runs.

MUVI [6] is a step toward handling multiple variables. It finds

access correlations among multiple variables. Variables that are ac-

cessed together for some minimum number of times are likely to be

related. These variables should be protected by the same lock. The

MUVI paper shows how to use correlation information in a race de-

tector. It claims that this information would be hard to use to detect

multi-variable atomicity violations.

AtomFuzzer [15] looks for the case when a lock is grabbed mul-

tiple times in the same function. It reckons that this pattern suggests

an atomicity violation bug. This is because functions are likely to

be atomic.

PSet [19] detects and avoids concurrency bugs by embedding in

the binary legal interleavings obtained from training runs. This is

done by specifying which memory operation depends upon which

other remote memory operations. If, at runtime, an unexpected in-

terleaving is observed, the system reports a potential bug. Buga-

boo [9] extends this work by adding context information to the in-

terleavings. A given interleaving is acceptable under an certain pro-

gram context, while it is not under a different one. These two works

do not specifically target atomicity violations, but can be used to de-

tect unusual interleavings that uncover such violations.

Atom-Aid [11] detects and survives atomicity violations in hard-

ware. It uses a special multiprocessor architecture that executes

blocks of instructions atomically. Therefore, ARs are determined

by the blocking hardware, and are subject to a certain size restric-

tion. Because cache overflow disables block atomicity, the scheme

may not be able to ensure the detection of atomicity violations in a

given set of ARs.

A recent work that can detect multi-variable atomicity viola-

tions is ColorSafe [10]. This scheme requires annotations of which

groups of variables are related (i.e., have the same color). Then, the

system reports a violation when a thread’s accesses to same-color

variables are interleaved by another thread’s access to a variable of

that color.

While the work in this area has made great strides, it is still lim-

ited, considering the many dimensions of the problem. Our scheme,

AtomTracker, differs from these proposals in that it is the first one to

work with annotation-free arbitrary (non-nested) ARs. Such ARs

are not constrained in the number of variables, number of instruc-

tions, or type of code construct (e.g., a function). Moreover, Atom-

Tracker both automatically infers ARs in a program (AtomTracker-

I) and automatically detects atomicity violations of these ARs at

runtime (AtomTracker-D). All this makes AtomTracker the first of

its kind.

3. AtomTracker­I: Automatic Inference of
Atomic Regions

AtomTracker-I automatically infers ARs from a program by

training on the memory traces of many correct executions of the

program. Training on correct runs of programs is a feasible and

commonly-used approach in software-development groups. It is

also used in many proposed debugging tools, such as AVIO [8] or

PSet [19].

AtomTracker-I does not require any manual annotation from the

programmer. The key idea is to scan the dynamic memory reference

trace of a thread, and greedily try to join successive references of

the thread into a common AR — for as long as the references of

the other threads do not conflict with this newly-formed AR. The

operation is repeated for the references of each thread in turn, and

then for each training file. The output of AtomTracker-I is a list of

static AR entry and exit points in the program.

With this algorithm, the analysis of the first trace file typically

generates a set of large ARs. Later, as we process another trace

file, we may find evidence that an AR should be broken into two or

more smaller ARs. As we process more files, ARs will tend to get

more numerous and smaller. When the set of ARs does not change

Thread 2 Thread 2Thread 1

T
im

e

Thread 1 Thread 1 Thread 2

I : rd x1

I : rd y2

I : rd x3

I : wr x4

I : wr y5

I : wr y6

(a)

J : wr y4

J : rd y5

J : wr y1

J : wr x2

J : rd x3

(b)

I : rd x3

I : wr x4

I : wr y5

I : wr y6

J : wr y4

J : rd y5

J : wr y1

J : wr x2

J : rd x3

(c)

I : wr y6

I : rd x, wr x, wr y5’

J : wr y4

J : rd y5

J : wr y1

J : wr x2

J : rd x3

I : rd x, rd y1’ I : rd x, rd y1’

Figure 2. Basic AtomTracker-I algorithm for inferring ARs.

anymore, we assume that we have found the actual ARs. The ratio-

nale is that if a set of accesses by a thread are found to be atomic

in all the correct runs, then the programmer likely intends them to

be atomic. As we can see, this algorithm extracts any arbitrary AR,

unconstrained in the number of variables, number of instructions,

or type of code construct.

Next, we describe the basic algorithm, some design decisions,

and two examples.

3.1. Basic AtomTracker­I Algorithm

AtomTracker-I processes multithreaded traces of a program’s

memory accesses. A trace file has an ordered list of records from

several threads collected during an execution of the program. Each

record contains the thread ID, PC, address accessed, and whether

it is a load or a store. AtomTracker-I processes many trace files of

correct runs.

The algorithm works by greedily trying to join successive refer-

ences of a thread into an AR. The goal is to generate ARs that are as

big as possible. To describe the algorithm, we use the two-threaded

trace of Figure 2(a). In the figure, Ii:rd x means that the instruction

at PC Ii reads address x.

The algorithm starts by processing all the references of one

thread, then moving to a second thread, and so on. The order of

thread processing may initially generate small variations, but the

end result is the same.

In the example, we start with Thread 1. The thread reads x in I1

and then y in I2. We would like to group I1 and I2 in an AR. How-

ever, Thread 2 writes y in between (in J1). We cannot assume that

I2 happened before J1 (and, therefore, move I2 above J1) because,

if we do, Thread 1 would read a wrong y value. However, we can

assume that I1 happened after J1 without affecting the final execu-

tion outcome. Consequently, we move I1 down after J1 (hence, the

arrow) and combine I1 and I2 into an AR called I
1
′ that reads x

and y. Conceptually we think of it as a giant instruction. Next, we

consider combining I
1
′ with I3. We cannot move I

1
′ below J2 of

Thread 2 because there is a conflict on variable x. We cannot move

I3 upward above J2, either. Therefore, AR I
1
′ cannot grow any

bigger (Figure 2(b)).

We start a new AR with I3. Applying the same algorithm, we

move I3 down and combine it with I4. Then, we move the I3 + I4

combination down, combine it with I5 and get the bigger AR I3 +

I4 + I5. We call this AR I
5
′ (Figure 2(c)). Now, we cannot move

I
5
′ down or move I6 above J5 because of the conflict with y. So,

I
5
′ does not grow any more.

If the trace contains more than two threads, every time we at-

tempt to combine two accesses in Thread 1, we need to consider

the intervening accesses from all the other threads. After process-

ing Thread 1, we move to process Thread 2, then Thread 3, and

so on. In the example, since there are only 2 threads, the ARs in

Thread 2 are created as a side effect of processing Thread 1 (Fig-

ure 2(c)).

As AtomTracker-I processes a trace file, it may find that an AR

that was previously inferred from the same file gets divided into

multiple ARs. Therefore, after AtomTracker-I finishes the file, it

goes back to re-process it from the beginning, and breaks the pre-

vious AR into the multiple smaller ones. This process continues

iteratively until AtomTracker-I gets a stable set of ARs from this

trace file.

After this, AtomTracker-I takes these ARs and moves to ana-

lyze the traces of another run. As AtomTracker-I processes the new

file, it starts with the ARs obtained from previous files and likely

breaks some of them into smaller ones. The process is repeated

until the set of total ARs does not change by analyzing more runs.

The fact that every iteration can only create smaller ARs ensures

that AtomTracker-I always converges.

AtomTracker-I could also work even if some of the training runs

were of incorrect executions. In this case, after the ARs are col-

lected, we would apply statistical analysis to identify the good ARs.

Specifically, if a certain AR appeared at least a threshold number of

t = AccountBal

lock L

unlock L

(1)

Thread 1 Thread 2

lock L

unlock L

(2) Print AccountBal

lock L

unlock L

t += Deposit1

AccountBal = t
(3)

lock L

unlock L

(4) AccountBal += Deposit2

Call

site 2

(f)
(a)

Call

site 1

Atomic
region

(c)(b) (d)

Entry 1

Entry 2

Exit 2

Exit 1

Dynamic

execution 1
Dynamic

execution 2

(e)

Figure 3. Design decisions in AtomTracker-I.

times in the test runs, we would consider it a good AR; otherwise,

we would discard it.

3.2. Design Decisions

3.2.1. Handling Synchronization Variable Accesses

When AtomTracker-I attempts to move references up and down,

it disregards synchronization accesses. This prevents synchroniza-

tion bugs in the program from making AtomTracker-I infer incor-

rect ARs.

To see why, consider Figure 3(a). Thread 1 incorrectly uses two

separate critical sections to add Deposit1 to AccountBal — one to

read the balance (1) and one to write it (3). During training runs,

a harmless critical section that prints the balance (2) interposes be-

tween the two. If we made the synchronization accesses visible

to AtomTracker-I, it would detect conflicts on lock variable L, and

incorrectly create separate ARs for (1) and (3). Later, during pro-

duction runs, if critical section (4) interposed between (1) and (3),

we would not detect an atomicity violation. However, by disregard-

ing synchronization accesses, AtomTracker-I moves code (1) below

(2), and correctly merges (1) and (3) into the same AR.

3.2.2. Using Critical Section Information

Programmers mark as critical sections portions of the code that

they want to be atomic. Typically, an atomicity violation occurs

because the critical section that the programmer wrote is not large

enough, although what is inside should indeed be atomic. Conse-

quently, AtomTracker-I uses the lock/unlock statements in a pro-

gram as a hint that they enclose code that should not be split into

multiple ARs.

Specifically, the AtomTracker-I algorithm includes a prepro-

cessing pass on the trace files. The pass identifies each lock/unlock

pair that protects a critical section whose data is not being ac-

cessed concurrently by another thread. The sections protected by

such lock/unlock pairs are recorded in a table. Later, when the

AtomTracker-I algorithm runs, it uses this table. Specifically, it

considers each of the sections in the table as an indivisible instruc-

tion. When it tries to expand an AR and finds one of these critical

sections, it either takes-in the whole section or no instruction from

it.

3.2.3. Using Loop Information

Typically, a programmer either makes a whole loop atomic or

creates one or multiple ARs within an iteration of the loop. ARs

very rarely cross an iteration boundary in a loop. To exploit this

fact, in the same preprocessing pass described above, AtomTracker-

I also identifies loops and checks whether they conflict with concur-

rent accesses from other threads. If none of the instances of a loop

has conflicting accesses, then AtomTracker-I stores the loop bound-

aries in a database for later use. Later, when the AtomTracker-I

algorithm runs, it will consider the whole loop as one giant indivis-

ible instruction; when it tries to expand an AR, it either takes in the

whole loop or no instruction from it.

On the other hand, if the loop has conflicting accesses in the

trace, then the AtomTracker-I preprocessing pass records the iter-

ation boundaries of the loop in the database for later use. Later,

when the AtomTracker-I algorithm runs, it will always end an AR

at the iteration boundary, so that no AR crosses the boundary. This,

of course, does not disallow multiple ARs within an iteration.

To keep things simple, we flatten the inner loops and only con-

sider outer loops. To make the preprocessing pass possible, loops

are dynamically identified automatically using the algorithm of

Moseley et al [13] during training runs, and this information is

recorded in the trace files.

3.2.4. Handling Different Call Sites

Depending on what site a subroutine is called from, it may be-

have differently and, therefore, AtomTracker-I may create different

ARs. For example, assume that when a subroutine is called from

Site 1, AtomTracker-I creates the AR in Figure 3(b), while when it

is called from Site 2, it creates the one in Figure 3(c). For simplic-

ity, we make AtomTracker-I context insensitive. This means that,

for each subroutine, we use the combination of all the ARs found

in all of the calls. In the example, we use the ARs in Figure 3(d).

3.2.5. Atomic Region Representation

The goal of AtomTracker-I is to augment the static code of the

program with AR entries and exits. This is not trivial because each

training run may take different control paths.

For example, Figure 3(e) shows a segment of static code and

two dynamic executions that took different control paths and found

different AR entries and exits. Pictorially, Figure 3(f) shows many

dynamic executions (shown as curved lines) that intercept the static

code differently, inserting different AR entries and exits.

To ensure that the resulting information makes sense to

AtomTracker-D, the AR exit markers inserted by AtomTracker-I in

the code also include the PC of the corresponding AR entry point.

In this way, if dynamic execution 2 in Figure 3(e) finds Exit 1, it

ignores it because it is not paired with Entry 2.

3.3. Putting It all Together

To summarize, this is how the complete AtomTracker-I algo-

rithm works. When first presented with a trace file, AtomTracker-I

performs a preprocessing pass to record lock/unlock pairs as per

Section 3.2.2 and loop boundaries and iteration boundaries as per

Section 3.2.3. Then, AtomTracker-I runs the algorithm of Sec-

tion 3.1, as many times as it needs to converge (typically 2–4 times).

The reason why the algorithm may need to run multiple times

over the same trace is because key information for AR inference

may only appear toward the end of the trace. This is seen in the

trace of Figure 4. Suppose that the correct ARs for Thread 1 are

those in Figure 4(a). However, as AtomTracker-I eagerly builds the

first AR, such AR will gobble-up the I3 read to x — since Thread

2 only reads x. AtomTracker-I will not include the I4 write to y in

the same AR because J2 from Thread 2 conflicts. Consequently,

AtomTracker-I will record that I3 is the end of the AR starting at

I1 (Figure 4(b)).

I : rd x1

I : wr y2

I : rd x3

I : wr y4

J : rd x1

J : rd y2

Thread 2

(a)

Thread 1

Correct

atomic

region 1

Correct

atomic

region 2

I : rd x1

I : wr y2

I : wr y4

J : rd x1

J : rd y2

Thread 2

I : rd x3

(b)

I : rd x1

I : wr y2

I : rd x3

I : wr y4

(c)

J : rd y2

J : wr x1

Thread 1 Thread 2

I : rd x1

I : wr y2

I : rd x3

I : wr y4

(d)

J : rd/wr x1

J : rd y2

Thread 1

Thread 1 Thread 2

Figure 4. ARs correct themselves thanks to the multiple itera-

tions of AtomTracker-I.

As AtomTracker-I runs, it can fix itself. Indeed, if later-on in

the trace file, Thread 2 writes to x in between the two correct ARs

as in Figure 4(c), AtomTracker-I will record that I2 is the end of

the AR starting at I1. Then, in a second iteration of AtomTracker-I

on the trace file (as per Section 3.1), as AtomTracker-I reaches I1

in Figure 4(a), it will pick up the two ARs from its database — the

smaller one that terminates at I2 and the larger one that finishes at

I3. Since AtomTracker-I reaches I2 next, it will confirm the smaller

AR and discard the larger AR. The result will be the ARs of Fig-

ure 4(d), which are correct. This is an example of how multiple

iterations help AtomTracker-I converge to the correct ARs.

After this, AtomTracker-I moves to process another trace file.

The same convergence described above may occur across trace files.

When the processing of several new trace files does not result in

changes in the inferred ARs, AtomTracker-I completes.

3.4. Examples

In this section, we show the outcome of running the complete

AtomTracker-I on two applications: Apache and LU-contiguous

from SPLASH-2. To generate the ARs, we follow the training ex-

periments outlined in Section 6.1. We need about 25 and 10 runs of

Apache and LU-contiguous, respectively. For Apache, we focus on

bug Apache#2 from our evaluation. Figures 5(a) and (b) show a dy-

namic execution of worker threads from the applications, showing

where the ARs terminate. In the figure, dashed boxes are the ARs,

which are labeled by their first instruction (shown as file name and

line number). The figure also shows where the critical sections (CS)

of the code are.

(a)

(b)

fdqueue.c:260

mod_mem_cache.c:540

util_time.c:124

util_time.c:125

util_time.c:65

util_time.c:124

util_time.c:125

mod_log_config.c:536

thread.c:88

Apache

Synch

Data race

Synch

3 CS

CS

2 CS

fdqueue.c:255

worker.c:846

CS

CS

4 CS

Repeat

Lu−contiguous

lu.C: 643

lu.C: 603

lu.C: 551

lu.C: 539

lu.C: 461

lu.C: 446

lu.C: 441

lu.C: 408
CS

Data race

Synch

Synch

D
y

n
am

ic
 E

x
ec

u
ti

o
n

Figure 5. ARs found in Apache (a) and LU-contiguous (b).

The figure shows that the boundaries of ARs automatically con-

verge to synchronizations and data races. Recall from Section 3.2.2

that AtomTracker-I considers a critical section without data races

as a single instruction. In Apache, the synchronizations are critical

sections. In LU-contiguous, all synchronizations but one are barri-

ers. Conflicts between references before and after barriers cause AR

boundaries to converge at barriers. Also, both programs have data

races, which create AR boundaries. Finally, ARs are not equivalent

to CSs: some ARs in Apache contain multiple CSs.

4. AtomTracker­D: Automatic Detection of
Atomicity Violations

AtomTracker-D takes program annotations in the binary like

those inserted by AtomTracker-I and automatically detects viola-

tions of ARs at runtime. Beyond this, AtomTracker-D is indepen-

dent of AtomTracker-I.

The idea behind AtomTracker-D is as follows. As two ARs

execute concurrently, AtomTracker-D checks whether they can be

made to appear to execute in sequence, one after the other, in any

J : rd x1

I : rd x2

I : rd y3

J : wr y2

I : wr x1

J : wr x3

I : wr x4

J : rd x1

I : rd x2

I : rd y3

J : wr y2

I : rd x4

I : wr x1

J : wr x3

T
im

e

Processor P1 Processor P2

Before && Unordered = Before

Unordered

Unordered && Before = Before

Before && Before = Before

After && Before = Violation

(b)

Processor P1 Processor P2

(a)

Before && Unordered = Before

Unordered

Unordered && Before = Before

Before && Before = Before

Order P1P2 Order P1P2

AR1

AR2

AR1

AR2

Unordered && Before = Before

Unordered && Before = Before

Unordered && Before = Before

Figure 6. Two examples of the AtomTracker-D algorithm.

of the two possible orders. Only if they cannot, AtomTracker-D

declares an atomicity violation.

To do its checks, AtomTracker-D uses a novel algorithm. The

algorithm considers each access of the two (or more) concurrent

ARs in sequential order and checks for conflicts. The algorithm

can be efficiently implemented in hardware by leveraging the cache

coherence protocol messages. In this section, we describe the algo-

rithm as it could be implemented in a tool like Pin [12], while in

Section 5, we describe a hardware implementation.

4.1. Description of the Algorithm

In this description, we assume that we have two processors ex-

ecuting two ARs concurrently; the algorithm will be later gener-

alized to any number of concurrent ARs. Let us call the proces-

sors PR and PS , and the ARs ARR and ARS , respectively. In the

AtomTracker-D algorithm, PR keeps a local flag called OrderRS

that tells, at any time, whether ARR appears (so far) to execute

before or after ARS . PS keeps a symmetrical flag called OrderSR.

Let us focus on OrderRS . OrderRS is updated in three cases, as

shown in Figure 7. Case PR → PS is when a reference by PS ac-

cesses a variable that has already been referenced by PR in ARR.

In this case, we check the following references to the variable: (1)

the current one by PS and (2) all of the previous ones by PR in

ARR. If at least one is a write, then PS is dependent on PR and,

therefore, AtomTracker-D tries to set OrderRS to Before. If, in-

stead, all of them are reads, then PS is not dependent on PR and

AtomTracker-D tries to set OrderRS to Unordered.

PR PS PR PS
PR PS

Case P −>P
R S

Access X

Access X Access X

Access X

Access X

Case P −>PRS R
Case P −

Figure 7. Different cases for AtomTracker-D.

The second case (Case PS → PR) is the dual case: a reference

by PR accesses a variable that has already been referenced by PS

in ARS . As before, we check if at least one of the relevant refer-

ences to the variable is a write. If so, PR is dependent on PS and

AtomTracker-D tries to set OrderRS to After. Otherwise (i.e., the

references to the variable are all reads), PR is not dependent on PS

and AtomTracker-D tries to set OrderRS to Unordered.

The final case (Case PR−) is when PR accesses a variable that

PS has not accessed in ARS yet. In this case, AtomTracker-D tries

to set OrderRS to Unordered.

We say that the algorithm tries to set OrderRS to a value because

what it really does is to set OrderRS to the logical AND of the value

and the old contents of OrderRS . This is done to detect any ordering

inconsistency: the AND of Unordered with any other value is that

other value, while the AND of Before and After signals an ordering

inconsistency. In this latter case, the two ARs cannot be serialized,

and we have an atomicity violation.

4.2. Illustrative Examples

Figure 6 shows two examples where processors P1 and P2 ex-

ecute atomic regions AR1 and AR2, respectively. It also shows

the updates to OrderP1P2. We start with Figure 6(a). The first

access (I1) in the figure is a write to x by P1. This access falls

into Case P1- because P2 has not accessed x in AR2 yet. There-

fore, OrderP1P2 is set to Unordered. In access J1, P2 reads x.

This is Case P1 → P2 with a write, and AtomTracker-D logically-

ANDs Before to OrderP1P2. The result is Before. In access I2, P1

reads x, which is Case P2 → P1 with all reads, and AtomTracker-

D logically-ANDs Unordered to OrderP1P2. The result is Before.

In access I3, P1 reads y, which is Case P1-, and AtomTracker-D

logically-ANDs Unordered to OrderP1P2. The result is Before.

Next, in access J2, P2 writes y, which is Case P1 → P2 with a

write, and AtomTracker-D logically-ANDs Before to OrderP1P2.

The result is Before. Next, in access I4, P1 reads x, which is Case

P2 → P1 with all reads. AtomTracker-D logically-ANDs Un-

ordered to OrderP1P2. This was the last access in AR1 and the al-

gorithm concludes that there is no atomicity violation because AR1

can appear to execute before AR2.

Consider now Figure 6(b), which changes I4 from a read to a

write. Access I4 is Case P2 → P1 with a write. Consequently,

AtomTracker-D logically-ANDs After to OrderP1P2, which trig-

gers a violation. Effectively, this access requires AR1 to be after

AR2, which is incompatible with the other accesses.

In these examples, as soon as the first processor completes its

AR, the algorithm can declare the presence or absence of a vio-

lation. However, this is not always the case. Specifically, if the

Order flag of the processor that finishes first has the value After,

AtomTracker-D cannot declare the outcome until the other proces-

sor also finishes its AR.

This case is shown in Figure 8, which shows both OrderP1P2

and OrderP2P1. The example shows a dependence from P1 to P2,

and one in the opposite direction. Consequently, there is an atom-

icity violation. We focus first on P1 and its flag OrderP1P2. Refer-

ence I1 sets the flag to Unordered, and J1 ANDs Unordered to it.

Reference I2 is a read to y by P1, which is Case P2 → P1 with

a write. Consequently, AtomTracker-D logically-ANDs After to

OrderP1P2. At this point, AR1 completes. However, AtomTracker-

D cannot strictly declare an outcome because the AR that appears

to execute first (AR2) is not complete yet.

J : wr y1

J : wr x2

I : rd x1

I : rd y2

P2P1

Unordered

Order

Bef && Unord = Bef

After && Bef = Violation

Unordered

Order P1P2 P2P1

AR1

AR2

Unord && Unord = Unord

After && Unord = After

Figure 8. Both processors need to complete their ARs for

AtomTracker-D to declare the outcome.

We now examine P2 and its flag OrderP2P1. Reference J1

sets OrderP2P1 to Unordered. Reference I2 ANDs Before to

OrderP2P1. Finally, reference J2 ANDs After to OrderP2P1. At

this point, AtomTracker-D correctly declares a violation. Note,

however, that the information that P1 had read x in AR1 has to

be kept around until AR2 completes.

4.3. Generalization to More Atomic Regions

In the most general case, all N processors in a multicore may

be executing atomic regions AR0, AR1...ARN−1 concurrently,

and AtomTracker-D has to detect atomicity violations between any

two ARs. Consequently, each processor i keeps N-1 Orderi∗ flags,

where * takes the values from 0 to N-1 except i.

Given a processor Pi, its Orderi∗ flags are updated following

the above description. Specifically, when another processor Pj ac-

cesses a variable that has been accessed by Pi, Orderij is ANDed

with Before or Unordered. When Pi accesses a variable that has

been accessed by Pj , Orderij is ANDed with After or Unordered.

Finally, when Pi accesses a variable that Pj has not accessed yet,

Orderij is ANDed with Unordered.

5. Hardware Implementation

Both AtomTracker-I and AtomTracker-D can be easily imple-

mented in software. However, if we want to run AtomTracker-

D on-the-fly in production runs, a software implementation is too

slow. Consequently, we propose an efficient hardware implementa-

tion of AtomTracker-D.

A key insight is that the AtomTracker-D algorithm does not re-

ally need to observe every single access in the two (or more) con-

current ARs. Instead, it only needs to observe those accesses that

induce cache coherence transactions in the network — with some

exceptions that we will handle. Consequently, we propose to add

a hardware module called Atomicity Violation Detection Module

(AVM) attached to the on-chip network of the multicore. The AVM

sees all the relevant accesses and runs the AtomTracker-D algo-

rithm in hardware. It supports atomicity violation detection without

slowing down execution.

For simplicity, our AVM design is centralized. It is possible to

distribute the design to make it scalable.

5.1. Leveraging Cache Coherence Transactions

Many of the references processed in the AtomTracker-D algo-

rithm of Section 4.1 are guaranteed not to change the value of the

Order flag. For example, when a processor writes the same variable

multiple times without any intervening access from other proces-

sors, then, after the first write, the value of the Order flag will not

change. Consequently, it suffices that we capture only the refer-

ences that can change the value of Order.

One group of accesses that can change Order are those that in-

troduce RAW, WAW, or WAR dependences on a variable between

two processors. These are cases PR → PS and PS → PR with a

write in Figure 7. In particular, in a sequence of such dependences

on a given variable between a given source and a given destination

processor, AtomTracker-D only needs to observe one dependence.

Fortunately, by construction (and ignoring false sharing for now)

the first one of these dependences induces a change in the variable’s

cache coherence state, and a resulting coherence transaction in the

network. Consequently, it can be observed easily.

The other group of accesses that can change Order are those that

introduce RAR dependences on a variable between two processors

(cases PR → PS and PS → PR with only reads in Figure 7) or ac-

cesses to variables that have not been accessed in the other AR (case

PR− in Figure 7). In a sequence of such accesses to a given variable

for a given source and destination processor, AtomTracker-D only

needs to observe one. Again, we choose the first one. This access

may miss in the cache. If so, the AVM attached to the on-chip net-

work will see the address and process the reference. However, this

access will not miss if the variable is in the cache is a certain state

when the processor enters the AR. Specifically, a read that finds the

variable in a state equivalent to Shared or Dirty in the cache, or a

write that finds it Dirty, will not miss.

To ensure that these accesses are visible to the AVM, we modify

the cache to operate slightly differently when executing an AR. We

add two FirstAccess bits per cache line — one for reads and one for

writes. Every reference in the AR sets the corresponding FirstAc-

cess bit in the line touched. If the reference hits in the cache and

the corresponding bit was not set, the line address (and whether the

access was a read or a write) is sent to the network, so that the AVM

captures it; if the reference misses in the cache, the AVM sees it by

default. FirstAccess bits are cleared when an AR finishes.

Finally, caches naturally replace lines and references that should

otherwise not miss may miss. This means that the AVM will

see more accesses than the strict minimum necessary for running

AtomTracker-D. This does not affect correctness in any way.

5.2. An Atomicity Violation Detection Module
(AVM) Based on Address Signatures

A naive AVM design would have, for each processor, a buffer

with the list of references since the current AR started. The ref-

erences would be processed using the AtomTracker-D algorithm.

However, we propose a more efficient approach based on hardware

address signatures. These are registers of about 2048 bits that ac-

cumulate the result of hashing addresses of references using Bloom

filters [1]. Conceptually, a signature acts like a compressed buffer

to store memory references. Per processor, the AVM has one sig-

nature (RSig) that hash-accumulates the addresses read in the AR

and one (WSig) for the addresses written. Every network transac-

tion by a processor executing an AR is captured by the AVM and

the address is encoded in the correct signature. The AVM is shown

in Figure 9. Each pair of signatures has N-1 associated Order flags.

AtomTracker-D is implemented as follows. Assume that the

AVM observes a transaction by processor Pi to address Addr. The

address is hashed and accumulated into the appropriate signature

(RSigi or WSigi). Assume it is a write. In this case, the AVM

hardware uses membership signature operations [2] to see if Addr

is present in RSign or WSign, for all processors Pn 6= Pi. For each

processor Pj where the answer is “yes”, we have found a WAR or

WAW. The AVM hardware does the following. Since this is Case

Pj → Pi with write access, the AVM ANDs Orderij with After

and, in addition, ANDs Orderji with Before. Finally, for each pro-

0P P1 PN−1

Order

. . .

. . .

.

R’Sig

W’Sig

C
ac

h
e

WR

F
ir

st
A

cc
es

s

RSig

WSig

Atomicity Violation Detection Module (AVM)

N−1

N

Network

Figure 9. Signature-based hardware implementation of

AtomTracker-D in a multicore.

cessor Pk where the answer is “no”, since this is Case Pi−, the

AVM ANDs Orderik with Unordered.

If the access is a read, the procedure is similar. AtomTracker-

D first checks if Addr is present in WSign. For each processor Pj

where the answer is “yes”, we have found a RAW, and the AVM

hardware ANDs Orderij with After and Orderji with Before. For

the other processors, AtomTracker-D checks if Addr is present in

RSign. For each processor Pj where the answer is “yes”, we have

found Case Pj → Pi with RAR only, and the hardware ANDs

Orderij and Orderji with Unordered. Finally, for the other proces-

sors Pk, this is Case Pi−, and the hardware ANDs Orderik with

Unordered. These operations are done in parallel.

Signatures do not keep precise information and, as they contain

more addresses, they appear to include a larger number of other

addresses as well — also called aliases. This may cause false posi-

tives, an issue we address in Section 5.4. To minimize such events,

the AVM keeps several (four in our design) physical signatures for

each logical signature. Each hashed incoming address is accumu-

lated into one of the four signatures of the logical one, depending

on its address. The number of operations on signatures does not

change. Overall, at the cost of more hardware, this design reduces

address aliasing.

As soon as the AVM detects a violation, it records it. When a

processor ends its AR, its signatures are cleared. However, recall

from Figure 8 that if the Order flag is set to After when a processor

finishes its AR, and the concurrent AR is not yet finished, we cannot

discard the state until the concurrent AR ends. Consequently, in this

case, the AVM saves the processor’s RSig and WSig into Shadow

Signatures (R’Sig and W’Sig in Figure 9). These shadow signatures

are checked by references from the concurrent AR until the latter

finishes.

5.3. Software Interface

The AVM is driven by two instructions that are inserted in the

program by either AtomTracker-I or another software tool. They are

atomic enter and atomic exit (Table 1). Atomic enter marks the en-

try to an AR. It triggers the allocation of signatures and Order flags

in the AVM. It saves the PC of atomic enter in a processor register

that we call AtomTrackerEntry. This register will be used to identify

the matching atomic exit instruction. In addition, atomic enter sets

the cache operation to AR mode. In this mode, cache accesses set

the FirstAccess bits of the lines touched. If the cache intercepts the

access and the corresponding FirstAccess bit is clear, the hardware

sends the line address (plus whether this is a read or a write) to the

network, so that the AVM captures it. As indicated in Section 3.2.5,

AR entries and exits may be unpaired and, therefore, execution may

already be in an AR. In this case, atomic enter has no effect.

Instruction Description

If (found outside an atomic region)

Allocate signatures/flags in AVM

AtomTrackerEntry = PC

atomic enter Set cache to AR mode. Per mem. access:

If [(cache intercepts access) and

(FirstAccess bit = 0)]

Send line address + R/W to network

FirstAccess bit = 1

If [(PC = AtomTrackerEntry) or

(NumMismatches = MAXMISMATCH)]

Set cache to plain mode:

atomic exit PC FirstAccess bits = 0 for all cache lines

Disable FirstAccess bit use

AtomTrackerEntry = 0

Deallocate own structures in AVM

Table 1. Instructions added to manage the AVM.

Atomic exit marks the exit of an AR. It takes the PC of the

matching atomic enter instruction. This instruction only has an ef-

fect if its PC argument is equal to the AtomTrackerEntry contents,

or if we found a threshold number of mismatching atomic exit in-

structions in a row. This is done to ensure that the current AR even-

tually finishes. In these cases, atomic exit exits the AR by setting

the cache operation to plain mode (no FirstAccess use), clearing

AtomTrackerEntry, and deallocating its AVM structures.

5.4. Design Issues

Address aliasing in the signatures could result in false positives

(FPs), namely claims of atomicity violations when there are none.

The actual signature implementation affects the number of FPs.

Consequently, we have chosen the design described in [14], which

has few FPs. On the other hand, signatures cannot lead to false

negatives, namely false claims of no atomicity violations.

Network accesses only expose line addresses. Therefore, all

AtomTracker-D operations are done at cache-line granularity. This

makes the implementation subject to false sharing, which can also

result in false positive claims, but not false negatives.

The atomic enter and atomic exit instructions use fences, as if

they were synchronizations. Therefore, the AtomTracker-D hard-

ware also works with relaxed memory consistency model machines.

6. Evaluation

In this section, we evaluate AtomTracker-I and AtomTracker-

D. We implement the AtomTracker-I algorithm in C++, and run

it on traces of parallel applications generated by a Pin [12] tool.

After AtomTracker-I determines the ARs, we use AtomTracker-D

to find violations. We evaluate two implementions of AtomTracker-

D, namely a software one using Pin and a hardware one using a

whole-system simulator of the multicore architecture of Section 5

based on Simics [16]. The parameters of the multicore architecture

simulated are shown in Table 3.

We use three representative applications (Apache, MySql, and

Mozilla) and focus on eight documented atomicity violation bugs.

These bugs have been used in the evaluation of past works like

Bug Version Files Involved # Variables Description

Apache#1 2.0.48 mod log config.c Single Unprotected read and write of buffer length can corrupt log file.

Apache#2 2.0.46 mod mem cache.c Single Unprotected read and write of reference counter can cause

null pointer dereference.

Mozilla#1 0.8 jsstr.h, jsstr.c Multiple Non-atomic update of total number of strings and total string length

permit them to be inconsistent.

Mozilla#2 0.8 jsinterp.h, Multiple Non-atomic access of cache structure can cause cache and empty flag

jsinterp.c to be inconsistent.

Mozilla#3 0.9 jsdhash.c Multiple Concurrent access of entryCount and removedCount can cause the table

to incorrectly shrink.

MySql#1 4.0.12 log.cc, Single Unprotected close and open of database bin log can cause some actions

sql insert.cc not to be logged.

MySql#2 3.23.56 sql insert.cc, Multiple Non-atomic update of rows and bin log can cause wrong order of logging.

sql delete.cc Shown in Figure 1

MySql#3 4.0.16 slave.cc Multiple Non-atomic read of log file name and log file can cause slave sql thread to fail.

Table 2. Bug descriptions.

Multicore 4 cores at 4 GHz

Core 4 issue out-of-order

L1 cache (private) 32 KB, 4 way, 2 cycle lat.

L2 cache (private) 512 KB, 8 way, 12 cycle lat.

Cache line 64B

Memory 80 cycle round trip lat.

Network Bus

Bus bandwidth 128B/cycle

Coherence protocol MESI

Signatures 2Kbit each like in [14]

Table 3. Multicore architecture evaluated.

AVIO [8], MUVI [6], and PSet [19]. They are described in Table 2.

Of these bugs, the three Mozilla bugs, MySql#2, and MySql#3 are

multi-variable atomicity bugs; the rest are single-variable atomic-

ity bugs. We also use six SPLASH-2 codes to characterize Atom-

Tracker: three kernels (FFT, LU-con, and LU-non-con) and three

applications (Barnes, FMM and Water-ns). Lastly, we also use three

synthetic microbenchmarks to evaluate AtomTracker.

Our evaluation aims to (i) demonstrate the training methodol-

ogy, (ii) show the bug detection ability, (iii) characterize the false

positives, (iv) quantify the execution overhead, and (v) show the

completeness of our design.

6.1. Training Sensitivity

To make AtomTracker effective, we need enough training runs

to obtain a good set of ARs. To obtain many training runs, we

change the program inputs and also get different interleavings for

the same input. For MySql, we change the number of concurrent

requests to the server. For Apache#2, we use httperf to send dif-

ferent numbers of concurrent requests, while for Apache#1, we use

different numbers of calls to wget to fetch different numbers of web

pages concurrently. For Mozilla, we wrote a driver that calls the

buggy library with different parameters and different numbers of it-

erations. In all tests, we check that we do not trigger the bugs. This

is easily done because all the bugs manifest themselves with either

a program failure or a wrong output. Fortunately, bugs are hard

to exercise because they require special interleavings. For all the

applications, we stop the training as soon as we get 5 consecutive

training runs that generate no new ARs.

Figure 10 shows the convergence of ARs in the commercial (a)

and the SPLASH-2 (b) codes as we execute training runs. We per-

form from 10 to 40 training runs. The SPLASH-2 codes converge

faster than the commercial codes because of their smaller size. Ta-

ble 4 shows the average size of the resulting ARs, in number of

source code lines that access shared variables (the lines that the

programmer will check) and in number of shared variables. On

average, ARs in the commercial codes have 52 lines and access 114

shared variables, whereas ARs in the SPLASH-2 codes have 5 lines

and access 122 variables.

0 1
0

2
0

3
0

4
0

Training Runs

0

100

200

300

T
o

ta
l
A

to
m

ic
 R

e
g

io
n

s

Apache#1

Apache#2

Mozilla#1

Mozilla#2

Mozilla#3

MySQL#1

MySQL#2

MySQL#3

(a)

0 5 1
0

1
5

2
0

2
5

Training Runs

0

100

200

300

T
o

ta
l
A

to
m

ic
 R

e
g

io
n

s FMM

Water-ns

LU-con

LU-non-con

Barnes

FFT

(b)

Figure 10. Convergence of ARs for the commercial (a) and the

SPLASH-2 (b) codes as we execute training runs.

6.2. Bug Detection Ability

After AtomTracker-I infers the set of ARs, we provide the bug-

triggering input and run AtomTracker-D. Our AtomTracker-D algo-

rithm detects the resulting atomicity violation in every case. Table 5

compares the effectiveness of AtomTracker to that of AVIO [8],

MUVI [6], and PSet [19] — based on data on the same bugs re-

ported in the papers of those schemes.

App # Lines # Shared

of Code Variables

Apache#1 44.3 62.4

Apache#2 76.4 125.6

Mozilla#1 62.2 82.9

Mozilla#2 83.8 197.1

Mozilla#3 46.4 102.1

MySql#1 43.9 230.4

MySql#2 44.3 82.4

MySql#3 17.0 31.8

Avg 52.3 114.3

SPLASH-2 kernels 4.6 215.5

SPLASH-2 apps 4.7 28.2

Avg 4.7 121.8

Table 4. Average AR size.

Bug Atomicity Violation Detected?

AtomTracker AVIO MUVI PSet

Apache#1 Yes Yes No Yes

Apache#2 Yes Yes No Yes

Mozilla#1 Yes No Yes No

Mozilla#2 Yes No Yes No

Mozilla#3 Yes No Yes No

MySql#1 Yes Yes No Yes

MySql#2 Yes No No No

MySql#3 Yes No Yes No

Table 5. Comparison of bug detection ability. Recall that the

Mozilla bugs, MySql#2, and MySql#3 are multi-variable atom-

icity violations.

AVIO and PSet are reported to catch the three single-variable

atomicity bugs. However, since, by construction, they cannot

catch multi-variable bugs, they cannot catch the three Mozilla bugs,

MySql#2, or MySql#3. MUVI focuses on catching multi-variable

data races. Consequently, it does not handle the bugs with a sin-

gle variable, namely Apache #1, Apache #2, and MySql #1. The

other five bugs are both multi-variable data races and multi-variable

atomicity violations. The MUVI paper reports that MUVI catches

the Mozilla bugs and MySql#3, but not MySql#2. The reason why

MySql #2 (shown in Figure 1) is undetected by MUVI but is de-

tected by AtomTracker is as follows. MUVI fails because the corre-

lation between t->rows and binlog is conditional: t->rows and bin-

log do not always need to be accessed together; only when t->rows

is modified at the end, binlog needs to be modified atomically with

it. This atomicity relation is easily extracted by AtomTracker-I by

examining execution traces. MUVI does not extract this relation.

6.3. False Positives

AtomTracker is a heuristic-based approach and, therefore, sub-

ject to False Positives (FPs). To evaluate this issue, we apply

AtomTracker-D to five bug-free runs per program — obtained by

changing the inputs. Table 6 shows the average number of FPs ob-

served per run, for three different scenarios: (i) software implemen-

tation, (ii) hardware implementation where, rather than signatures,

we use an unbounded buffer to store addresses in the AVM, and (iii)

hardware implementation with signatures as in Section 5.

The software implementation of AtomTracker-D has an average

of only 0.8 and 1.6 FPs per run for the commercial and SPLASH-2

codes, respectively. These few FPs are due to undertraining. The

more we train, the better the AR accuracy will be, and hence the

fewer the FPs will be. The hardware implementation has two ad-

ditional sources of FPs: false sharing due to using cache line ad-

App FP in FP in HW impl

SW impl Unbounded Signatures

buffer

Apache#1 1.8 2.0 2.0

Apache#2 2.6 10.4 14.4

Mozilla#1 0.4 1.8 1.8

Mozilla#2 0.0 3.0 6.0

Mozilla#3 0.0 0.0 0.0

MySql#1 0.6 12.2 15.0

MySql#2 0.8 7.6 9.6

MySql#3 0.2 17.2 18.0

Avg 0.8 6.8 8.4

SPL2 kernels 0.0 14.7 15.3

SPL2 apps 3.3 12.7 17.6

Avg 1.6 13.7 16.4

Table 6. False positives in different scenarios.

dresses and aliasing due to signatures. Column 3 of Table 6 includes

only the impact of false sharing, since signatures are replaced by an

unbounded address buffer. This leads to an average of 6.8 and 13.7

FPs per run for the commercial and SPLASH-2 codes, respectively.

When we use signatures and, therefore, include the aliasing effect

as well, the average FPs per run is 8.4 and 16.4.

Overall, the number of FPs in AtomTracker-D is comparable to

other schemes. For example, for similar commercial codes, AVIO

has 7 FPs per code (compared to 8.4 in AtomTracker-D), and SVD

has 3.2 FPs per M instructions (compared to 0.16 FPs per M in-

structions in AtomTracker-D).

6.4. Execution Time Overhead

Table 7 shows the overhead of the complete hardware and soft-

ware implementations of AtomTracker-D. The overhead of the

hardware one is measured in increase in execution time and in net-

work traffic. The execution time increases by an average of only

0.2% and 4.0% for the commercial and SPLASH-2 codes, respec-

tively. This makes AtomTracker-D suitable for production runs.

This low overhead results from running the algorithm in hardware

in the AVM. The main source of overhead is the additional network

traffic caused by first-time accesses in an AR that are intercepted by

the cache. This causes on average 3.3% and 9.2% more traffic for

the commercial and SPLASH-2 codes, respectively. The SPLASH-

2 codes induce higher traffic because they have relatively more data

sharing.

App HW impl SW impl

Execution Traffic Slowdown (x)

time increase in Due to Total

increase (%) bytes (%) Pin

Apache#1 0.1 1.3 8.7 80.4

Apache#2 0.1 1.0 6.9 74.1

Mozilla#1 0.1 5.5 2.9 14.6

Mozilla#2 0.5 6.3 1.3 2.1

Mozilla#3 0.1 2.7 1.5 1.9

MySql#1 0.1 4.2 6.2 15.9

MySql#2 0.1 1.5 7.5 13.9

MySql#3 0.3 3.8 1.8 2.8

Avg 0.2 3.3 4.6 25.7

SPL2 kernels 2.2 9.0 106.4 573.1

SPL2 apps 5.8 9.4 19.3 256.1

Avg 4.0 9.2 62.9 414.6

Table 7. Execution overhead of AtomTracker-D.

The software implementation slows down, on average, 26x and

415x the commercial and SPLASH-2 codes, respectively. Of this,

Pin accounts for a 5x and 63x slowdown, respectively. Since our

software implementation is highly unoptimized, these slowdowns

should only be considered an upper bound. They can easily be re-

duced with a better implementation. Still, they are acceptable for

in-house testing, especially those for the commercial codes.

6.5. Components of AtomTracker­I

As described in Section 3.2, AtomTracker-I uses a preprocess-

ing pass that collects Critical Section (CS) and Loop (LP) infor-

mation. To evaluate the contribution of this pass in finding ARs,

we use three microbenchmarks for which we know the actual ARs.

We cannot use our main applications because we do not know the

correct ARs there. The three microbenchmarks, shown in Table 8,

implement a linked list, a producer-consumer pattern, and an FFT.

They have 17, 4, and 14 ARs, respectively. Table 8 shows the frac-

tion of the correct ARs that are inferred by our algorithms. We

consider four cases: the complete AtomTracker-I (ATI), ATI with-

out the critical section information (ATI-CS), ATI without the loop

information (ATI-LP), and ATI without either (ATI-CS-LP). From

the average numbers, we see that AtomTracker-I identifies all the

ARs. Without CS or LP information, AtomTracker-I identifies only

79% or 90% of them. So, both types of information are needed.

Micro- ARs Inferred by AtomTracker-I (ATI) versions

benchmark ATI ATI - CS ATI - LP ATI - CS - LP

(# of ARs) (% of (% of (% of (% of

correct) correct) correct) correct)

LinkedList (17) 100.0 58.8 94.1 52.9

ProdCons (4) 100.0 100.0 75.0 75.0

FFT (14) 100.0 78.6 100.0 78.6

Avg (11.7) 100.0 79.1 89.7 68.8

Table 8. Impact of the AtomTracker-I preprocessing pass.

7. Limitation: Nested Atomic Region

The current AtomTracker algorithm cannot infer nested atomic

regions. Figure 11(a) shows a correct nested atomic region in thread

1. The outer region accesses y and the inner ones access x. If we

run AtomTracker-I, it detects a conflict on x and incorrectly infers

the two ARs of Figure 11(b).

thread 1

. . .

. . .

thread 2

. . .

thread 1

. . .

. . .

thread 2

. . .

lock(l);

...= y;

lock(m);

x = ...;

unlock(m);

lock(m);

x = ...;

unlock(m);

y = ...;

unlock(l);

lock(l);

...= y;

lock(m);

x = ...;

unlock(m);

lock(m);

x = ...;

unlock(m);

y = ...;

unlock(l);

lock(m);

x = ...;

unlock(m);

lock(m);

x = ...;

unlock(m);

(a) (b)
Figure 11. Nested atomic region.

8. Conclusions

This paper presented AtomTracker, the first scheme to (1) auto-

matically infer generic non-nested ARs (not limited by issues such

as the number of variables accessed, the number of instructions in-

cluded, or the type of code construct the region is embedded in) and

(2) automatically detect violations of them at runtime with negligi-

ble execution overhead. No programmer input or annotations are

needed. AtomTracker provides novel algorithms to infer generic

ARs and to detect atomicity violations of them. Moreover, we pre-

sented a hardware implementation of the violation detection algo-

rithm that leverages cache coherence state transitions in a multipro-

cessor. To evaluate AtomTracker, we took eight atomicity violation

bugs from real-world codes like Apache, MySql, and Mozilla, and

showed that AtomTracker detects them all — which is not the case

with any of the existing approaches. In addition, AtomTracker au-

tomatically inferred all of the ARs in a set of microbenchmarks

accurately. Finally, we also showed that the hardware implementa-

tion induces a negligible execution time overhead of 0.2–4.0% and,

therefore, enables AtomTracker to find atomicity violations on-the-

fly in production runs.

References

[1] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, 1970.

[2] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation
of speculative threads in multiprocessors. In International Symposium
on Computer Architecture, June 2006.

[3] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. In Symposium on Principles of
Programming Languages, January 2004.

[4] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
Programming Language Design and Implementation, June 2003.

[5] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection of
atomic-set-serializability violations. In International Conference on
Software Engineering, May 2008.

[6] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou.
MUVI: Automatically inferring multi-variable access correlations and
detecting related semantic and concurrency bugs. In Symposium on
Operating Systems Principles, October 2007.

[7] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics. In
International Conference on Architectural Support for Programming
Languages and Operating Systems, March 2008.

[8] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting atomicity vio-
lations via access interleaving invariants. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, October 2006.

[9] B. Lucia, L. Ceze, and K. Strauss. Finding concurrency bugs with
context-aware communication graphs. In International Symposium on
Computer Architecture, December 2009.

[10] B. Lucia, L. Ceze, and K. Strauss. ColorSafe: Architectural support
for debugging and dynamically avoiding multi-variable atomicity vi-
olations. In International Symposium on Computer Architecture, June
2010.

[11] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid: Detecting
and surviving atomicity violations. In International Symposium on
Computer Architecture, June 2008.

[12] C.-K. Luk et al. Pin: Building customized program analysis tools with
dynamic instrumentation. In Conference on Programming Language
Design and Implementation, June 2005.

[13] T. Moseley, D. Grunwald, D. A. Connors, R. Ramanujam,
V. Tovinkere, and R. Peri. LoopProf: Dynamic techniques for loop
detection and profiling. In Workshop on Binary Instrumentation and
Applications, October 2006.

[14] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas. SigRace: Signature-
based data race detection. In International Symposium on Computer
Architecture, June 2009.

[15] C.-S. Park and K. Sen. Randomized active atomicity violation detec-
tion in concurrent programs. In International Symposium on Founda-
tions of Software Engineering, November 2008.

[16] Virtutech. Simics. http://www.simics.net/.
[17] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-

threaded programs. IEEE Trans. Softw. Eng., 2006.
[18] M. Xu, R. Bodı́k, and M. D. Hill. A serializability violation detector

for shared-memory server programs. In Conference on Programming
Language Design and Implementation, June 2005.

[19] J. Yu and S. Narayanasamy. A case for an interleaving constrained
shared-memory multi-processor. In International Symposium on Com-
puter Architecture, June 2009.

