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Abstract—Advanced Synchronization Facility (ASF) is an
AMD64 hardware extension for lock-free data structures and
transactional memory. It provides a speculative region that
atomically executes speculative accesses in the region. Five new
instructions are added to demarcate the region, use speculative
accesses selectively, and control the speculative hardware con-
text. Programmers can use speculative regions to build flexible
multi-word atomic primitives with no additional software
support by relying on the minimum guarantee of available ASF
hardware resources for lock-free programming. Transactional
programs with high-level TM language constructs can either
be compiled directly to the ASF code or be linked to software
TM systems that use ASF to accelerate transactional execution.
In this paper we develop an out-of-order hardware design to
implement ASF on a future AMD processor and evaluate it
with an in-house simulator. The experimental results show
that the combined use of the L1 cache and the LS unit is
very helpful for the performance robustness of ASF-based lock-
free data structures, and that the selective use of speculative
accesses enables transactional programs to scale with limited
ASF hardware resources.
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I. INTRODUCTION

Multi-core processors are now prevalent in server and
client systems. However, the complexity of parallel pro-
gramming prevents programmers from taking advantage of
abundant hardware parallelism. While scalable lock-free
data structures avoid the drawbacks of the traditional lock-
based programming such as deadlock and priority inversion,
it remains difficult to develop and express their complex
algorithms with basic atomic primitives such as single-word
CAS (compare-and-swap) [1]–[3]. Transactional memory
(TM) makes parallel programming easier by allowing pro-
grammers to execute a group of instructions atomically
with transactions but needs hardware acceleration for per-
formance [4]–[8].

Advanced Synchronization Facility (ASF) is an AMD64
hardware extension for lock-free data structures and trans-
actional memory [9], [10]. It provides a speculative region
that atomically executes speculative accesses in the region.
Speculative regions are used to build flexible multi-word
atomic primitives for lock-free programming and to pro-
vide first-generation hardware acceleration for transactional
programming. The ASF ISA consists of five instructions to

demarcate speculative regions, roll back a speculative region
voluntarily, selectively annotate the memory accesses to be
processed speculatively, and semantically drop a previous
speculative load. ASF supports a minimum capacity guar-
antee that allows speculative regions to execute success-
fully on ASF hardware implemented with certain resource
constraints. With the guarantee, programmers can avoid the
burden of developing complex software backup mechanisms
reported to make it often difficult to use purely best-effort
hardware support [11].

We developed an out-of-order hardware design to im-
plement ASF on a future AMD processor. The design
1) supports a minimum capacity guarantee, 2) allows a
speculative region to survive TLB misses and branch mispre-
dictions, 3) supports near function calls that do not change
segment registers in a speculative region, 4) handles ASF
instructions along a mispredicted execution path due to
branch misprediction, 5) addresses the commit atomicity
issue incurred when both the load-store (LS) unit and the
L1 cache are used as speculative buffers under the AMD64
memory consistency model. The evaluation results with
an in-house simulator show 1) that using the LS unit as
speculative buffer in addition to the L1 cache is very helpful
for performance robustness of ASF-based lock-free data
structures against random data-sets and 2) that the selective
use of speculative accesses with LOCK MOVs significantly
reduces the speculative memory footprints of transactional
programs and improves application scalability with limited
ASF hardware resources.

The paper is organized as follows. Section II provides
background on lock-free data structures and transactional
memory. Section III explains the ASF ISA and the summary
of the early reviews from a group of TM experts and
potential custommers. Section IV describes the out-of-order
hardware design for the ASF implementation. Section V
presents the evaluation results. Section VI discusses related
work, and Section VII concludes the paper.

II. BACKGROUND

There have been myriad proposals for lock-free data
structures [1]–[3], [12]. Lock-free synchronization is at-
tributed to early work by Lamport [12]. Herlihy showed
that, given an atomic compare-and-swap (CAS) primitive,



Table I. ASF instruction set architecture.

Category Instruction Function
Region SPECULATE Start a speculative region
Boundary COMMIT End a speculative region
Speculative LOCK MOV Load from [Addr]
Access Reg, [Addr] to Reg speculatively

LOCK MOV Store from Reg
[Addr], Reg to [Addr] speculatively

ASF ABORT Abort the current speculative
Context region
Control RELEASE Hint to semantically

[Addr] drop a previous speculative
load from [Addr]

arbitrary concurrent data structures can be implemented
in a lock-free manner [3]. More complex use cases of
atomic primitives were shown for lock-free memory man-
agement [1]. Managed languages such as Java and C#
provide programmers with concurrent data structure libraries
such as the java.util.concurrent package [13].

Transactional Memory (TM) makes it easier for program-
mers to develop parallel programs. With TM, programmers
enclose a group of instructions within a transaction to
execute the instructions in an atomic and isolated way.
The underlying TM system runs transactions in parallel
as long as they do not conflict. Two transactions con-
flict when they access the same address and one of them
writes to it. A hardware TM (HTM) system uses dedicated
hardware to accelerate transactional execution [5]–[8]. It
starts a transaction by taking a register checkpoint with
shadow register files. Whenever the transaction writes to
memory, the transactional data produced by the write are
maintained separately from the old data by either buffering
the transactional data in hardware buffers such as the cache
or logging the old value (i.e., data versioning). It augments
the cache with additional bits [6], [7] or uses separate
hardware structures such as Bloom filters [8] to record
the memory addresses read by the transaction in its read-
set and those written in its write-set. A conflict between
two transactions is detected by comparing the read-sets and
the write-sets of both transactions (i.e., conflict detection).
If a conflict is detected, one of the transactions is rolled
back by undoing transactional writes, restoring the register
checkpoint, and discarding transactional metadata (i.e., the
read-/write-sets). Absent a conflict, the transaction ends by
committing transactional data and discarding transactional
metadata and the register checkpoint.

III. ASF ISA
A. ISA

Table I shows the five instructions ASF adds to the
AMD64 architecture. The SPECULATE instruction starts a
speculative region. It takes a register checkpoint that consists
of the program counter (rIP) and the stack pointer (rSP). The

Table II. Access rules on mixing speculative accesses and
non-speculative accesses in the same speculative region.

Current Access
Previous Speculative Non-speculative
Access Load Store Load Store

Speculative Allowed Allowed Allowed Not
Load/Store Allowed

Non-speculative Allowed Allowed Allowed Allowed
Load/Store

rest of the registers are selectively checkpointed by software
in the interest of saving hardware cost. Nested speculative
regions are supported through flat nesting — parent specu-
lative regions subsume child speculative regions [14].

The LOCK MOV instruction moves data between reg-
isters and memory like a MOV, but with two differences.
First, it should be used only within speculative region;
otherwise, a general protection exception (#GP) is triggered.
Second, the underlying ASF implementation processes the
memory access by the LOCK MOV speculatively (i.e., data
versioning and conflict detection for the access). A conflict
against the access is detected when either a speculative
access from another speculative region or a non-speculative
access also touches the same cache line, and at least one
of the accesses is a write. This ensures strong isolation of
the memory accesses done with LOCK MOVs [4]. Since the
detection is done at cache-line granularity, there can be false
conflicts due to false data sharing in a cache line. To reduce
design complexity, LOCK MOVs are allowed only for the
WB (writeback) memory access type [15]. ASF provides
the minimum capacity guarantee so that speculative regions
speculatively accessing distinct and naturally-aligned mem-
ory words less than the minimum guarantee are guaranteed
not to suffer from capacity overflows that abort a speculative
region when it requires more hardware resources than the
underlying ASF implementation can support.

Since ASF allows speculative accesses and non-
speculative accesses to be mixed within a speculative region,
it is possible that the same cache line is accessed by both
access types in the same speculative region. ASF disallows
the case where a cache line accessed speculatively in the
past is modified by a non-speculative store later as shown in
Table II. This rule aims to separate the previous speculative
data that will be committed at the end of the speculative
region from the current non-speculative data that must be
committed immediately. If this rule is violated, a #GP
exception is triggered. The other cases are allowed. A cache
line accessed non-speculatively in the past is allowed to
be accessed speculatively or non-speculatively later since
the past non-speculative access was committed as soon as
it retired. A cache line accessed speculatively in the past
is allowed to be accessed speculatively or loaded non-
speculatively since the load just reads the up-to-date values



in program order.
The RELEASE instruction is a hint to drop isolation on

a speculative load from a memory address. The underlying
ASF implementation may stop detecting conflicts against the
address with the semantics that the load never happened.
The RELEASE is ignored if the address was modified
speculatively. This is to prohibit discarding speculative data
before committing a speculative region.

The COMMIT instruction ends a speculative region. The
register checkpoint is discarded, and the speculative data are
committed. A nested COMMIT does not finish a speculative
region for flat nesting. The underlying ASF implementation
checks if there is a matching SPECULATE. If not, a #GP
exception is triggered.

The ABORT instruction rolls back a speculative region
voluntarily. Speculative data are discarded, and the register
checkpoint is restored. This brings the execution flow back
to the instruction following the outermost SPECULATE and
terminates speculative operation. ASF supports jumping to
an alternative rIP at an abort by manipulating the Zero
flag (ZF). ZF is set by a SPECULATE and cleared when
a speculative region is aborted. A JNZ (jump when not
zero) with an alternative rIP can be placed right below the
SPECULATE. The JNZ falls through at first since ZF is
set by the SPECULATE but jumps to the alternative rIP
at an abort since ZF is cleared for the aborted speculative
region. Since the execution flow is out of the ASF hardware
context after the abort, the JNZ needs to jump back to the
SPECULATE if the speculative region is to be retried. On
detecting a conflict, ASF performs the same abort procedure
to roll back the conflicted speculative region.

There are multiple reasons to abort a speculative region
besides the ABORT instruction and a conflict. Since it
is important for software to understand why a speculative
region has failed and respond appropriately, ASF uses rAX
to pass an abort status code to software. Since rAX is
updated with the status code at an abort, compilers must not
use rAX to retain a temporary variable over a SPECULATE.
rAX is used for the status code since a new dedicated register
for the status code would require additional OS support to
handle context switches.

There are five abort status codes. ASF CONTENTION
is set when a speculative region is aborted by a con-
flict. ASF ABORT is set by the ABORT instruction.
ASF CAPACITY is set when a speculative region is aborted
due to capacity overflows. ASF DISALLOWED OP is set
when a prohibited instruction is attempted within speculative
regions. The prohibited instructions are categorized into
three groups. The first group includes the instructions that
may change the code segments and the privilege levels such
as FAR CALLs, FAR JUMPs, and SYSCALLs. The second
group includes the instructions that trigger interrupts such
as INTs and INT3s. The third group includes instructions
that can be intercepted by the AMD-V (Virtualization)

hypervisor [16]. ASF FAR is set when a speculative region
is aborted due to an exception (e.g., page fault) or an inter-
rupt (e.g., timer interrupt). For design simplicity, ASF rolls
back speculative regions at exceptions and interrupts. To
report which instruction triggered the exception, ASF adds
a new MSR (Model Specific Register), ASF Exception IP,
which contains the program counter (rIP) of the instruction
triggering the exception. At a page fault, a speculative region
is aborted, and the page fault’s linear address is stored in
CR2 (Control Register 2) as usual before the OS page fault
handler is invoked [15]. A speculative region is not aborted
by TLB misses, branch misprediction, and near function
calls that do not change segment registers.

B. Programming with ASF
ASF supports three programming styles: transactional pro-

gramming, lock-free programming, and collaboration with
traditional lock-based programming.
Transactional Programming: It is straightforward to

write transactional programs with ASF. A transaction is
mapped to a speculative region whose memory accesses
are done with LOCK MOVs between a SPECULATE and
a COMMIT. However, it is more likely that average pro-
grammers use high-level TM language constructs and rely
on TM compilers to optimize the use of LOCK MOVs to run
transactions efficiently with limited ASF hardware resources.
In [10], a TM compiler is developed to generate the ASF
code from C/C++ programs written with high-level TM
language constructs. It optimizes the speculative memory
footprints of the ASF code by analyzing speculative regions,
identifying memory accesses that do not require speculative
accesses such as certain stack accesses, and not using LOCK
MOVs for them.
Lock-free Programming: ASF makes it easy to construct

lock-free data structures for which simple atomic primitives
such as CAS are either insufficient or inconvenient. For
example, a lock-free LIFO list is a concurrent linked list
that pushes and pops elements like a stack without locking.
It can be implemented with a single-word CAS instruction
such as a CMPXCHG. The top element A is popped by
first reading the pointer to A from the link head, reading the
pointer to the next element B from A’s next pointer, and then
writing the pointer to B to the link head with a CAS that
updates the link head only when the head still points to A.
While providing better concurrency than a lock-based LIFO,
the CAS-based implementation has the ABA problem [17]
caused by the time window between reading the pointer to
A and executing the CAS. If another thread pops A, pops B,
and pushes A back during the time window, the CAS will
update the list head with the pointer to B since the head
still points to A. This breaks the list since B is not in the
LIFO any more. This issue has traditionally been addressed
by appending a version number to the list head which is
atomically read and updated with the head. However, this



Push:
   SPECULATE
   JNZ <Push>
   LOCK MOV RAX, [RBX + head]
   MOV [RDX+ next], RAX
   LOCK MOV [RBX + head], RDX
   COMMIT

(a) Lock-free LIFO

Insert:
   SPECULATE
   JNZ <Insert>
   LOCK MOV RAX, [table_lock]
   CMP RAX, 0
   JE <ActualInsert>
   ABORT
ActualInsert:
   // insert an element
   COMMIT

Resize:
   LOCK BTS [table_lock], 0
   JC <Out>
   // resize the table
   MOV [table_lock], 0
Out:

(b) Resizable Hashtable

Pop:
   SPECULATE
   JNZ <Pop>
   LOCK MOV RAX, [RBX + head]
   CMP RAX, 0
   JE <Out>
   MOV RDX, [RAX + next]
   LOCK MOV [RBX + head], RDX
Out:
   COMMIT

Figure 1. Lock-free LIFO and resizable hash table with ASF ISA.

requires a wider CAS operation and extra space consumed
for the list head.

ASF avoids these requirements by detecting data races not
based on data values but based on the accesses themselves.
In the Pop function in Figure 1(a), the pointer to A is loaded
from the link head (RBX + head) to RAX speculatively,
which initiates conflict detection against the link head. If the
LIFO is not empty (i.e., CMP RAX, 0), the pointer to B is
loaded from A’s next pointer (RAX + next) to RDX. Finally,
the link head is updated with the pointer to B (RDX). In this
way, the Pop function is free of the ABA problem since the
link head is protected by ASF throughout the function, and a
conflict is detected if another core pops A concurrently. The
Push function works similarly except that it does not have
the CMP instruction to see if the LIFO is empty. Moreover,
ASF allows multiple elements to be popped in one atomic
operation, by allowing one to safely walk the list to the
desired extraction point and then update the link head.
Collaboration with Lock-based Programming: It is

beneficial for the ASF code to work with traditional lock-
based code in order to use locking as a simple backup
mechanism covering uncommon cases. For example, con-
sider a concurrent hash table. It is easy to develop the ASF
code that inserts/removes an element to/from the hash table.
Occasionally, the hash table may need to be resized, which
requires accessing all elements in the hash table. If the hash
table is large, the limited hardware resources in an ASF
implementation are likely to cause a capacity overflow.

Our recommendation is to implement lock-based resizing
code with a 1-bit hash table lock, as shown in Figure 1(b).
The insertion code starts a speculative region and reads
the lock bit (table lock) with a LOCK MOV. If the lock
bit is not set, the code jumps to ActualInsert and inserts
a new element. If the lock bit is set, it busy-waits by
aborting and retrying the speculative region. The resizing
code grabs the lock non-speculatively with a BTS (bit test
and set) [15]. The BTS instruction reads the lock bit, copies
it to CF (Carry Flag), and sets the lock bit. If the lock bit
is set, someone else is resizing the hash table, in which
case, the code escapes the function (JC). Otherwise, the
current invocation resizes the hash table and finishes the
function by resetting the lock bit. By setting the lock bit

with the BTS, the resize function aborts all active speculative
regions inserting elements by conflicts and prevents future
speculative regions from entering the insertion code until
it resets the lock bit. This ensures that the resizing code
accesses the hash table exclusively, and the hash table is
race-free during resizing. While the resizing code is not
running, the speculative regions inserting elements execute
in parallel since they read-share the lock bit.

C. Discussion with Early Reviewers
One of the best ways to improve an ISA is to talk with and

learn from potential customers and experts [18]. This section
presents the summary of the early reviews about the ASF
ISA from a group of TM experts and software developers.
Non-speculative Access in Speculative Region: There

was concern about allowing non-speculative accesses in a
speculative region for transactional programming since this
feature could weaken isolation among speculative regions.
Other reviewers liked the feature since it enables TM
software tools to “punch through” a speculative region.
This feature can, for example, be useful for debuggers to
log information about outstanding speculative regions [19].
We advocate non-speculative accesses mainly for lock-free
programming in favor of giving more programming freedom
to software developers. In addition, the selective use of
speculative accesses can be helpful in saving the ASF
hardware resources for transactional programming as shown
in Section V-C. However, in any case, programmers can
always choose to use only speculative accesses to be on
the safe side whenever they are concerned with weakening
isolation.
Minimum Capacity Guarantee: Should ASF provide

any guarantee or can it be purely best-effort (i.e., no guar-
antee at all)? Obviously, no guarantee is an easier choice
for hardware designers and is advocated by some reviewers.
However, other reviewers also pointed out that best-effort
speculative regions would lack a good property of the exist-
ing atomic primitives (e.g., CAS) – that the primitives always
commit in a certain way and make progress. They liked the
minimum capacity guarantee (i.e., the largest memory foot-
print guaranteed not to cause capacity overflows) supported
by ASF in two ways. First, it makes speculative regions look
less like “black magic” for successful speculative execution.



Second, programmers can tell when they do not need to
write software fallback code to deal with capacity overflows.
We evaluate three design options to support the minimum
capacity guarantee in Section V.
Nesting: Multiple reviewers suggested not to bother

supporting nested speculative regions. They agreed that
composability with nesting is important for transactional
programming but argued that this may have to be supported
by software at least for early ASF implementations. We
agree with this argument and consider dropping the nesting
support.
Contention Management: The baseline ASF contention-

management policy is attacker wins where a speculative
region issuing a conflicting memory access wins the con-
flict [20]. This can cause live-locks, and some reviewers
expressed that “dead-lock is hard to deal with, but live-
lock is harder”. We chose the attacker wins policy for two
reasons: 1) it is cheap to implement and 2) the complexity
of modern processor designs tends to introduce random
back-off latencies when speculative regions are re-executed,
which can eliminate live-locks naturally in some cases.
However, we agree that there still is a danger to suffer from
live-locks, and we are developing cost-effective hardware
schemes to eliminate live-locks. For now, we expect that
software backup code either takes an alternative execution
path or retries the aborted speculative region after random
back-off time [20].
Imprecise Exception: Since ASF aborts speculative re-

gions at exceptions, the processor state observed by the
OS exception handler is different from the processor state
of the moment exceptions are triggered. In other words,
ASF makes exceptions imprecise from the perspective of
software. Some reviewers asked if ASF could provide more
information about exceptions beyond ASF Exception IP to
compensate imprecise exception, which surely is possible.

Another question was about stepping an outstanding spec-
ulative region through for debugging. We have an idea
to enable the stepping by suspending a speculative region
at a debug trap, running the debugger non-speculatively,
and resuming the speculative region when returning from
the trap. However, it incurs additional cost and will be
considered only when there is a clear demand from software
developers.

IV. IMPLEMENTATION

This section presents the current out-of-order hardware
design for the ASF implementation on a future AMD
processor.

A. Overview
While the main design challenges to the ASF implemen-

tation come from putting the long-lived ASF speculative
hardware context and the short-lived out-of-order execution
context together, at a high level, our design in Figure 2 is

close to a cache-based HTM design [6], [7]. It buffers spec-
ulative data in the load/store queues and the L1 cache (i.e.,
lazy data versioning [6]). The L1 cache supports relatively
large speculative regions for transactional programming. The
load/store queues are used to provide a higher minimum
capacity guarantee for lock-free programming since the
minimum capacity guarantee with a 4-way set-associative
L1 cache is limited to only four distinct memory words.
The design adds one bit per load/store queue entry and two
bits per cache line to mark speculative data. The AMD
Coherent HyperTransport (cHT) protocol [21] is used to
detect conflicting speculative/non-speculative memory ac-
cesses from other cores by checking incoming cache co-
herence messages against the additional bits. If a conflict
is detected, the conflicted speculative region is aborted by
discarding the speculatively modified data and resetting the
bits. If COMMIT is reached without conflicts, the buffered
speculative data are committed by gang-clearing the bits and
sending the stores buffered in the store queue to the L1
cache. Following the reviewers’ suggestion in Section III-C,
this design does not support nesting for simplicity. Figure 2
shows the hardware structures for the ASF implementation.
In the figure, the components changed or added for ASF
are shown in grey. The rest of the section explains the ASF
implementation details.

B. Out-of-Order Implementation Details
Beginning a Speculative Region: The SPECULATE

instruction to start a speculative region is microcoded in
the microcode ROM. On detecting a SPECULATE, the
instruction decoder sets the InSP (in speculation) bit to
remember the beginning of a speculative region. It sig-
nals the instruction dispatcher to read the SPECULATE
microcode. The microcode 1) computes the next rIP so
that rIP is restored to point to the instruction following the
SPECULATE at an abort, 2) saves the next rIP and the
current rSP in the shadow register file, and 3) executes a
mfence (memory fence) micro-op. The mfence generates a
dependency between SPECULATE and later LOCK MOVs,
which prevents the LOCK MOVs from being executed ahead
of the SPECULATE in the out-of-order execution stage [22].
The shadow register file is carved out of the existing micro-
architectural register file used only by micro-ops.
Speculative Accesses: To track speculative accesses with

LOCK MOVs, two bits are added per cache line: the SW
(speculative write) bit for speculative stores and the SR
(speculative read) bit for speculative loads as shown in
Figure 2. The SW bit is also added per store queue entry,
and the SR bit per load queue entry. A LOCK MOV is
issued to the LS (load/store) unit and sets the SW bit of the
store queue entry for a store operation and the SR bit of the
load queue entry for a load operation. The data movement
operation for the LOCK MOV is handled in the same way
as a normal MOV. The AMD64 TLB refill hardware allows
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Figure 2. The hardware structures for ASF implementation. The components changed or added for ASF are shown in grey.

a speculative region to survive a possible TLB miss during
address translation for the LOCK MOV by handling it in
hardware. When the LOCK MOV retires, the SR bit of the
load queue entry is cleared, and the corresponding SR bit in
the L1 cache is set. The SW bit of the store queue entry is
cleared when the speculative data are transferred from the
store queue to the L1 cache along with setting the SW bit in
the L1 cache. If speculative data are written to a cache line
that contains non-speculative dirty data (i.e., the D (Dirty) bit
is set, but the SW bit is not set), the cache line is written back
first to make sure that the last committed data are preserved
in the L2/L3 caches or the main memory.

The LS unit starts buffering speculative data only when
the transfer of the SW/SR bits from the load/store queues
to the L1 cache meets two conditions: 1) it causes a cache
miss (i.e., no cache line to retain the bits) and 2) all cache
lines of the indexed cache set have their SW and/or SR
bits set (i.e., no cache line to evict without triggering a
capacity overflow). If a non-speculative access meets the two
conditions above, the L1 cache handles it as if the access is
a UC (uncacheable) type to avoid a capacity overflow, and
the L2 cache handles it directly. In order to hold as much
speculative data as possible, the L1 cache eviction policy
evicts the cache lines without the SW/SR bits set first. A
cache line prefetched by a hardware prefetcher is inserted
into the L1 cache for a speculative region only when it does
not cause an overflow exception.

A speculative store buffered in the store queue is trouble-
some since the store queue is considered as a local write
buffer in the AMD64 memory model [15]. Therefore, a
store is visible to the rest of the system only after it is
transferred to the L1 cache. To broadcast the existence of
the buffered speculative store that cannot be transferred to
the L1 cache without triggering a capacity overflow, an
exclusive permission request for the store is sent to the
cHT fabric when the store retires in the store queue. This
enables the other cores to detect a conflict against the store.

Once the exclusive permission is acquired, the EP (exclusive
permission) bit per store queue entry is set to remember the
acquisition. The COMMIT instruction later checks the EP
bit to make sure that the store has been seen by the rest of
the system for conflict detection before starting the commit
procedure.

An overflow exception is triggered when the load/store
queues do not have an available entry for an incoming
LOCK MOV (i.e., the SW/SR bits of all entries are set
in the queue the LOCK MOV needs to go to). A tricky
problem is that non-speculative accesses should always make
forward progress regardless of the number of the LOCK
MOVs executed in a speculative region. Our design reserves
one entry per queue for the non-speculative accesses to be
able to execute them even when the rest of the load/store
queue entries are full of speculative data. Another problem
with the overflow exception is that LOCK MOVs along a
mispredicted execution path due to branch misprediction can
trigger a false overflow exception. To address this problem,
the OV (overflow) bit is added per ROB entry. On detecting a
capacity overflow from a LOCK MOV, instead of triggering
an overflow exception immediately, the OV bit is set in the
ROB entry of the LOCK MOV. If the LOCK MOV is on
a mis-speculative path, the ROB entry and the hardware
resources associated with the entry will be discarded by
the existing branch misprediction recovery mechanism. A
true capacity overflow will be serviced when the ROB entry
reaches the bottom of the ROB (assuming no other abort
conditions exist before the LOCK MOV) and triggers an
overflow exception.
Conflict Detection: A conflict with another core is de-

tected by checking the SW/SR bits in the LS unit and the
L1 cache against incoming cache coherence messages. An
invalidating message (for store) conflicts with the SW bit and
the SR bit. A non-invalidating message (for load) conflicts
with the SW bit. The baseline AMD processor already has
the necessary CAM (content addressable memory) logic in



the LS unit and the L1 cache for conflict detection. The
LS unit has the CAM logic to check the address tags of all
loads and retired stores for different purposes. The L1 cache
has the CAM logic for address tags. These CAM logics are
extended to read out the SW/SR bits for conflict detection.

Unlike a store, a load is problematic for conflict detection
since a conflict against the load has to be detected from the
moment the loaded value is bound to a register. Since the
value is bound before the load retires, there can be a false
conflict due to in-flight speculative loads (i.e., those that
have not retired yet) on a mispredicted execution path. To
eliminate the false conflict, the CF (conflict) bit is added per
ROB entry. A conflict with a SR bit in the load queue sets the
CF bit of the ROB entry of the conflicted load if the load is
in-flight. If the conflicted load is on a mispredicted execution
path, its ROB entry with the false conflict information will be
discarded before reaching the bottom of the ROB. If not, the
ROB invokes the abort procedure when the ROB entry of the
conflicted load reaches the bottom of the ROB. A conflict
with the other speculative accesses (i.e., retired loads and
stores either in the LS unit or in the L1 cache) is immediately
reported to the ROB as a new interrupt, ASF Conflict, since
the retired accesses are free of branch misprediction. On
detecting the ASF Conflict interrupt, the ROB invokes the
abort procedure for the conflict. The conflicted core replies
to the conflicting core pretending that it could not find a
matching cache line for the cHT protocol.
Aborting a Speculative Region: As explained in Sec-

tion III-A, a speculative region can be aborted for various
reasons. An abort is triggered when the ROB detects any of
the OV (overflow) bit, the CF (conflict) bit, the AI (ABORT
instruction) bit, and the PB (prohibited) bit set in the bottom
ROB entry, or when the ROB receives an ASF Conflict
interrupt. The AI bit is set for the ABORT instruction, and
the PB bit for the prohibited instructions. By checking the
AI/PB bits at the bottom of the ROB, our design eliminates
false aborts on a mispredicted execution path.

The abort procedure shown in Figure 3(a) is very similar
to the normal interrupt handling procedure and is used in
all abort cases. The ROB first ❶ initiates the pipeline flush
that invalidates all ROB entries and load/store queue entries
and ❷ signals the microcode ROM with one of the ASF
abort status codes. Then, the uninterruptable abort handler
in the microcode ROM conducts the following procedure.
It ❸ invalidates the L1 cache lines with the SW bits, ❹
clears the SW/SR bits in the L1 cache, ❺ sets rAX with the
signaled abort code, ❻ clears the ZF flag, and ❼ reads the
saved rIP and rSP values from the shadow register file. At
this point, the abort procedure bifurcates. If the abort code is
ASF FAR (i.e., the abort is due to exceptions or interrupts),
the microcode ⑧ sets ASF Exception IP with the current
rIP (i.e., the one that triggered the exception), ⑨ sets rIP
and rSP with the saved rIP and rSP values, and ⑩ jumps
to the existing exception handler in the microcode ROM.

This makes the exception handler think that the exception is
triggered by the instruction following a SPECULATE. If the
abort status code is not ASF FAR, the microcode ❽ sets rIP
and rSP with the saved rIP and rSP values, and ❾ executes
a jump micro-op to redirect the instruction fetcher to the
saved rIP (typically JNZ as explained in Section III-A).
Committing a Speculative Region: The main challenge

to committing a speculative region is that the simple gang-
clear of the SW/SR bits in the LS unit and the L1 cache
does not guarantee the atomicity of a committing speculative
region under the AMD64 memory model [15]. This problem
is shown in Figure 4(a). In the figure, Core1 ran a speculative
region that wrote to X, Y, and other variables speculatively.
The new X value (X=1) happened to be buffered in the L1
cache, and the new Y value (Y=1) in the store queue. Now,
Core1 is about to commit the speculative region. If Core1
just gang-clears the SW/SR bits to commit the speculative
region, the new Y value will stay in the store queue. The
problem is that, if Core2 reads X and Y at this point, it
will read the new X value (X=1) in the L1 cache and the
old Y value (Y=0) in the main memory. This is because
any value in the store queue of Core1 cannot be read by
Core2 according to the AMD64 memory model (because
the store queue is considered as the local write buffer of
Core1). This breaks the atomicity of the speculative region
because Core2 reads the mix of the new value (X=1) and
the old value (Y=0). To eliminate this problem, our design
uses a nacking mechanism that detects a conflicting cache
coherence message from another core and nacks the message
during the commit procedure. The core receiving the nack
message retries the nacked cache coherence operation later.
In Figure 4(b), the commit procedure starts the nacking
mechanism first and then gang-clears the SW/SR bits in
the load queue and the L1 cache. At this point, Core2 can
read the new X value (X=1) in the L1 cache but cannot
read any Y value since Core1 detects the conflicting read
from Core2 by checking the SW bit set for Y in the store
queue and nacks the read operation. On receiving the nack
message, Core2 retries the read operation and obtains the
new Y value (Y=1) after Core1 completes transferring the
new Y value to the L1 cache. In this way, the nacking-
based commit procedure guarantees the atomicity of the
committing speculative region by preventing the other cores
from reading the old values of memory addresses (e.g., Y=0
in this example) if the store queue of the committing core
has new values to commit to the memory addresses (e.g.,
Y=1).

Figure 3(b) shows the overall commit procedure based on
the nacking mechanism. The COMMIT instruction is mi-
crocoded. On detecting a COMMIT, the instruction decoder
resets the InSP bit and signals the dispatcher to read the
COMMIT microcode. The microcode ROM has a feature to
stall dispatching micro-ops until a wait condition specified in
the microcode is satisfied. A new wait condition is added for
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Figure 3. The execution procedures to abort and commit a speculative region.

Main Memory Y = 0
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Y = 1 is not read
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X = 1 is read  [O]

Y = 0 is read  [X]

(a) gang-clear-based commit mechanism
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Store Queue Y = 1

Core1 (committing) Core2  (reading X,Y)

Y = 1 is not read
in the AMD64 model

X = 1 is read  [O]

Y = 0 is not read
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(b) nacking-based commit mechanism
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Y = 0 is not read
by cHT protocol

Initially, X = Y = 0. A speculative region at Core1 did  X = Y = 1. Now, Core1 is in the middle of COMMIT, and only X = 1 is in the L1 cache.

Figure 4. This example shows how the nacking mechanism guarantees the atomicity of a committing speculative region under the AMD64 memory
model.

the COMMIT that checks ❶ if all instructions in the ROB
are ready to retire without exceptions and ❷ if all retired
stores in the store queue have obtained exclusive permissions
(i.e., their EP bits are set). Once the condition is satisfied,
the COMMIT microcode ❸ signals the L1 cache and the LS
unit to set their NACK bits. Once the bits are set, conflicting
cache coherence messages are nacked instead of aborting
the current speculative region. There is no deadlock due to
the nacking mechanism because the committing speculative
region holds all necessary exclusive permissions to complete
the COMMIT. Then, it ❹ clears the SW/SR bits in the L1
cache and the load queue to first commit the speculative
data in them. This ❺ naturally enables the store queue to
resume transferring the speculative data to the L1 cache
since the SW/SR bits in the L1 cache are now cleared.
The data transferred from the store queue do not set the
SW bits in the L1 cache (done by checking the NACK
bit) since the completion of the data transfer at this point
means that the data are committed and made visible to the
rest of the system. The microcode ROM stalls on another
wait condition that ❻ checks if no store queue entry has
the SW bit set. By the time this condition is met, all new
values in the store queue are transferred to the L1 cache.
Finally, it ❼ signals the L1 cache and the LS unit to
reset their NACK bits, and the commit procedure completes
here. Nothing is done to the shadow register file since it
will be overwritten by the next SPECULATE. Since the

ASF hardware context in this design can support a single
speculative region, a speculative region should not enter the
out-of-order execution stage before the previous speculative
region commits. This case is naturally handled in our design
since the microcode ROM prevents the instructions behind a
COMMIT in the program order from being dispatched until
the COMMIT completes.

Handling Branch Mis-prediction: Mis-predicted
branches before or in the middle of a speculative region
are troublesome since the speculative region can be fetched
and executed along a mispredicted execution path. Our
design uses the existing branch misprediction recovery
mechanism to restore the ASF hardware resources occupied
by the mispredicted ASF instructions of the speculative
region. When the misprediction is detected, the recovery
mechanism naturally discards the ROB entries and the
load/store queue entries occupied by the mispredicted
instructions. Nothing is to be done to the L1 cache since
the SW/SR bits are transferred to the L1 cache only for
retired instructions, and the mispredicted instructions never
retire. The NACK bits in the L1 cache and the LS unit
are not set at this point since a mispredicted COMMIT
instruction will never start the commit procedure. This
condition is true because the mispredicted branch will
flush all younger instructions (including the COMMIT)
when the branch resolves. The InSP bit is tricky to handle
since it has to be restored to the value at the moment the



mispredicted branch was decoded. To restore the InSP bit
properly, the instruction decoder tags the up-to-date InSP
bit values along with the decoded instructions. The SP
bit is added per ROB entry to record the tagged InSP bit
value of each instruction. When a branch is found to be
mispredicted, the SP bit of the branch’s ROB entry is used
to restore the InSP bit. If the mispredicted branch is before
the speculative region, its SP bit is 0 and the InSP bit is
reset. If it is in the middle of the speculative region, its SP
bit is 1 and the InSP bit is set.
Handling Exceptions and Interrupts: Exceptions and

interrupts in a speculative region are handled first by the
ASF abort handler to abort the speculative region and then
by the existing exception handler in the same way as they are
handled without speculative regions. If an instruction before
a SPECULATE in the program order triggers an exception
after the SPECULATE has entered the execution stage, the
ASF hardware context is restored in the same way as a
mispredicted branch before a SPECULATE is handled.
Handling Prohibited Instructions: Since the prohibited

instructions should not be allowed to enter the execution
stage and modify non-speculative resources such as segment
registers, our design detects them early at the decoding stage
when the InSP bit is set. On detecting the instructions, the
instruction decoder signals the microcode ROM to jump to
the prohibited op handler. The handler 1) executes a micro-
op that sets the PB (prohibited) bit of its own ROB entry,
and 2) waits for the entry to reach the bottom of the ROB.
Then, the ROB picks up the exception and initiates the
abort procedure. This way, the prohibited instructions in a
speculative region never enter the execution stage.
Supporting RELEASE: The RELEASE instruction is

tricky to implement since it builds a dependency with LOCK
MOVs around it. We use the bottom execution feature
of the ROB to implement RELEASE. Once dispatched, a
RELEASE does nothing until its ROB entry reaches the
bottom of the ROB. When the entry reaches the bottom, the
ROB signals the RELEASE execution logic to search for the
SR bit to be reset by the RELEASE only in the L1 cache
and in the portion of the load queue that contains retired
loads. After resetting the matching SR bit, the RELEASE
logic signals the ROB for its completion. This way, our
design abides by the dependency among the RELEASE
and the LOCK MOVs around it since the loads behind the
RELEASE have not retired yet and their SR bits are not
examined by the RELEASE logic.

V. EVALUATION

A. Experimental Environment
We are using two in-house simulators to explore the

design space for ASF. One simulator focuses on the internals
of a future out-of-order core design, and the other simulator
focuses on the overall multi-core processor design with a
simplified core model for scalable tests. Unfortunately, we

Table IV. System parameters for simulation.

Feature Description
CPU 3 GHz, 8 x86 cores, 32 load queue entry,

24 store queue entry
L1 Cache 32 KB, 4-way, 64B line, MOESI, write-back,

3 cycle hit time, private
L2 Cache 8 MB, 8-way, 64B line, MOESI, write-back,

15 cycle hit time, shared
Memory 4 GB, DDR3-1600, tCAS,tRP,tWR,tRCD=12.5ns,

tRAS=35ns, 2 memory channels
Interconnect AMD Coherent HyperTransport

could not publish the results from the first simulator by
the time of writing this paper. We present the results from
the second simulator in this paper. We implemented the
ASF design explained in Section IV and three variations
by changing the speculative buffer structures as shown in
Table III. ASF-LC is the baseline implementation that uses
both the L1 cache and the LS unit as speculative buffer.
ASF-C8 and ASF-C4 use only the L1 cache with different
set-associativities as speculative buffer. ASF-AS does not
support LOCK MOV and handles all memory accesses in
a speculative region speculatively. All four designs use the
system parameters in Table IV.

We used the STAMP benchmark suite [23] for transac-
tional programming tests. We took out and modified the
data structures in the library of the benchmark for lock-free
programming tests. The benchmark has eight transactional
applications. For each application, the STAMP benchmark
suite provides two versions that have the same transac-
tions: one for HTM and the other for STM. The HTM
version has only markers for the beginning and the end
of a transaction. The STM version additionally annotates
transactional memory accesses with software barriers. We
used the STM version to obtain the ASF code for ASF-LC,
ASF-C8, and ASF-C4 by substituting the software barriers
with LOCK MOVs and the transaction begin/end functions
with SPECULATEs and COMMITs. This allows us to test
the optimistic case of using a TM compiler to generate the
ASF code [10]. We used the HTM version for ASF-AS.
The application-level abort handler (i.e., the target function
of the JNZ after a SPECULATE) restarts aborted speculative
regions after random back-off delays. The handler falls back
to a software mechanism to deal with an overflow exception.
The basic idea of the mechanism is for an overflowed core
1) to wait for all the other cores to come out of speculative
regions, 2) to prevent them from entering another speculative
region, 3) to execute the non-speculative version of the
overflowed speculative region, and 4) to allow the other
cores to enter speculative regions again after the overflowed
speculative region finishes.



Table III. Four ASF design options tested.

Scheme Speculative Buffer Minimum Guarantee Maximum Capacity
ASF-LC(LS + Cache) 32KB 4-way L1 cache + 27 Words (4 way + 24 store queue entries 33216 Bytes (32768 +

32 load queue + 24 store queue - 1 for non-speculative access) (24 + 32) * 8)
ASF-C8(Cache 8-way) 32KB 8-way L1 cache 8 Words 32768 Bytes
ASF-C4(Cache 4-way) 32KB 4-way L1 cache 4 Words 32768 Bytes
ASF-AS(All Speculative) 32KB 4-way L1 cache 4 Words 32768 Bytes
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Figure 5. Comparison of ASF-LC, ASF-C8, and ASF-C4 for performance robustness of lock-free data structures.

B. Lock-free Programming
Since the scalability of ASF-based data structures such as

hash tables and RB trees is evaluated as part of the STAMP
applications in Section V-C, this section focuses on the per-
formance robustness of the ASF design options for lock-free
programming. As pointed out by reviewers in Section III-C,
the best-effort nature of TM-like hardware support can make
it hard for programmers to deal with performance issues
from the pure software perspective. To test how ASF-LC,
ASF-C8, and ASF-C4 deal with random data-sets robustly,
we developed a micro-benchmark that uses the chained hash
table modified from the STAMP benchmark for ASF. It al-
locates 100M 4-Byte memory blocks, assigns unique IDs to
the blocks, and spawns multiple threads that pick the blocks
randomly and insert them into the hash table with 65536
buckets after checking redundancy until the first overflow
exception is triggered. We repeated the test ten times with
different seeds for random number generation. Figure 5(a)
shows that ASF-LC allows the hash table to contain 12.3x
more blocks than ASF-C8 and 63.9x more blocks than ASF-
C4 in full ASF hardware acceleration. This is because ASF-
LC leverages the fully-associative load/store queues to avoid
a capacity overflow when traversing the chains of outlier
buckets that happen to have much more elements than the
average number of elements per bucket (i.e., load factor).
On the contrary, ASF-C4 does not gracefully deal with the
outlier buckets even when the load factor is as low as 0.25 on
average as shown in Figure 5(b) and significantly decreases
the expected hash table capacity supported by ASF in full
hardware acceleration.

C. Transactional Programming
Figure 6 shows the speedups of the four design options

with up to eight cores. The execution time of each appli-

cation with multiple cores is normalized to the sequential
execution time of the application without transactions. The
applications are categorized into three groups according to
their scalability.

For the first group that consists of bayes, labyrinth,
and yada, ASF-AS scales poorly in comparison to ASF-
LC/C8/C4. This is because ASF-AS does not support LOCK
MOVs that enable the selective use of speculative accesses
to reduce the speculative memory footprints of speculative
regions. Table V shows that the ratio of speculative accesses
with LOCK MOVs in a speculative region is only 8.25% on
average for the STAMP applications. This low ratio clearly
indicates that the applications can consume much less ASF
hardware resources with ASF-LC/C8/C4. We investigated
the sources of the non-speculative accesses in speculative
regions and found that many of them were stack accesses
to spill the limited number of architectural registers in
the AMD64 architecture [15]. The table also shows that
88.94% of transactions fit into the buffer with ASF-AS
on average. While this confirms the observation from a
previous study that the majority of transactions are likely to
be short-lived even for realistic transactional programs [24],
11.06% of the transactions overflowing the cache are long-
lived transactions whose memory footprints are much larger
than short-lived ones [23]. These transactions hurt overall
performance substantially and prevent ASF-AS from scaling.
Bayes and yada perform better with ASF-LC and ASF-
C8 than ASF-C4 since many capacity overflows due to
set-associative conflict misses are eliminated by the higher
cache set-associativity of ASF-C8 and the fully associative
load/store queues of ASF-LC.

For the second group that consists of intruder, kmeans and
SSCA2, all design options perform very similarly since these
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Figure 6. Scalability of the ASF design options. The execution time of each application is normalized to the sequential execution time of the application
without transactions.

Table V. The number of transactions, the ratio of transactions running without overflow exceptions, and the ratio of speculative accesses in a speculative
region for the STAMP applications.

bayes genome intruder kmeans labyrinth ssca2 vacation yada average
Number of Transactions 522 19488 54926 87412 144 93709 4096 13924
Speculative Access Ratio 0.03% 1.65% 10.62% 5.07% 0.00% 33.33% 14.19% 1.12% 8.25%
Transactions ASF-LS 100% 100% 99.99% 100% 100% 100% 94.70% 99.35% 99.25%

w/o Overflow ASF-AS 87.16% 98.76% 99.88% 99.99% 55.56% 99.97% 87.57% 82.63% 88.94%

applications have only short-lived transactions and trigger
few capacity overflows as shown in Table V. Therefore, they
do not take advantage of the selective use of LOCK MOVs,
a high cache set-associativity, or the load/store queues.
Genome and vacation belong to the third group and show
medium performance differences among the four design
options. Vacation scales better with ASF-LC and ASF-C8
due to the reduction of set-associative conflict misses.

Figure 7 shows the execution time breakdown of the
STAMP applications running with eight cores (normalized
to the execution time of ASF-AS). The results from the
second group are not presented since the design options
behave all similarly. In each bar, Halted is the idle time due
to single-threaded code for initialization. Busy is for active
execution time, Mem for the stalled time due to memory
accesses, Virtualization for the time related to the software
overflow mechanism, Aborted for the time wasted due to
abort, Overflow for the execution time of the speculative
regions restarted due to capacity overflows, and Barrier
for the time to synchronize at application barriers. The
figure shows that most of the virtualization time and the
overflow time are removed by the selective use of LOCK
MOVs in ASF-LC/C8/C4 and that they suffer much less
from capacity overflows. For bayes, vacation and yada, ASF-

LC and ASF-C8 further eliminate these times by removing
capacity overflows due to set-associative conflict misses.

VI. RELATED WORK

In addition to the related work discussed in Section II,
there are two closely-related proposals to provide HTM sup-
ports in commercial processors: SUN’s Rock processor [25]
and the Azul system [26]. In comparison to the Rock proces-
sor, ASF supports the selective use of speculative accesses
for efficient ASF hardware resource utilization, offers a
minimum capacity guarantee to help programmers use ASF
as a standalone atomic primitive with no software support
for lock-free programming, and supports TLB misses, near
function calls, and branch misprediction recovery without
aborting speculative regions. The Azul system uses addi-
tional bits per L1 cache line to manage transactional data and
does not support the selective use of speculative accesses.

VII. CONCLUSIONS

This paper presents Advanced Synchronization Facility
(ASF), an AMD64 hardware extension for lock-free data
structures and transactional memory. We explain the ASF
ISA and the out-of-order hardware design for ASF imple-
mentation. The evaluation results show that an ASF-based
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Figure 7. Execution time breakdown of the STAMP applications running with eight cores. It is normalized to the execution time of ASF-AS.

lock-free data structure can perform robustly against random
data-sets by using both the LS unit and the L1 cache as
speculative buffer, and that the selective use of speculative
accesses improves application scalability with limited ASF
hardware resources.
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