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Abstract

Microprocessor-based systems today are composed of multi-core,
multi-threaded processors with complex cache hierarchies and gi-
gabytes of main memory. Accurate characterization of such a sys-
tem, through predictive pre-silicon modeling and/or diagnostic post-
silicon measurement based analysis are increasingly cumbersome
and error prone. This is especially true of energy-related character-
ization studies. In this paper, we take the position that automated
micro-benchmarks generated with particular objectives in mind hold
the key to obtaining accurate energy-related characterization. As
such, we first present a flexible micro-benchmark generation frame-
work (MicroProbe) that is used to probe complex multi-core/multi-
threaded systems with a variety and range of energy-related queries
in mind. We then present experimental results centered around an
IBM POWER7 CMP/SMT system to demonstrate how the systemat-
ically generated micro-benchmarks can be used to answer three
specific queries: (a) How to project application-specific (and if
needed, phase-specific) power consumption with component-wise
breakdowns? (b) How to measure energy-per-instruction (EPI) val-
ues for the target machine? (c) How to bound the worst-case (maxi-
mum) power consumption in order to determine safe, but practical
(i.e. affordable) packaging or cooling solutions? The solution ap-
proaches to the above problems are all new. Hardware measurement
based analysis shows superior power projection accuracy (with error
margins of less than 2.3% across SPEC CPU2006) as well as max-
power stressing capability (with 10.7% increase in processor power
over the very worst-case power seen during the execution of SPEC
CPU2006 applications).

1. Introduction

The power wall has proven to be a major obstacle in the quest to
sustain the historical rates of performance growth in computing sys-
tems. The multi-core/multi-threaded design paradigm (CMP/SMT)
has enabled the growth of throughput performance despite the dra-
matic slowdown in clock speed growth. However, power dissipation
and current delivery limits make it hard to keep scaling indefinitely
along the dimension of on-chip thread count. As such, it is important
to understand the limits and sensitivities of energy-related metrics as-
sociated with current generation processors —so that future systems
can invest into appropriate levels of power management in the right
regions of the micro-architectural design space.

Microprocessor systems today are composed of multi-core, multi-
threaded processors with complex cache hierarchies and gigabytes
of memory. Predictive pre-silicon modeling and diagnostic post-
silicon measurement studies are increasingly cumbersome and error
prone. When it comes to power or energy-related metrics, the chal-
lenge is especially steep, since fine-grained power measurements
or predictions across a complex, highly-threaded multi-core system
are quite difficult. In this paper, we take the position that micro-
benchmarks, generated with particular objectives in mind hold the

key to obtaining accurate energy-related characterization. Specially
crafted micro-benchmarks may be run on simulators (pre-silicon
stage) or real machines (post-silicon stage) to help understand, diag-
nose and fix deficiencies systematically. However, manual generation
of such ‘stressmarks’ is tedious, and requires intimate knowledge
of the underlying micro-architecture pipeline semantics. Automated
micro-benchmark generation is therefore crucial in this regard. More-
over, the automated generation facility must be flexible enough to
generate different classes of micro-benchmarks that are useful in
answering a range of different questions.

In this paper, we present a flexible micro-benchmark generation
framework (MicroProbe) that is used to probe complex processor
systems with a variety and range of energy-related queries in mind.
In particular, three different characterization queries are illustrated
in this paper. MicroProbe’s automated generation facility is used
to derive: (a) an accurate and decomposable power model that is
used to project the power consumption for arbitrary CMP/SMT work-
loads; (b) energy-per-instruction (EPI) ratings for different instruction
classes supported by the system; and (c) a systematically generated
synthetic stress test that maximizes power consumption for the tar-
geted system1. Experimental results are measured on a POWER7-
based 8-core/32-thread system [42] in order to validate the efficacy
of MicroProbe.

This is quite different from prior work [13,20,33,34,39,40], where
‘black-box’ automatic test case generators are focused on stressing or
validating only a single metric: e.g. IPC, power or some utilization-
based index of performance or power. MicroProbe presents the
following unique features: Detailed knowledge of low-level micro-
architecture semantics to assist the micro-benchmark generation
process (‘white-box’ approach), a compiler-like pass-based code
generator to provide flexibility and full control over the code being
generated, and highly integrated design space exploration support to
search for optimal micro-benchmarks. Overall, MicroProbe increases
the productivity of the investigative micro-architect as he/she stresses
the system to understand the fundamental trade-offs across power
and performance metrics.

The main contributions of this paper are the following:
• We present the software architecture of MicroProbe: a framework

for automated generation of micro-benchmarks that a user can
adapt towards exercising a complex multi-core, multi-threaded
computing system in a variety of redundant ways for answering a
range of questions related to energy and performance. The illustra-
tive use of MicroProbe in this paper is limited to three low-level
energy-related case studies as stated below.

• We show how targeted micro-benchmarks generated by Micro-
Probe can be used to form a bottom-up power model that is able
to predict general CMP/SMT workload power very accurately. To
the best of our knowledge, this is the first bottom-up counter-based
power model for a CMP/SMT processor. This type of models are

1From now on, we refer to it as max-power stressmark. This type of test cases are
also known synthetic TDP workloads.



known to perform better [7–9] than those derived from common
modeling approaches. However, they had limited applicability
due to the lack of frameworks for automating the generation of
the micro-architecture aware training data that they need. We
show, through real measurements, that the model is able to pre-
dict POWER7 processor power consumption with average error
of only 2.3% across the SPEC CPU2006 benchmarks. We com-
pare the model against a set of models generated using existing
approaches to show that the generated model outperforms exist-
ing approaches, even on extreme power situations. Finally, we
use the extra information provided by the model to present the
average SPEC CPU2006 processor power breakdown for different
POWER7 SMT/CMP modes.

• We develop a taxonomy of the POWER7 instructions based on en-
ergy per instruction (EPI) and processor activity characteristics. As
far as we know, this is the first EPI-based taxonomy at instruction
level for a CMP/SMT processor such as the POWER7. We report
up to 78% variations on EPI values across instructions, even when
they stress the same functional unit at the same rate. These findings
highlight the importance of such taxonomies in understanding the
instruction-level power-performance trade-offs.

• We use EPI and IPC based formalisms to generate max-power
synthetic stress test programs using the MicroProbe facility. Prior
methods [20, 21, 33, 40] use abstract workload models to make the
design space tractable, losing therefore opportunities during the
instruction type selection pass. We exploit the rich information
implemented in MicroProbe to use the instructions with higher
EPI and IPC per functional unit as the building blocks of the max-
power stressmark. Exhaustive exploration performed on that small
subset of selected instructions was able to find a stress test that
exceeds the maximum power seen during the full-suite SPEC 2006
benchmark execution by 10.7%. We also report that stressmarks
with the same instruction type distribution and activity rate but
different instruction order can show up to 17% difference in power
consumption. The fact that the systematically generated stressmark
slightly outperformed the hand-crafted stress tests generated by an
expert confirms the utility of the proposed approach.
The rest of the paper is organized as follows. Section 2 explains the

software architecture of the micro-benchmark generation framework.
The hardware evaluation and experimental measurement platform
is described in Section 3. Sections 4, 5 and 6 discuss the case stud-
ies. Section 7 summarizes the related research work and Section 8
provides concluding remarks.

2. MicroProbe framework

An overview of the design of MicroProbe and its usage flowchart is
shown in Figure 1. MicroProbe provides a Python scripting interface
to access to a rich set of mechanisms and features. The interface
allows the users to identify the architecture components and their
parameters in order to accommodate the micro-benchmark design
to a target architecture. We show some examples highlighting the
variety of possible user-defined micro-benchmark generation policies
above the dotted horizontal line in Figure 1.

In MicroProbe, the micro-benchmarks are represented by a specific
internal representation within the Code generation module. This
representation can be transformed by a sequence of passes driven by
the micro-benchmark synthesizer. The micro-benchmark synthesizer
is in charge of generating the final code by applying the passes
ordered in accordance to user-specified ordering rules. MicroProbe

Figure 1: MicroProbe usage flowchart (top) and its design overview
(bottom). The modular design provides flexibility in all the
steps of the micro-benchmark generation process.

is therefore a framework that operates like a compiler infrastructure,
achieving a high degree of flexibility and adaptability.

MicroProbe makes the whole micro-benchmark design process
portable to different architectures. This feature is achieved by separat-
ing the architecture dependencies from the process itself (Architecture
module in Figure 1). MicroProbe allows the user to describe the ar-
chitecture through a set of readable text files where the architecture
components and their parameters are set (the Instruction Set Archi-
tecture (ISA) and Micro-architecture definitions in Figure 1). All this
information, in conjunction with micro-architecture analytical mod-
els, can be used (queried) to guide the micro-benchmark generation
process. The generated micro-benchmarks are therefore bound to a
specific architecture, but not the generation process.

Automated design space explorations (DSE) are required to as-
sist the generation of micro-benchmarks with dynamic properties
that cannot be ensured statically. MicroProbe integrates support for
performing automatized DSEs within the Design space exploration
module (See Figure 1). This module defines the mechanisms and
features required to allow the user to define the design space and the
search algorithm. Thus, MicroProbe is seen to provide full flexibility
to perform any kind of DSE.

The modular design with standardized interfaces between the mod-
ules (as shown in Figure 1) makes the framework adaptable. In
addition to this virtue, the following novel functionalities incorpo-
rated in MicroProbe advance the state of the art significantly:

MicroProbe is guided by low-level microarchitecture semantics.
This is an important feature that was missing in previous work. This
information is crucial to assist the generation of micro-architecture
aware micro-benchmarks. It provides a ‘white-box’ solution to
the users to define micro-benchmarks with very specific micro-
architecture properties, avoiding the need to master every detail of
the complex underlying architectures. We explain the Architecture
module in detail in Section 2.1.

MicroProbe also presents novelty in the flexible code generation
support (Code generation module) and in the integrated design space
exploration (DSE) module. These functionalities, not available in
previous work, improve the productivity and range of applicability
of the micro-benchmark generation framework. In Section 2.2, we
discuss the benefits of the compiler-like pass-based design of the
Micro-benchmark synthesizer and in Section 2.3, we present the
advantages of the integrated generic DSE support.

The rest of the section details the novel aspects within the three



1 import MicroProbe as MP
2 # Get the architecture object
3 arch = MP.arch. get_architecture (" POWER7 ")
4 # Create the micro - benchmark synthesizer
5 synth = MP.code. Synthesizer (arch)
6 # Add the passes to be used
7 # to synthesize micro - benchmarks .
8 # Pass 1: Define the program skeleton
9 synth . add_pass (" Single end - less loop

10 of 4096 instructions ")
11 # Pass 2: Define the instruction distribution
12 # Pass 2.1: Select the loads from the ISA
13 loads = [ Select ins in arch.isa() if ins.load() ]
14 # Pass 2.2: Select the VSU Unit loads
15 loads_vsu = [ Select ins in loads
16 if ins.stress(arch.comps["VSU"]) ]
17 synth . add_pass (" Distribution using ‘loads_vsu ’")
18 # Pass 3: Model the memory behavior
19 # Pass 3.1 Define the memory model
20 model = "L1 = 33% ", "L2 = 33% ", "L3 = 34% "
21 synth . add_pass (" Generate addresses
22 according to ‘model ’")
23 # Pass 4: Init registers
24 synth . add_pass (" Init registers to 0 b01010101 ")
25 # Pass 5: Init immediate operands
26 synth . add_pass (" Init immediates to 0 b01010101 ")
27 # Pass 6: Model instruction level parallelism
28 synth . add_pass (" Set instruction dependency
29 distance randomly ")
30 # Generate the 10 micro - benchmarks and save them
31 for idx in range from 1 to 10:
32 ubench = synth . synthesize () # Apply the passes
33 ubench .save("./ example -%s.c"%( idx )) # Save

Figure 2: MicroProbe pseudo-code script that generates 10 micro-
benchmarks consisting of an end-less loop with 4K load
vector instructions that hit equally the three levels of the
cache hierarchy. The highlighted parts in gray show how
the micro-architecture information is queried to assist the
micro-benchmark generation process.

improved features that we identified above. We focus the discussion
on the features that are used in the case studies presented in Sections 4,
5 and 6. Other features implemented in MicroProbe are not included
due to space limitations.

We guide the discussion using the MicroProbe script exam-
ple shown in Figure 2. In this example, the user defines a
policy to generate micro-benchmarks for the POWER7 micro-
architecture (lines 2–3). The micro-benchmarks generated will be
composed by an end-less loop of 4K instructions (lines 9–10). The
instructions will be load vector instructions (lines 11–17) that hit
equally to the three levels of the cache hierarchy (lines 18–22). The
registers and immediate operands of the instructions will be initial-
ized to a constant value (lines 23–26) and the dependency distance
between the instructions will be assigned randomly (lines 27–29).
Finally, the benchmarks synthesizer is invoked 10 times to generate
10 different micro-benchmarks (lines 31–33).

2.1. The Architecture module

The three main functionalities implemented in the Architecture mod-
ule are the following: the PowerPC ISA definition, the POWER7
Micro-architecture definition and the set-associative cache model (a
Micro-architecture analytical model).

The first functionality, the description of the PowerPC ISA,
is used in the example to filter the load instructions of the
ISA (lines 12–13 in Figure 2). The second, the POWER7 micro-
architecture definition that provides the mapping between instructions
and micro-architecture components stressed, is used in lines 14–16
of the example to select only the loads that stress the Vector Scalar

Unit (VSU). The last functionality, the analytical set-associative
cache model, is used to statically ensure a specific distribution among
the memory hierarchy levels (lines 18–22). The following sections
present the details of these three main modules of the Architecture
module.
2.1.1. ISA definition module: This module implements the capa-
bility to generate assembly code for the target ISA. It leverages the
format and the valid operands for each instruction of the ISA plus
a rich set of semantic information for each of them. This includes
the instruction type (e.g. load, store, vector, int, float or branch), the
length of the operands of the instruction, if the instruction is exe-
cuted conditionally, the privilege level required for the instruction, if
the instruction is a data pre-fetch instruction, the registers used/de-
fined by the instruction, the binary codification of the instruction, etc.
This information is extensible and accessible by the user to perform
any action based on it. For instance, one can select only the load
instructions as shown in line 13 of Figure 2.

The ISA definitions are supplied to MicroProbe using readable text
files. These definition text files are constructed using the information
from ISA definition manuals. For this work, we implemented the
definition text files for the Power ISA v2.06B [36]. This text-file
based ISA definition approach provides an extra level of flexibility
and adaptability. For instance, the user can add/remove instructions
from the ISA and re-execute the very same MicroProbe script without
requiring the modification of the MicroProbe internals.
2.1.2. Micro-architecture definition module: This module pro-
vides the information related to the specific micro-architecture im-
plementation. From the architecture implementation point of view,
this refers to the micro-architecture components and their hierarchy
(functional units/sub-units), the cache hierarchy characteristics, the
layout of the micro-architecture units (area, floor-plan information,
etc.), the performance counters related to each micro-architecture
component, etc. From the ISA point of view, this information in-
cludes the latency, throughput, power or EPI (energy-per-instruction)
of the instructions. Moreover, the mapping between the instructions
and the micro-architecture components they stress is also provided.
For instance, the lines 14–16 of Figure 2 show how this information
is used to select the instructions stressing the VSU unit. This rich set
of low-level information, which simplifies the micro-benchmark gen-
eration task, is one of the new features that differentiates MicroProbe
from all previous work.

Automatic bootstrap support. Similar to the ISA definition, the
micro-architecture definition is supplied to MicroProbe using text
files. This increases the portability of the framework. However, the
process of setting up a complete micro-architecture definition is a
time-consuming task that can still limit the portability of the frame-
work. The reason is that all the details in the micro-architecture
definition must be re-defined for each micro-architecture implemen-
tation. MicroProbe avoids this problem by implementing a bootstrap
process that automatically completes a partial micro-architecture
definition.

The following information is required to start the bootstrap process:
(a) the micro-architecture functional units within the system. This
includes their basic information (e.g. name) and their associated
performance counters; (b) the definition of the ‘IPC’ property of the
system (the performance counter-based formula); and (c) the ISA
implemented in the micro-architecture.

The bootstrap process then generates two micro-benchmarks for
each instruction of the ISA. The first micro-benchmark is an end-less



loop consisting of 4K instances of the instruction with a chain of
dependencies across any two consecutive instructions. The second
micro-benchmark is similar to the first one except that there are
no dependencies. Both micro-benchmarks are executed and the
performance counters related to the functional units and IPC are read.
From these readings, MicroProbe derives the instruction latency and
the units that are stressed. MicroProbe proceeds similarly with the
second micro-benchmark to derive the throughput and confirm the
functional units stressed.

In order to bootstrap the EPI or the average sustained power met-
rics, MicroProbe also reads the power sensors. MicroProbe uses the
micro-benchmark version without dependencies to bootstrap these
metrics. The micro-benchmarks generated use random values to
initialize registers, immediate values and memory regions. This mini-
mizes the possible data switching effects, allowing fair comparison
between instructions [44]. The case study presented in Section 5
provides more insights about the automatically bootstrapped per-
instruction EPI information.
2.1.3. Micro-architecture analytical models: Dynamic micro-
benchmark properties are usually ensured by performing time-
consuming design space explorations (DSEs). This process looks for
the correct micro-benchmark generator input parameters to generate
a micro-benchmark that satisfies the target dynamic properties. This
process needs to evaluate each possible solution generated; therefore,
it can be a practical limitation in real execution environments. How-
ever, it is known that under constrained conditions and detailed micro-
architecture information, one can define analytical models to stati-
cally ensure dynamic properties of micro-benchmarks [14]. There-
fore, the use of analytical models speeds up the micro-benchmark
generation process, avoiding the time-consuming DSEs.

The level of detail provided in the Micro-architecture definition
module enables the implementation of micro-architecture analytical
models within MicroProbe. For instance, MicroProbe implements
an analytical memory model for traditional set-associative cache
hierarchies. We use it to generate in one step the micro-benchmarks
with specific memory activities used in Section 4. The following
section provides an overview of the rationale of this novel analytical
memory model.

Set-Associative cache model: Previous work on micro-benchmark
generation models the memory behavior by generating particular
stride patterns that walk through pre-allocated memory [33]. It as-
sumes that different stride values lead to different hit/miss ratios.
Then, if a particular hit/miss ratio is required, a design space explo-
ration (DSE) can be done to find the number of patterns, including
their distribution and their strides. This would generate a targeted
memory activity. Our modeling method avoids the need to perform
a DSE and statically ensures the requested activity in each level
of the cache hierarchy. The method is based on the following two
observations:

First, with appropriate information —provided by the Micro-
architecture definition (See Section 2.1.2)— it is possible to know
and control the set used on each cache level when a memory opera-
tion is executed. For instance, Figure 3a shows how main memory
blocks are mapped into a 4-way set associative cache. If we generate
addresses within blocks 0, 128 or 256, we know that the data will be
placed in Set 0.

Second, it is possible to ensure a hit or a miss in a particular cache
level if enough accesses are generated. Taking into account the same
example shown in Figure 3a, if we generate more than 4 consecutive

(a)

(b)

Figure 3: (a) Set-associative cache diagram. (b) Address fields at
each level of the cache hierarchy and at the operating sys-
tem level on a POWER7 platform.

memory requests hitting the set 0 within an end-less loop, we can
ensure that the loop will enter a steady state where all accesses will
miss. The memory requests should be randomized to minimize the
interferences of the hardware pre-fetchers. On the contrary, if we
generate 4 or less accesses hitting the set 0, the loop will always hit.

From these observations we can derive that it is possible to generate
a sequence of memory accesses to ensure a particular distribution of
the requests among the different levels of the cache hierarchy. For
that purpose, we assign disjoint sets —sets that do not conflict— to
each memory hierarchy level. We then generate the adequate number
of accesses for each cache level. This is possible because: (a) Micro-
Probe provides to the user full control on the code being generated,
and (b) the micro-architecture definition contains the required infor-
mation to infer the set fields of each cache level. Figure 3b shows the
set fields of each cache hierarchy level on our experimental platform.

This memory modeling method is used to apply the power mod-
eling methodology presented in Section 4. This power modeling
methodology requires several micro-benchmarks covering a wide
range of memory activities. In this situation, being able to statically
ensure memory activity rates reduces the time required to generate
the micro-benchmarks.

2.2. The code generation module

The code generation module contains the micro-benchmark synthe-
sizer. The micro-benchmark synthesizer is the core component of any
micro-benchmark generation framework because it is in charge of
driving the code generation process. Previous work [4, 33] identified
that the code generation process requires a minimum number of steps
to define the final behavior of the micro-benchmarks generated. These
steps are the following: (1) define the program skeleton (e.g. the size
of basic blocks; number of threads, etc.); (2) define the instruction
distribution; (3) model the memory behavior (i.e. define how the
memory is accessed); (4) model the branch behavior (i.e. control the
level of speculation); (5) model the instruction level parallelism (ILP)



via register allocation (i.e. define the dependency distance between
instructions). This step wise approach has been observed to be the
common method to define the properties of the micro-benchmarks
generated.

We designed the micro-benchmark synthesizer of MicroProbe
to work in a compiler-like fashion. The rationale is that this de-
sign provides the flexibility and extensibility required to adapt the
micro-benchmark generation process to the user’s requirements. This
differs from prior work, where the transformations and the sequence
of steps are fixed and tailored to solve specific problems. The exam-
ple script of Figure 2 shows how the user defines the sequence of
transformations (i.e. their type and their order) required to generate
the micro-benchmarks. We call these transformation steps passes.

Within MicroProbe, new passes can be added and sorted at user’s
will, making the framework extensible and adaptable. Many basic
passes, like the ones in the example in Figure 2, are already available
in our framework. This forms a general repository of passes for
designing complex micro-benchmark generation policies. To name a
few, we have implemented a pass to set up an end-less loop with n
instructions (line 8 of Figure 2), a pass to generate a given instruction
distribution (line 17 of Figure 2) and a memory pass that ensures a
given memory activity (See Section 2.1.3). Several other passes to
model branch behavior, initialize values, etc. are also implemented.
We refer the reader to previous work on micro-benchmark synthe-
sizers [18, 20, 21, 33, 40] to read about other possible transformation
passes that can be implemented on top of MicroProbe.

We show the importance of having a compiler-like design explain-
ing a possible real world example. Let’s suppose that we have a
computational kernel and we want to test the effect of certain trans-
formations on it. We set up a MicroProbe script to generate the
baseline code —i.e. the initial sequence of instructions comprising
the kernel. We may then want to evaluate the effect on performance
of unrolling the loop or the effect on power of using a load immediate
and an add instruction instead of two add immediate instructions.
For that purpose, we simply copy the original MicroProbe script that
generates the computational kernel and then add the extra passes to
apply the transformations. This level of adaptability is enabled by
the pass-based design of the micro-benchmark synthesizer.

2.3. Design space exploration module

Design space explorations (DSE) have become mandatory to un-
derstand the performance of computer architectures due to their in-
crease in complexity. In addition, DSE are required to find micro-
benchmarks that fulfill a set of dynamic properties that cannot be
ensured statically. DSE support is therefore a basic functionality that
any productive micro-benchmark generation framework should have.

MicroProbe provides generic DSE support to be able to imple-
ment different customizable search strategies within the design space.
For instance, MicroProbe currently supports exhaustive searches,
genetic algorithm (GA) searches and user-defined searches. This
is in contrast to previous work, which only provided GA search
support [20, 21, 33, 40]. Thus, MicroProbe provides an adaptive
framework for performing DSEs.

Moreover, the fact that DSE support is integrated within the same
framework is also beneficial. Previous work decoupled the micro-
benchmark synthesizer component from the search driver component,
thus losing possible synergies between these components. Micro-
Probe integrates both functionalities into the same framework. This al-
lows, for instance, the definition of user-guided drivers that query the

Feature Micro- Previous
Probe Work

ISA queries
- instruction type X X
- operand length X Manual1

Micro-architecture queries X
- functional unit X Manual1

- latency X Manual1

- throughput X Manual1

- energy per instruction (EPI) X Manual1

- average instruction power X Manual1

Micro-architecture models
- Set associative cache model X No
Code generation
- Skeleton definition pass X X
- Instruction definition pass X X
- Basic memory modeling pass X X
- Branch modeling pass X X
- ILP definition pass X X
- Configurable passes X No
Design space exploration
- Integrated X No
- GA-based search X X(External tool)
- Exhaustive search X X(Manually)
1The user manually or using an external tool has to obtain the information
to pass the appropriate inputs to the code generator.

Table 1: Summary of the novel MicroProbe features and their imple-
mentation in previous work.

micro-architecture information in order to guide the search. In Sec-
tion 6 we use the integrated DSE support of MicroProbe to generate
a max-power stressmark. The search driver we define uses the per-
instruction EPI information and the mapping between instructions
and the functional units to focus the search on certain parts of the
design space.

2.4. Summary of MicroProbe features
Table 1 summarizes the micro-benchmark generation features in-
cluded in MicroProbe and their implementation in prior work. Micro-
Probe provides detailed architecture related information such as
queries about ISA and micro-architecture information. This depth
of architecture-related information is not offered in previous micro-
benchmark generation frameworks. Some prior work includes limited
instruction type semantics. However, simple queries like functional
unit information (lines 15–16 in Figure 2) or instruction latency in-
formation require the user to obtain the information manually. In the
end, the lack of this integrated low-level micro-architecture seman-
tics diminishes the benefits of having an automatic micro-benchmark
generator.

MicroProbe implements micro-architecture models such as the
set associative cache model. As far as we know, this feature is
not found in previous work. MicroProbe does provide the basic
support for code generation, as in prior work. In other words, it
supports at least the minimum set of transformation passes that define
the behavior of the micro-benchmark generated. MicroProbe goes
one step further by improving the flexibility of the code generation
support by allowing the passes to be configured. Finally, regarding
the DSE support, MicroProbe integrates such support within the same
framework whereas previous work uses external tools or manual set-
ups to perform DSEs.



3. Experimental Framework
The experimental platform is an IBM BladeCenter PS701 system.
The system has one POWER7 processor running at 3.0 GHz and
32 GB of DDR3 SDRAM running at 800 MHz. The IBM POWER7
processor is an eight-core chip where each core can run up to four
threads. Each core has 32KB first level, 256KB second level and 4MB
third level data cache. A detailed specification of the architecture
is available elsewhere [42]. The platform runs RHEL 5.7 OS with
linux kernel version 3.0.1. This version provides the standard PCL
API [17] to access hardware performance counters.

The platform implements the EnergyScale architecture [19] that
allows the users to gather the power consumption of the processor via
the Flexible Support Processor (FSP). The FSP accesses the micro-
controller called Thermal and Power Management Device (TPMD)
to perform the sensor readings. Both devices, the FSP and the TPMD,
are managed by the BladeCenter chassis Management Module (MM).

We use an in-house software to monitor all the sensors required for
the experiments. The software can sample sensors at 1-ms granularity.
Power measurements are in the granularity of milliwatts, whereas
the temperature measurements are in degrees celsius. We also gather
performance monitoring counter (PMC) traces to account for dif-
ferent activity of the micro-benchmarks and the SPEC CPU2006
benchmarks that are executed. Power and performance counter traces
are then analyzed and plotted using the POTRA framework [6].

Micro-benchmarks are deployed as one copy per hardware thread
context that is available on the configuration. For example, in a
2-way SMT 6-core configuration, we deploy 12 copies of the micro-
benchmark. We pin each copy to a logical CPU to avoid thread
migrations. We run the micro-benchmarks for 10 seconds which
helps us to shorten the data gathering process while still providing
valid —and stable— power and performance counter values. Simi-
larly, we also execute the SPEC CPU2006 [25] benchmark suite for
model validation purposes. The SPEC CPU2006 benchmarks are
run to completion. All power results presented in this work are in
normalized form to avoid disclosure of absolute values.

4. Bottom-up CMP/SMT aware counter-based processor
power model

One important area where MicroProbe provides special value is in
the task of generating empirical counter-based power models. Such
power models are of key interest because they provide a quick path
to estimate run-time power consumption without the need to rely on
direct measurement devices [5, 27]. Counter-based power models
have not only been used to model the power consumption of the
processor [5, 29, 35, 43], they also have been useful to predict the
consumption of the rest of the components in the system [10, 11].

In particular, bottom-up counter-based power modeling method-
ologies have been shown to be a competitive approach [7]. Besides
accuracy and generality [8, 9], these types of models provide a fine-
grained granularity, sometimes allowing per functional unit break-
downs [27]. Although we do not focus this work to reach such low
level of decomposability, we present a method to generate bottom-up
counter-based power models for SMT/CMP processors such as the
POWER7.

Bottom-up processor power models predict the overall power con-
sumption of the processor as the sum of the power consumption of
different power components. These power components are usually
associated with micro-architecture components [8,9,27]. This allows
the users to derive the power breakdown across these components.

This adds insight on power behavior across workloads and individual
components within the processor. In a CMP/SMT system, this capa-
bility is useful in discerning the power consumption of each core or
hardware thread. In addition, the power-related effects of enabling
the SMT logic or enabling/disabling cores can be easily quantified.

Previous methods of bottom-up processor power modeling were
applied to processors that lack the level of parallelism and complexity
of the POWER7. In [27], a bottom-up power model of a Pentium 4 is
presented. In [7–9], the authors model a dual-core processor without
SMT. In contrast, we model a highly parallel processor such as the
POWER7, with 8 cores and up to 4-way SMT capabilities.

Bottom-up counter-based modeling methods require micro-
benchmarks that stress different micro-architecture functional units
at different levels. This is needed to estimate individual contributions
to the overall power consumption [8, 9, 27]. In this context, a com-
mon rule of thumb is to use a very broad range of power contexts
for training the model. This is known to result in a more general
and accurate model. This implies a rather time-consuming task of
generating a huge set of micro-architecture aware micro-benchmarks.
This requirement delayed the application of bottom-up modeling
methods on current architectures. The main reason was the lack of
micro-benchmark generation frameworks like MicroProbe that have
micro-architecture semantics.

We use MicroProbe to generate the rich set of micro-benchmarks
shown in Table 2. We generate micro-benchmarks that stress different
combinations of functional units at different levels (IPCs) by using
the micro-architecture information and the DSE GA-based support
implemented in MicroProbe. The functional units of the POWER7
processor that we stress are: the fixed point unit (FXU), the load
store unit (LSU) and the vector scalar unit (VSU). We also generate
micro-benchmarks stressing the memory hierarchy at different levels.
We stress the four levels of the memory hierarchy: the first-level
cache (L1), the second-level cache (L2), the third-level cache (L3)
and the main memory (MEM). In this process, the analytical micro-
architecture memory model of MicroProbe (See Section 2.1.3) re-
moves the necessity to perform a DSE for each memory activity we
target. Finally, micro-benchmarks with random activities are also
generated in order to enrich the training set.

Notice that hand-crafting —and verifying— this micro-benchmark
suite is normally a very time-consuming effort. With MicroProbe
we are able to do it in a few hours without any human intervention.
The next section explains the modeling methodology that uses these
micro-benchmarks to produce a SMT/CMP aware bottom-up counter-
baser processor power model.

4.1. SMT/CMP aware bottom-up modeling methodology

We apply the bottom-up methodology shown in Figure 4 to model
the processor. This methodology ensures the decomposability of
the model because it models the power consumption of the different
processor power components defined separately. We define the fol-
lowing four power components: (a) the dynamic power consumption,
i.e. the power related to the activity of the hardware contexts running
on the system; (b) the SMT effect, i.e. the power contribution of en-
abling the SMT logic of the cores; (c) the CMP effect, i.e. the power
contribution of enabling multiple cores on the system; and (d) the
uncore power contribution, i.e. the constant power contribution of
having activity on the processor. Moreover, there is the workload
independent power consumption, which is the power consumption of
the processor when there is no activity.



Name Units stressed1 # Description MicroProbe features
Simple FXU or LSU 35 Mix of simple integer instructions (can be executed by the LSU or FXU units) ISA & uarch queries
Integer with IPCs from 0.5 to 4 in steps of 0.1. & DSE GA support

Complex FXU 11 Mix of complex integer instructions (only can be executed by the FXU unit) "
Integer with IPCs from 0.1 to 1.1 steps of 0.1.
Integer FXU, LSU 12 Mix of integer instructions with IPCs from 0.10 to 1.20 in steps of 0.1. "

Float/Vector VSU 14 Mix of vector, float and decimal instructions with IPCs from 0.1 to 1.4 "
in steps of 0.1.

Unit VSU, FXU, LSU 20 Mix of all kind of instructions (non memory, no branch) with IPCs 0.1 to 2 "
Mix in steps of 0.1. "

L1 ld LSU, L1 10 Random mix of load instructions hitting the L1. ISA queries
& uarch model

L1 ld/st LSU, L1, L2 10 Random mix of load/store instructions hitting the L1. "
L1L2a LSU, L1, L2 10 Random mix of load/store instructions 75% hitting the L1 and 25% hitting the L2. "
L1L2b LSU, L1, L2 10 Random mix of load/store instructions 50% hitting the L1 and 50% hitting the L2. "
L1L2c LSU, L1, L2 10 Random mix of load/store instructions 25% hitting the L1 and 75% hitting the L2. "
L1L3a LSU, L1, L2, L3 10 Random mix of load/store instructions 75% hitting the L1 and 25% hitting the L3. "
L1L3b LSU, L1, L2, L3 10 Random mix of load/store instructions 50% hitting the L1 and 50% hitting the L3. "
L1L3c LSU, L1, L2, L3 10 Random mix of load/store instructions 25% hitting the L1 and 75% hitting the L3. "

L2 LSU, L1, L2 10 Random mix of load/store instructions hitting the L2. "
L2L3a LSU, L1, L2, L3 10 Random mix of load/store instructions 75% hitting the L2 and 25% hitting the L3. "
L2L3b LSU, L1, L2, L3 10 Random mix of load/store instructions 50% hitting the L2 and 50% hitting the L3. "
L2L3c LSU, L1, L2, L3 10 Random mix of load/store instructions 25% hitting the L2 and 75% hitting the L3. "

L3 LSU, L1, L2, L3 10 Random mix of load/store instructions hitting the L3. "
Caches LSU, L1, L2, L3 10 Random mix of load/store instructions 33% hitting the L1, 33% hitting the L2 "

and 34% hitting the L3.
Memory LSU, L1, L2, L3, 20 Random mix of load/store instructions missing in all levels "

MEM of the cache hierarchy.
Random Unknown 331 Random micro-benchmarks. ISA queries

1FXU: fixed point unit (integer), LSU: load store unit (memory operations) and VSU: vector scalar unit (vector, float and decimal operations).
L1: L1 cache, L2: L2 cache, L3: L3 cache, MEM: Main memory

Table 2: Micro-benchmarks automatically generated using MicroProbe. They cover a broader scope of possible processor activities in order to
increase the accuracy of the models generated. They share a common skeleton: a 4K endless loop with the required instructions to
stress particular functional units.

The bottom-up modeling methodology used, introduces two new
components when compared to previous bottom-up modeling meth-
ods [8, 27]. The new components are the SMT effect and the CMP
effect components.

The SMT effect component models the extra power required when
SMT is enabled. We observed empirically that two workloads exhibit-
ing the very same overall core activity consume a different amount
of power depending on whether SMT is enabled or disabled. The
reason is that the extra control logic that in operation when SMT is
enabled consumes additional power. This effect is independent of
whether 2-way SMT or 4-way SMT is enabled.

The second new component, the CMP effect, models the change
of uncore power consumption depending on the number of cores
enabled. This power consumption changes due to the different usage
of the shared components when different number of cores are used.
For instance, the 32MB last level cache of the POWER7 is partitioned
into eight equally sized slices, one for each core. When a core is not
used, the last level cache slice of that core is used only as a victim
cache of the other slices, changing its usual power behavior. The
CMP effect captures the specific conditions in power consumption
that depend on the number of cores enabled.

The addition of these two variables is crucial to increasing the
accuracy of the models. They are not directly related to the actual
activity in the processor like performance counters. However, they
affect how the activity is being performed as well as the power
status of different micro-architecture components. Models without

these two input variables —the SMT enabled and the number of
cores enabled (#cores)— exhibit large errors in the predictions and
show inconsistencies across the different SMT and CMP modes of
operation. The rest of the section explains the details of each of the
four modeling steps shown in in Figure 4.

Step 1: Model a Single Hardware Context: We model a single
core in single-threaded (SMT-1) configuration using the bottom-up
modeling method detailed in [8]. In brief, we define the FXU, VSU,
LSU, L1, L2, L3 and MEM as the power components of the processor
cores. We assign a performance monitoring counter (PMC) based for-
mula for each of these components. A sequence of linear regressions
is then performed to model separately the power contribution of each
of these power components. This is possible because the specifically
designed training set covers a wide set of scenarios that stress dif-
ferent units at different utilization rates [8]. The model intercept is
then calibrated using the random micro-benchmarks to avoid under-
estimating the power when only particular units are stressed [8,49].
The result of this process is a bottom-up power model for a single core
in SMT-1 configuration. The dynamic component of the model, the
part that it is dependent on the PMCs (Dynamic Power in Figure 4),
is defined as:

Pdyn = FXUpmcs×W f xu +V SUpmcs×Wvsu

+ LSUpmcs×Wlsu +L1pmcs×Wl1 +L2pmcs×Wl2

+ L3pmcs×Wl3 +MEMpmcs×Wmem



Figure 4: Proposed SMT/CMP aware bottom-up modeling methodology. (1) A single core —a single hardware context— is modeled; (2) the
effect of enabling SMT is estimated; (3) the effect of enabling cores —the CMP effect— and the uncore power consumption are
estimated; (4) the final model is defined as the sum of the power consumption of each hardware context, the SMT effect of each core
with SMT enabled, the CMP effect and the uncore power consumption.

The non-dynamic component (intercept SMT-1 in Figure 4) is used
in the next step to compute the SMT effect.

Step 2: Model the SMT Effect: As stated previously, we observed
that the power consumption is higher when SMT is on. We simplify
the modeling of this behavior by assuming that the power consump-
tion increases by a fixed value when SMT is activated. We therefore
model the SMT effect as a constant value, which is defined as:

SMTe f f ect = InterceptSMT 2−4− InterceptSMT 1

where the SMT effect value is the difference of the uncore
power consumption between a model trained using SMT enabled
data (intercept SMT-2–4) and the model trained using SMT disabled
data (intercept SMT-1).

Step 3: Model the CMP Effect and the uncore power: To
model the CMP effect and the uncore power, we apply the dynamic
and the SMT effect models defined in steps 1 and 2 to the ran-
dom micro-benchmarks executed in all SMT and CMP configura-
tions (See step 3 of Figure 4). After applying the model, we obtain
the residuals of the predictions. These residuals, which exhibit a
positive correlation with the number of cores enabled, can be inter-
preted as the power consumption related to the change in the number
of cores plus the uncore power. We therefore model the residuals
as a function of the number of cores enabled (#cores) using a lin-
ear regression of the form a× x + b. The intercept of the obtained
regression (i.e. b) is assumed to be the uncore power consumption
(PUncore) whereas the a× x component is assumed to be the CMP
effect (CMPe f f ect ×#cores).

Step 4: Combine the models: We combine all the modeled power
components to obtain the final bottom-up power model. The model
is therefore defined as:

Pcpu =
#threads

∑
k=1

Pdynk +
#cores

∑
k=1

SMTe f f ect ×SMT _enabledk

+ CMPe f f ect ×#cores+PUncore

which is the addition of the power consumption of each hardware
thread enabled on the platform (step 1), the SMT effect of the cores
with SMT enabled (step 2), the CMP effect as a function of the
number of cores enabled and the uncore power consumption (step 3).

4.1.1. Model Validation: Figure 5a shows how the model is able
to track the power consumption of the SPEC CPU2006 on a 4 core,
4-way SMT configuration. The dynamic power consumption varies
with the workload whereas the rest of components remain constant
because they depend on the processor SMT/CMP configuration.
This power consumption breakdown is only possible because of
the bottom-up modeling methodology. Top-down modeling meth-
ods [5, 11, 23, 41] model the processor as a black box. They are able
to perform per-core power estimations by gathering per core perfor-
mance counters. However, they do not provide the same insights [7].

Figure 5b shows the percentage average absolute prediction error
(PAAE) [10] of the proposed bottom-up (BU) model when compared
to actual measured power of the SPEC CPU2006 workloads for all
the configurations studied. The maximum PAAE is around 4% and
most of the values are below 2.3%, which is the average PAAE.
These results validate that the novel SMT/CMP aware bottom-up
modeling method is able to model different SMT/CMP configurations
accurately.

There is, however, a small trend that shows higher errors for higher
number of cores. This might be related to the CMP and SMT at-
tributes, which we modeled assuming a linear relation. This linear
approximation is necessary to help us to create the bottom-up hierar-
chical CMP/SMT power model. The implicit assumption of linear
dependence of these attributes on power is an approximation of what
is most likely a non-linear model. For example, if the real values
follow a monotonic convex/concave curve, a linear approximation
will yield an error function that causes absolute error to first increase
and then decrease, as seen in Figure 5b.
4.1.2. Comparison to other Models: We compare our bottom-up
(BU) model against a set of top-down (TD) models [7] in order to
bring out the benefits of the bottom-up modeling approach. TD mod-
eling methodologies use parameter selection techniques to select the
model inputs and then they apply a single multiple linear regression to
model the entire processor. These models do not require specifically
designed micro-benchmarks. They are therefore a popular solution
due to their simple generation. However, they do not provide the
same accuracy and generality as the bottom-up models.

We generate three TD models using the same inputs of our bottom-
up (BU) model for fairness: namely, the functional unit performance
counters, the numbers of cores enabled and the SMT mode. The
models are named after the training set used to generate them: the
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Figure 5: (a) Processor power consumption breakdown of the SPEC
CPU2006 on a 4 core, 4-way SMT configuration. (b) Percent-
age average absolute prediction error (PAAE) of the model
for all the configurations analyzed.

micro-architecture aware micro-benchmarks (TD_Micro), the ran-
dom micro-benchmarks (TD_Random), and the SPEC benchmarks
(TD_SPEC). TD_SPEC is therefore the optimistic model because it
has been trained using the validation set. As explained previously,
the BU model is trained using all the micro-benchmarks, namely the
micro-architecture aware micro-benchmarks and the random micro-
benchmarks.

Figure 6 shows the average PAAEs on the SPEC CPU2006 with
respect to the models generated for each configuration studied. All
the models show similar trends confirming that each training set
covers enough power contexts to model the SPEC CPU2006 suite
accurately. In general, the models are consistent across the different
SMT/CMP configurations. Only the TD_Micro shows a consistently
higher error for 2-way SMT configurations. In any case, all the
models show acceptable results on average.

The last columns of Figure 6 show mean PAAEs around the 2–4%
range. When compared to the optimistic model (TD_SPEC), the rest
of the models show less than 2 percentage points of difference. These
accurate predictions are enabled by the inclusion of the SMT and
CMP variables to the models. The proposed BU model outperforms
the rest, being the one closer to the optimistic TD_SPEC model.

4.1.3. Model Validation on Extreme Cases: Although there is not a
clear difference in accuracy between the different modeling methods
for general workloads, there is a significant difference when extreme
cases are considered. We consider different extreme cases such as
high and low integer (FXU) or vector activity (VSU), only L1 loads

or only memory activity. Although we call these cases extreme, these
types of activities are actually quite common in applications over
short periods of time. For instance, consider the case of a highly
optimized vector loop accessing only the first level cache. In such
a case, the processor will show a period with only high IPC vector
activity. Similarly, when the processor copies data from main memory
to a local array, only main memory activity will be exhibited.

Figure 7 shows the PAAEs of the models for the extreme activity
cases considered. The models trained using micro-architecture aware
micro-benchmarks (i.e. the TD_Micro and the BU models) are ca-
pable of modeling these situations accurately, whereas the models
trained using general workloads exhibit high errors. For instance, the
TD_Random model shows a 62% PAAE for the FXU High case. This
is because the models trained using general workloads are biased
towards the normal activities they exhibit. In contrast, the models
trained using micro-architecture aware training sets show similar
accuracy levels across general and extreme workloads.

This observation highlights the benefits of generating micro-
architecture-centric models like the bottom-up model instead of the
workload-centric models like the top-down models. A framework like
MicroProbe, capable of generating micro-architecture aware micro-
benchmarks, is therefore essential for facilitating the generation of
micro-architecture aware training sets.
4.1.4. SMT/CMP Effects on Power Consumption: In this section,
we use the decomposability capability provided by the bottom-up
model to analyze how the SMT/CMP configuration affects the dis-
tribution of power consumption. Notice that this level of insight is
not possible using top-down models [7]. Figure 8 shows the average
percentage power consumption breakdown for the SPEC CPU2006
for each configuration analyzed.

From the SMT point of view, changing the SMT configuration
increases the percentage of dynamic power consumption of the pro-
cessor by about 10 points. At the same time, it decreases the workload
independent power component by an identical amount. The reason
is twofold: (a) the more hardware contexts are enabled, the more
dynamic power is consumed due to the increase of ILP within the
cores; (b) this increase in dynamic activity exceeds the overhead of
enabling the SMT feature (SMT_effect in Figure 8), which we found
to be minimal (<3% in all the cases).

The components that do not depend on the CMP parameter —the
workload independent and the uncore components— account for up
to 85% of the overall power consumption in the lowest configuration
(i.e. 1 core, 1-way SMT configuration). This percentage is reduced
to 50% as we increase the number of hardware contexts (8 cores,
4-way SMT configuration). This is mainly due to the increase of
the dynamic component. We also observe that the power breakdown
remains comparable when a minimum of 4-cores are enabled. Be-
yond that point, adding extra cores results in a similar increase of
dynamic and non-dynamic power consumption, suggesting that the
shared resources are already fully utilized. For instance, in Figure 8,
going from 1–1 to 2–1 CMP–SMT configuration reduces the work-
load independent and uncore power consumption from 85% to 77%.
However, going from 7–1 to 8–1 only reduces these components by 1
percentage point, from 62% to 61%.

In summary, we present a novel bottom-up power modeling
methodology capable of modeling the SMT/CMP features of current
architectures. We show how the model generated using this method-
ology outperforms existing approaches for normal and extreme work-
loads. The basis of the model is a complete micro-architecture aware
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training set systematically generated using MicroProbe. Finally,
we use the extra information provided by the model to study the
SMT/CMP effects on power consumption.

5. POWER7 energy-based instruction taxonomy

Another important area where MicroProbe is useful is in the low-level
characterization of architectures. MicroProbe’s bootstrap process
explained in Section 2.1.2 automatically gathers per instruction micro-
architecture information such as latency, throughput or energy per
instruction (EPI). This information can be analyzed to generate, for
instance, an instruction level EPI characterization.

An instruction-level EPI characterization is beneficial in a wide
set of situations. For example, this is necessary for understanding
tuning opportunities for hardware implementation of instructions or
for improving compiler instruction selection algorithms. This char-
acterization is also useful for guiding micro-benchmark generation
policies when searching for max-power stressmarks as described in
Section 6.

This section develops a taxonomy of the POWER7 instructions
based on energy per instruction (EPI) and processor activity charac-
teristics. We use the unit-stressing information that is implemented
in MicroProbe to classify the instructions in categories based on the
functional units that the instructions stress.

The results presented are for the 1-way SMT 8 core configuration.
Notice that the EPI values are derived from the overall dynamic pro-
cessor power consumption. Therefore, they depend on the processor
configuration (i.e. number of cores and SMT mode) used. EPI val-
ues also depend on the input data used, which we randomized. We
do not observe any significant variations in EPI when we randomly
change the input values. This agrees with prior published results [44].
However, zero input data values sometimes result in a significant
reduction in EPI, up to 40% in some cases.

Table 3 shows the core IPC and normalized EPIs of three instruc-
tions for each category defined. Categories are named after the func-
tional units that they stress2. We group these categories to simplify
the explanation. Category EPI column is normalized to the minimum
EPI within the category, whereas global EPI column is normalized to
the minimum EPI among all the categories. This simplifies the com-
parisons between instructions and categories of instructions. The top
instruction in each category is the one with higher IPC*EPI product
within the category. The other two instructions are selected examples
with the same IPC but notable differences in EPI.

Analyzing by categories, we can see that the memory operations
with side-effects (i.e. those that stress other units apart from the
LSU) are the ones with higher EPI. The reason is twofold: (a) these
types of instructions activate more functional units. For instance,
the vector store operations use the LSU unit (address generation)
and the VSU (data propagation of the stored value); and (b) these
instructions exhibit a lower IPC —each instruction takes more time
to be executed— and as a result, they are less efficient.

Overall, the simple integer operations are the most efficient. The
reason is that this type of operations is the most common and there-
fore the execution is highly optimized. For instance, the load store
unit (LSU) of the POWER7 is able to execute these simple integer op-
erations. This allows the program to obtain a high IPC, thus lowering
the EPI metric.

Analyzing each category, there are important EPI differences be-
tween instructions within the same category. This is observed even
in the case where the instructions exhibit the same IPC. For instance,
in the VSU category, the xvmaddadp instruction has a 75% higher

2FXU: fixed point unit (integer), LSU: load store unit (memory operations) and VSU:
vector scalar unit (vector, float and decimal operations).



Category Instr. Core Normalized EPI
IPC Global Category

Functional units
mulldo 1.40 2.60 2.60

FXU subf 2.00 1.69 1.69
addic 2.00 1.00 1.00

lxvw4x 1.68 2.88 1.35
LSU lvewx 1.68 2.81 1.31

lbz 1.68 2.14 1.00
xvnmsubmdp 2.00 2.35 1.78

VSU xvmaddadp 2.00 2.31 1.75
xstsqrtdp 2.00 1.32 1.00

Simple integer operations
FXU or add 3.50 1.73 1.49

LSU nor 3.50 1.58 1.36
and 3.50 1.16 1.00

Integer memory operations
LSU and ldux 1.00 5.12 1.21

FXU lwax 1.00 5.01 1.18
lfsu 1.00 4.24 1.00

LSU and lhaux 1.00 5.51 1.15
2FXU lwaux 1.00 5.29 1.10

lhau 1.00 4.80 1.00
Vector/Float/Decimal memory operations

LSU and stxvw4x 0.48 8.36 1.40
VSU stxsdx 0.48 7.16 1.20

stfd 0.48 5.97 1.00
LSU and stfsux 0.48 10.00 1.19
VSU and stfdux 0.48 9.49 1.13

FXU stfdu 0.48 8.40 1.00

Table 3: Taxonomy of POWER7 instructions based on energy per in-
struction (EPI) and functional unit usage. Core IPC, cate-
gory EPI normalized to minimum EPI within the category and
global EPI, normalized to addic EPI, the minimum shown in
the table. The top instruction within each category is the one
with higher IPC*EPI product. The other two instructions have
the same core IPC but notably different EPI which demon-
strates the high power consumption variability between in-
struction types, even in the same category.

EPI than the xstsqrtdp instruction. Similar observations can be seen
in the rest of categories. These observations confirm the differences
in energy consumption across various instruction types.

In summary, we use MicroProbe to generate an instruction-level
EPI characterization of a POWER7 platform. The characterization
helps us to understand better the energy trade-offs of the under-
lying architecture. In particular, the variability seen in the EPI
results —even across instructions that use the same functional unit at
the same utilization level— highlights the importance of taking into
account such variations when generating power/energy aware code.

6. Max-power stressmark generation

Max-power stressmarks are very important for computer architects to
make early-stage design decisions such as the design of the package
and the power delivery network. Existing systematic max-power
stressmarks generators rely on time-consuming genetic algorithm
based design space explorations [20, 21, 33, 40]. These solutions
use abstract workload models (e.g. %integer, %loads, %stores, etc.)
and expert-defined design spaces to make the search of the solution
tractable. They therefore provide a ‘black-box’ solution where in-
timate knowledge of the architecture is not required. This benefit
comes at the expense of losing some discriminating opportunities.
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Figure 9: Max, Mean and Min power results for each stressmark set
executed. Results are normalized to the maximum power
exhibited by one of the SPEC CPU2006 benchmarks during
its execution.

For instance, during the selection of instructions, they do not take
into account the important differences in power consumption that we
have shown in Section 5.

In this section, we show how MicroProbe is used as a ‘white-box’
framework to help an expert in the process of generating a max-
power stressmark in a real measurement context, where the number
of design points to explore is a practical limiting factor. In the end,
we show that with proper heuristics, the entire process can be fully
automated.

We focus this case study on finding the sequence of 6 instructions
that when replicated within an endless loop of 4K instructions and
executed concurrently on all the available hardware threads maximize
the power consumption. The rationale is that basic knowledge in the
field suggests that in order to generate a max-power stressmark one
should maximize the activity (i.e. maximize the IPC) and maximize
the number of functional units used, avoiding pipeline stalls and
resource contention (i.e. no dependencies and no memory misses).

Previous work [21] suggests that it would be possible to achieve
higher power consumption by executing heterogeneous workloads
that stress the different parts of the processor (caches, interconnection
network, etc.). We leave the exploration of these options to our future
work. We focus this case study on the benefits of using the micro-
architecture semantics when generating max-power stressmarks. The
fact that we are consistently able to exceed expert level manually
generated max-power stressmarks is reassuring.

First, we hand-craft some micro-benchmarks using the mullw, xv-
maddadp, lxvd2x instructions. The rationale behind the selection of
these instructions is to stress the FXU, the VSU and LSU units using
the instructions with a wider data-path (or more complexity) and
higher throughput (maximize IPC). This procedure is what a stress-
mark developer with some expertise in the target micro-architecture
would do without support frameworks like MicroProbe. We call this
micro-benchmark set as the Expert Manual set.

Second, since it is not practical to generate manually all the 540
possible combinations, we use the DSE support of MicroProbe to
generate all the combinations of the expert selected instructions au-
tomatically. We call this micro-benchmark set as the Expert DSE
set.

Lastly, instead of relying in our expert to select the instructions, we
rely on MicroProbe to select the instruction candidates. We instruct
MicroProbe to select the instructions with the highest IPC*EPI prod-
uct within each functional unit category. This heuristic selects the
instructions with a balanced trade-off between EPI and IPC, penal-
izing instructions with high IPC but low EPI and vice versa. The
automatically selected instructions are the top ones shown in the FXU,
LSU and VSU categories of Table 3. We call this micro-benchmark
set as the MicroProbe set.



We execute the three micro-benchmark sets in the three available
SMT modes. In addition, various DAXPY kernels with different
L1 contained memory foot-prints are also executed. This compu-
tational kernel is commonly used as a stressmark. Figure 9 shows
the maximum, minimum and average power consumption of each
micro-benchmark set. Results are normalized to the maximum power
exhibited by one of the SPEC CPU2006 benchmark during its execu-
tion.

We observe that with a bit of intuition the expert is able to conceive
hand-crafted stressmarks (Expert manual) that are as good as the
max-power of SPEC CPU2006. However, these stressmarks are still
around 10% below the one achieved by the Expert DSE set —even
though they use the same instruction types and exhibit the same IPC.

Examining closely, we find 181 different stressmarks within the
Expert DSE set that achieve the maximum core IPC. The minimum
and the maximum power exhibited by them is 7% below and 9.6%
above the baseline, respectively. These results depict how difficult it
is to search for the optimal power stressmark. Even while achieving
the same maximum IPC with the very same instruction types, the
actual instruction sequence can affect the power consumption quite
considerably.

The MicroProbe stressmark set, automatically defined using the
functional unit, IPC and EPI information as heuristics, achieves
similar results as the Expert DSE. In fact, it improves the max-power
stressmark Expert DSE by approximately 1 percentage point. Also,
this exceeds the maximum power observed during the execution of the
entire SPEC CPU2006 suite by a 10.7%. These results confirm that
EPI, IPC plus functional unit information provide good heuristics
to constrain the DSE and systematize the max-power stressmark
generation process without requiring expert knowledge.

Finally, the fact that systematically generated stressmarks slightly
outperform the hand-crafted stress tests generated by an expert, con-
firms the utility of the proposed approach. Moreover, in a real mea-
surement context, being able to constrain the search space to the
actual points of interest is crucial in avoiding practical limitations
posed by design space explosion.

7. Related work

Benchmarks and Micro-benchmarks: From the pioneering
Whetstone [16] and Dhrystone [46] to current benchmark suites such
as the SPEC CPU2006 [25], benchmarks are used for both academic
research and comparative evaluation of existing solutions. Moreover,
specifically designed benchmarks, named micro-benchmarks, are
needed in several situations. For instance, they have been used to re-
verse engineer structure latencies [24] or branch organization [37,45],
to evaluate performance, power or thermal efficiency [15, 22, 28, 38]
or to generate and calibrate models [8, 9, 12].

Micro-benchmark Generation Frameworks: The need of a sys-
tematic method to generate micro-benchmarks was identified back in
the 1980’s [47, 48]. The number of frameworks proposed since then
has been growing continuously corroborating their importance for
the community. In contrast to our adaptive framework, particular so-
lutions —without the micro-architecture semantics of MicroProbe—
were developed for different purposes: to generate synthetic micro-
benchmarks [2–4, 26], to be able to reproduce proprietary applica-
tion behavior [30, 32], to perform architecture explorations [31], to

generate power or reliability stress tests [20, 21, 33, 39], to evaluate
energy efficiency of systems [13], or to model cache behavior [1].

Counter-Based Processor Power Models: Most of the previous
work on counter-based power modeling uses top-down approaches
to model processor power consumption [5, 10, 11, 23, 41]. As a
result, they lose the level of decomposability provided by bottom-
up approaches. Moreover, we only found the work of Jimenez et
al. [29] proposing a top-down model for a SMT/CMP processor, the
POWER6.

Regarding bottom-up modeling methods, Isci et al. [27] was the
first to propose a heuristic-based bottom-up modeling method us-
ing as heuristic the area size of the functional units. Bertran et
al. [7–9] then proposed a bottom-up modeling method, entirely based
on micro-benchmarks. Nevertheless, none of these bottom-up meth-
ods modeled a CMP/SMT system such as the POWER7. Finally,
Bircher et al. [10, 11] present a system-level bottom-up method to
derive the power breakdown of the entire system (cpu, memory, disks,
etc.).

Max-Power Stressmark Generation: The systematization of the
generation of max-power stressmarks has been investigated for dif-
ferent environments. In [33], the authors present a micro-benchmark
generation framework and show its utility for generating processor
max-power stressmarks. In that work, the design space is defined by
an abstract workload model. Then, genetic algorithms are used to find
an optimal solution. Ganesan et al. [20] present a similar approach
but targeting overall system power consumption, including processor
and memory. The same authors extended the work to multi-cores [21]
showing that when taking into account processor and memory power
consumption, simple parallel execution of single core max-power
stressmarks, do not exhibit the maximum power consumption. Our
work in max-power stressmark case study is orthogonal to these
works, since we focus on the importance of using micro-architecture
semantics to constrain the search within the design space. We believe
that these prior ‘black-box’ proposals are significantly improved by
taking into account the extra information provided by MicroProbe.

8. Conclusion
In this paper, we present an adaptive micro-benchmark generation
framework (MicroProbe), with three salient features that distinguish it
from prior work: detailed knowledge of low-level micro-architecture
semantics, flexible code generation support and integrated design
space exploration support. To highlight these features of MicroProbe,
we present experimental results centered around an IBM POWER7
CMP/SMT system. First, we produce a MicroProbe-driven empirical
power model that estimates the power consumption of the SPEC
CPU2006 benchmarks with average errors that are below 2.3%. Then,
we conclude that micro-benchmark trained power models are more
reliable across a broader range of contexts (normal and extreme
power activities). We also use the framework to derive a taxonomy
of POWER7 instructions based on energy-per-instruction (EPI). The
characterization highlights the differences in energy consumption
between instructions. Finally, we propose a method —based on EPI,
IPC and functional unit information— to systematize the generation
of power stress tests. The method is used to derive a stress test that
exhibits a 10.7% increase in processor power over the maximum
power seen during the execution of the SPEC CPU2006 benchmarks.
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