
Arbitrary Modulus Indexing

Jeffrey R. Diamond∗ Donald S. Fussell∗ Stephen W. Keckler∗†
∗The University of Texas at Austin †NVIDIA

{jdiamond, fussell, skeckler}@cs.utexas.edu

Abstract—Modern high performance processors require
memory systems that can provide access to data at a rate
that is well matched to the processor’s computation rate.
Common to such systems is the organization of memory
into local high speed memory banks that can be accessed in
parallel. Associative look up of values is made efficient through
indexing instead of associative memories. These techniques lose
effectiveness when data locations are not mapped uniformly
to the banks or cache locations, leading to bottlenecks that
arise from excess demand on a subset of locations. Address
mapping is most easily performed by indexing the banks using
a mod(2N) indexing scheme, but such schemes interact poorly
with the memory access patterns of many computations, mak-
ing resource conflicts a significant memory system bottleneck.
Previous work has assumed that prime moduli are the best
choices to alleviate conflicts and has concentrated on finding
efficient implementations for them. In this paper, we introduce
a new scheme called Arbitrary Modulus Indexing (AMI) that
can be implemented efficiently for all moduli, matching or
improving the efficiency of the best existing schemes for primes
while allowing great flexibility in choosing a modulus to opti-
mize cost/performance trade-offs. We also demonstrate that, for
a memory-intensive workload on a modern replay-style GPU
architecture, prime moduli are not in general the best choices
for memory bank and cache set mappings. Applying AMI to
set of memory intensive benchmarks eliminates 98% of bank
and set conflicts, resulting in an average speedup of 24% over
an aggressive baseline system and a 64% average reduction in
memory system replays at reasonable implementation cost.

Keywords-prime banking; index schemes; fast division and
modulus; GPU caches; replay architectures

I. INTRODUCTION

Modern high-performance processors require memory
systems that can provide access to data at a rate that is
well matched to the computation rate. Common to such
systems is the organization of memory into local high speed
memory banks that can be accessed in parallel. Associative
look up of values is made efficient through indexing instead
of associative memories. These techniques lose effectiveness
when data locations are not mapped uniformly to the banks
or cache locations, leading to bottlenecks that arise from
excess demand on a subset of locations. Address mapping
is most easily performed by indexing the banks using
some number N of low order address bits, i.e. by using
a mod(2N) indexing scheme. However, such schemes are
poorly matched to the memory access patterns of many com-
putations, making resource conflicts a significant memory
system bottleneck.

Programmers can alleviate such interactions through var-
ious means, but these require significant effort, are special-
ized to specific situations, and are hard to maintain. Hard-
ware solutions include various forms of bit hash indexing,
which change but do not eliminate the most common con-
flicts due to power-of-2 divisors in the index and the memory
access patterns. Indexing with non-power-of-2 moduli can
alleviate many of these conflicts, but implementing such
schemes efficiently in hardware is difficult. Work in this
area has commonly assumed that prime moduli are the best
choices to eliminate conflicts since they have the fewest divi-
sors and has thus concentrated on efficient implementations
for prime moduli.

The most efficient existing implementations are for mod-
uli of the form 2N −1, some of which are prime (Mersenne
primes). For practical systems, only a few possible such
choices exist, and they may not be of suitable size. This
has led to efforts to find efficient implementations for other
primes, including those of the form 2N + 1 [1]. While
providing more flexibility, prime numbers that are not close
to a power of 2 can be difficult to integrate into a power-
of-2 based architecture, and indexing implementations for
general moduli are relatively expensive. Approaches using
prime moduli provide limited flexibility in the choice of
modulus, especially in light of integration considerations,
and the implementations have not yet proven to be attractive
in practice.

In this paper, we introduce a new scheme called Arbi-
trary Modulus Indexing (AMI) that can be implemented
efficiently for all moduli. AMI matches or improves the
efficiency of the best existing schemes for non-power-of-
2 indexing while allowing great flexibility in choosing a
modulus to optimize cost/performance trade-offs. Our novel
implementation of AMI requires less than 3% of the area of
a 32-bit integer multiply unit, less than 0.5% of its power,
and just a few gate delays.

As a case study, we evaluate the potential benefits of AMI
when applied to a high throughput GPU memory system.
Delivering high-bandwidth parallel access to memories re-
quires heavily banking the RAM structures throughout the
memory hierarchy. As a result, memory systems of GPUs are
at least as reliant on efficient banking techniques as vector
supercomputers. In addition, while many parallel algorithms
on GPUs benefit from caching, the large numbers of threads
put severe pressure on the on-chip caching structures in-
cluding cache conflict misses. We address two major types

of conflicts in the primary memory system of a modern
GPU: (1) bank conflicts that arise when multiple threads
want to access the same level-1 cache or scratchpad memory
bank to obtain different data in the same cycle; and (2) set
conflicts due to the limited associativity in the cache banks.
AMI enables the use of an arbitrary number of cache or
scratchpad banks, which reduces many common cross-thread
conflict patterns. Given the flexibility of AMI, we examine
the performance of a set of memory-intensive benchmarks
using a variety of moduli. Surprisingly, we find that the
most promising Mersenne prime modulus (31) is not a good
choice, and that some of the best moduli are not prime or
even odd numbers.

Our results show that minimal additions to the memory
system architecture reduce bank conflicts by over 98%,
completely eliminating conflicts in 4 of the 5 benchmarks
with the highest memory intensity. We also demonstrate that
applying AMI to scratchpad banks, L1 cache banks, and
L1 sets eliminates 64% of instruction replays, recovering
essentially all of the performance lost from conflicts. Most
importantly, we show that AMI offers tremendous design
flexibility that enables several optimization trade-offs. The
area and power overheads are more than offset by gains in
performance and reduction in replays. Further, the additional
latency required for arbitrary modulus computation is easily
hidden in a latency tolerant GPU architecture.

The rest of the paper is organized as follows. Sec-
tion II describes previous work on non-power-of-2 indexing
schemes. Section III describes the AMI scheme and its
implementation and compares it to existing efficient non-
power-of-2 schemes. Section IV provides background on the
architecture of throughput processors, discusses where AMI
is applied, and details the architectural model used in this
paper. Section V describes our simulation methodology, our
power model and our choice of benchmarks for the study.
Section VI characterizes the behavior of the throughput
benchmarks used in this paper, particularly in terms of their
conflict behavior, and shows how their behavior varies with
choices of index moduli. Section VII quantifies the reduction
in conflicts and improvements in performance stemming
from AMI. Section VIII discusses conclusions and future
work.

II. RELATED WORK

As computers employ binary numbering schemes, hard-
ware memory resources such as number of banks or sets
are typically found in powers of 2. Likewise, software data
structures are often accessed in a power-of-2 (or multiple
thereof) stride as programmers optimize their algorithms
for hardware implementations. Many have observed that
mapping conflicts are worst when the index modulus and
the memory access stride share a common divisor [2], [3],
[4], so power-of-2 strides combined with power-of-2 address
mapping schemes often lead to undesirable levels of resource

conflicts. This problem has been well-studied in the context
of interleaved memory bank and cache set conflicts, and
both software and hardware approaches have been used to
mitigate the conflicts.

A. Software Approaches

A programmer or compiler can carefully adjust the data
layout of the code by padding array sizes or providing
cyclic rotations of rows. Both library APIs [5] and language
extensions [6] have been proposed to abstract array access
and allow a programmer to independently specify the static
memory layout of arrays. All of these approaches impose
a burden on the the programmer and are impossible in
cases where the size or access patterns of the data are
dynamic [7]. While hardware solutions have been proposed
to ease efficient data layout [8], it is preferable to reduce
conflicts without modifying the structure of the data.

B. Power-of-2 Indexing Algorithms

Bit hashing: While numerous index hashing tech-
niques that take the form of simple bit operations have
been proposed [9], such schemes do not prevent all power-
of-2 self-conflicts and thus end up trading off improved
performance on some access patterns with reduced perfor-
mance on others [10], [11]. Application-specific hashing
schemes devised offline [12] or dynamically [13] reduce
conflict misses by up to 30%, but AMI removes nearly all
conflicts, even with a single, static indexing scheme across
the benchmarks we examined.

Reordering: Buffering and reordering strided memory
accesses has been shown to reduce bank conflicts [14],
[15] within single streams of access. Reordering can be
combined with advanced hash techniques such as Galois
Fields [16] to statistically reduce conflicts for a general
mix of vectors. However, SIMD lanes do not have per lane
buffering or reordering, and conflict rates as low as 3% can
halve throughput.

Associativity: Adding associativity to a direct-mapped
cache can reduce bank conflicts but is costly to imple-
ment past a small number of ways. More sophisticated
approaches use multiple bit-hash schemes, either on multiple
ways, such as skewed-associative caches [9], or on the
same way, such as column-associative caches [17], hash-
rehash caches [18], ZCaches [19], [20], or various indirect
indexing schemes [21], [8]. Many of these schemes are
difficult to implement in practice. Approaches that increase
associativity are primarily limited to reducing set conflicts in
caches, as opposed to banks or scratchpads. In most cases,
such approaches are orthogonal and complementary to non-
power-of-2 caches, but have limited applicability to banks,
scratchpads, small L1 caches, or modern GPUs. In addition,
the parallel lookups required in associative caches increase
power consumption; AMI can eliminate set conflicts without
resorting to an associative cache.

C. Non-power-of-2 Indexing Algorithms

Prime number indexing: Prime moduli have long
been assumed to be the best indexing choices to mini-
mize conflicts since they have the fewest divisors. In some
cases, prime bank indexing has proven to have sufficient
advantages over simple power-of-2 mapping as to be worth
implementing even as an expensive series of iterations [22].

As the latency and area required for index computation
have become more critical, more efficient techniques for
prime index computation have been sought [23]. The most
significant optimizations in the prime index computation of
general moduli involve the application of modulo/remain-
der algebraic properties, such as the Chinese Remainder
Theorem (CRT) [24]. These approaches break an address
into smaller chunks and apply a modulus operation by a
linear combination of narrow address digits and constant
weighting parameters. In the best case, when applying CRT
to moduli of the form 2N −1, the coefficients become 1 and
the operation reduces to computing the modulus of a narrow
sum of numbers [25].

Mersenne prime indexing: Given the relative efficiency
of implementing moduli of the form 2N − 1 and the
assumption that prime moduli are preferred [1], Mersenne
primes of the form 2N − 1 have been the most efficiently
implementable non-power-of-2 moduli studied. They also
have the advantage over other primes of being close to
powers of two and thus more easily integrated into hardware
in which resources are sized in powers of 2 [10], [11].
However, Mersenne primes give few candidate moduli (the
first 5 Mersenne primes are 3, 7, 31, 127 and 8191) and these
are spread so far apart that there is often no appropriately
sized choice. On the other hand, non-Mersenne primes are
more plentiful but farther from powers of 2 and thus harder
to integrate into other hardware. No sufficiently efficient
implementations of non-primes other than powers of 2 and
those of the form 2N − 1 [25] and 2N + 1 [1] have been
demonstrated, perhaps because they have been assumed to
be likely to underperform prime moduli. Thus finding a non-
power-of-2 modulus that is effective at minimizing conflicts
and efficiently implementable for a given application may
be difficult.

III. ARBITRARY MODULUS INDEXING (AMI)

We propose a flexible new approach to efficiently com-
puting indices called Arbitrary Modulus Indexing (AMI).
AMI can be implemented more efficiently than any previous
non-power-of-2 indexing scheme. Our approach works not
just for primes but for any positive integer, albeit with
different area/delay costs depending on the exact number
used. For about a third of the cases in our case study, AMI
adds only a few gate delays to conventional base + index
address generation, with area and power equivalent to a few
narrow adds. Due to the generality of the approach, it is
possible to use a common circuit that can be configured

for a variety of moduli, making possible a dynamically
configurable indexing modulus for cases where different
workloads benefit from different moduli.

AMI has a novel derivation that stems from the original,
unmodified hardware implementation of binary reciprocal
array multiplication. We then optimize the algorithm and
logic design for use in index computation. This approach
guarantees an efficient hardware implementation and pro-
vides a clear view of how a given circuit implementation
would support multiple choices of modulus. Previous meth-
ods of computing prime moduli transform the modulus oper-
ation into a more efficient mathematical form, but then pro-
vide no guidance to efficient hardware implementation. AMI
is a general method that subsumes as special cases various
mathematical tricks have been developed for special cases of
binary division [26], [27]. AMI also has the advantage that
both the DIV and MOD results are produced simultaneously
from the same computation, which is important for efficient
tag matching and 2-D cache mapping. We will first describe
AMI and then use a detailed example to compare it with
existing methods.

A. Efficient Index Implementation

The most efficient general solution to modulus computa-
tion to date uses the Chinese Remainder Theorem to convert
MOD(N) to a narrow column of numbers which are then
added modulo N . While certainly more efficient than a
divide and remainder operation, there is implementation
complexity in keeping the sum in MOD(N) terms. The
performance advantage of our method is that it expresses
both the DIV and MOD as a sum of narrow numbers in
binary, which can be implemented using a high-performance
array adder.

Instead of basing our derivation of MOD on modular
arithmetic, we instead derive it from the original binary
DIV/MOD operation as would occur with binary fixed-point
numbers. AMI first multiplies the bits from the address by
the reciprocal (1/N) in fixed point. The DIV will be the
integer part, while the MOD will be N times the fractional
part of this result. This approach expresses the computation
of DIV/MOD as two integer array multiplies, which on a 1
GHz GPU could complete in less than 2 cycles. Although
this solution is already acceptable in terms of latency, it
requires unnecessary area and power. From this logical
baseline, we derive a far more efficient solution.

A sketch of the derivation of our index computation is as
follows. First, we examine the binary form of the reciprocal
of N , possibly expressing it as a difference of two numbers
to reduce the number of ones. The number and spacing of
ones ultimately determines the number and width of the
additions needed to multiply by this reciprocal. Second, we
derive a transformation to minimize the total number of
additions and a hardware mechanism to compactly leverage
sequences of infinitely repeating digits. Finally, we take

32#bit'address'='ABCD256'x'
'''''''''''''{DIV'255,'MOD'255}'ABC.D

 AB.CD
 A.BCD
 .ABCD
 .0ABCD

DIV.RRRRR…

AAA.A…
 BB.B…
 C.C…
 .D…
DIV.R…

0.1255

Figure 1: Key arithmetic transformation in AMI derivation.

the appropriate bits representing the resulting DIV and
demonstrate how to trivially transform them into the MOD
value. The end result can compute a DIV and MOD that in
the best cases use fewer total binary adders than the number
of bits in the source address.

We now explain the detailed algebraic derivation of our
approach through a set of examples: First, we recreate the
most efficient solutions known for computing DIV/MOD
with moduli of form 2N ± 1. Then, we show how AMI can
generalize this to a single circuit computing DIV/MOD with
moduli of the form 2J ± 2K . Finally, we show how AMI
computes DIV/MOD efficiently for any modulus.

Derivation of Efficient 2N − 1 DIV/MOD: The goal of
an index function that direct maps an address A to S banks
or sets is to compute the address pair, A⇒ (A DIV(S), A
MOD(S)). The modulus operator is the critical one, defining
the bank or set. The floor divide operator is important in 2-D
mappings (bank versus set) and as a tag option.

An efficient MOD(2N − 1) function is actually derived
from an efficient truncated DIV(2N − 1) function. For
generality of description, assume we will be computing in
a logical base, b = 2N , with each logical digit of the num-
ber containing N binary digits. We will begin computing
A/(2N −1) by multiplying A with the constant 1/(2N −1).
This computation is only expressible in base b as an infinitely
repeating decimal of the form 0.1b. This multiplication may
be viewed as adding an infinite number of A’s together, each
shifted over an additional N binary digits, or one logical
digit in base b = 2N . Figure 1 shows a concrete example of
this process in which a 32-bit address A is mapped to 255
(N = 8) sets by expressing the source address as four base
256 digits, abcd. The result of the infinite sum is a three
digit number in base 256, representing A DIV(2N −1), and
an infinite sequence of fractional digits R representing the
remainder A MOD(2N − 1), again expressed in base 256.

To avoid an infinite number of addends, we apply asso-
ciativity of addition to transform the sum such that each
infinite diagonal represents one addend. Now, instead of
adding an infinite number of finite digit numbers, we are
adding a finite number (in this case just four) of infinite

Figure 2: 8-bit wide augmented array adder implementation
of MOD(2N -1) in base 256.

digit numbers. However, each number just repeats a single
digit of A in base 256. As illustrated in Figure 1, we
can now express the DIV/MOD operation concisely in this
example of four base 256 digits (A = abcd) as the sum
(aaa.a + bb.b + c.c + 0.d) = DIV(.R). We implement this
computation efficiently by augmenting an array adder, where
we capture the carry effects of an infinite number of digits by
having a wrap-around carry at each stage where the binary
carry-out of the remainder digit is fed into the carry-in of
the next row. Since each digit is only N = 8 bits wide, the
wires will be short.

The result of just the circular array addition is the N
digit repeating pattern Rb in the infinite sequence of digits
representing the MOD result 0.Rb. To convert this back to
base 2N − 1, we just multiply 0.Rb by 2N − 1. To do this
quickly, we instead divide by 1/(2N − 1), which we have
already shown to be 0.1b. Dividing 0.Rb by 0.1b is simply
Rb, our desired bank (or set) index. An alternative view is we
are multiplying by 2N and then subtracting 0.Rb, removing
the repeating digits.

One side effect of preserving infinitely repeating digits
(due to the identity 1.0 = 0.1) is that a result that should be
in the form {DIV, MOD} = {DIV, 0} will instead map into
{DIV−1, 2N − 1}. This is mathematically equivalent, but
violates the base range. The standard mathematical answer
can be achieved with a simple one-level circuit that checks
the MOD value for all 1’s and zeros it out, or by increasing
the array width by one binary digit and setting the initial
carry-in to 1. However, since we are only using the MOD
value to choose a bank or set, we can omit even this circuitry
and just map the SRAM banks as the high 2N − 1 values.
This example highlights the difference between computing
a mathematical DIV/MOD versus one equally suitable for
removing bank conflicts.

Figure 2 shows such an array adder implementation using
only 24 1-bit full adders to handle 32-bit addresses. Wider
addresses need a few more logic levels to handle the extra
digits. This operation can easily be folded into a base+offset
computation within the same cycle. The rearrangement in
Figure 1 further shows that we can compute A DIV(2N −1)
practically for free, as the intermediate sum as each digit is
added represents each base b sum digit for the divide. This
result matches the best previously reported implementation

of MOD(2N − 1) by Teng[25] and Dinechin[1].
Derivation of (2N + 1) DIV/MOD: As before, we start

by multiplying A by 1/(2N + 1), but reduce the cost by
re-expressing the reciprocal in redundant binary notation
{−1, 0,+1}. This constant is concisely represented in re-
dundant form as (0.10b−0.01b) = 0.11′b, where 1′ denotes
a digit with value -1. Expressing this multiplication and
transforming the diagonals in the four digit example yields
the sum (AA′A.A′Ab + BB′.BB′

b + C.C ′Cb + 0.DD′
b).

This computation requires adding sums twice as wide as
previously, because the length of repeating digits in the
reciprocal is twice is wide. Viewing this sum as R1R2b,
recovering MOD from the sum requires multiplying by
2N + 1, but this is simply (R1.R2 + .R1)b, which is trivial
to fold into the array sum. This result matches the best
implementation of MOD(2N + 1) by Dinechin[1].

Generalizing to (2J ± 2K) DIV/MOD: We extend
the prior derivations by expressing MOD(2J ± 2K) as
MOD(2N ± 1) × 2M . Standard modulo algebra can be re-
expressed in binary as taking MOD(2N −1) as before, then
prepending the low order M bits from the DIV result. Since
our approach already computes DIV, this would be a mini-
mal extension, but we find an even simpler implementation.
Take (A � M) MOD(2N ± 1), then append the low-order
M bits from the original address A. Therefore, the circuit
derived for MOD(2N ± 1) also computes MOD(2J ± 2K),
and we can scale any modulus by a factor of 2N for free.
Such DIV/MOD circuits resemble Figure 2 and require
fewer total binary adders than bits in the address.

With minor additional multiplexing, we can modify the
circuit computing (2J +2K) to also compute (2J − 2K) by
making the 1’s complement optional and choosing just R1

as the result. In general, wider AMI circuits can emulate
narrower circuits with a small amount of configuration.

Generalizing to efficient DIV/MOD of ANY number:
A slight generalization of our derivation methodology of
DIV/MOD(2N + 1) produces an efficient circuit for any
modulus M . First, find the repeating bit pattern of the
reciprocal 1/M , whose bit width depends on M . The address
A is similarly divided into digits of this width. Then express
the reciprocal redundantly. Starting from the right, every
consecutive string of 3 or more 1s should be replaced by a
difference, e.g. 0111 = 1001’. Multiple strings of 2 or more
1s separated by a single 0 can be expressed as a single large
difference with the original zeros becoming -1s, e.g. 011011
= 1001’01’. Each 1 or -1 represents a single layer of logic
(an array term), and this approach guarantees that total array
terms remain less than half the number of bits in A, enabling
1-cycle completion for all moduli.

Our case study focuses on moduli between 33 and 61. In
this range of 31 choices, 11 have 2 or fewer logic levels
per digit, while more than half have 4 or fewer logic levels
per digit and widths of 12 bits or less, while 25 have
widths of 24 bits or less. Only four moduli, {37, 53, 59,

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

48	
56	
62	
60	
63	
34	
40	
51	
36	
42	
33	
43	
44	
46	
57	
35	
39	
41	
45	
52	
55	
38	
54	
50	
49	
47	
58	
61	
53	
37	
59	

Pe
rc
en

t	 o
f	 3

2-‐
bi
t	 i
M
U
L	

Modulus	

Implementa:on	 Cost	 of	 AMI	

Figure 3: AMI Implementation cost versus MOD number.

61} proved relatively inefficient. The total area of the array
adder is proportional to the number of bits in the binary
representation of A times the number of non-zero binary
digits in the repeating reciprocal digit, shown in Figure 3.

When the repeating digit width is large, as in 4 of the 31
moduli above, a fallback approach is to dispense with the
wrap around carry and use just enough digits to ensure that,
with rounding, you will recreate exactly the correct DIV
value from the reciprocal multiply. Error analysis indicates
that we need to multiply A by a reciprocal truncated to one
binary digit more than the width of A, setting the carry-
in to 1 for rounding. Even this fallback approach is about
3x more efficient than an integer multiply and can still
complete in one cycle. Nonetheless, using AMI gives us
enough flexibility to choose more efficient moduli and still
achieve full benefits. Two implementations used in this paper
are MOD(62), an array addition of three 5-bit numbers and
MOD(48), an array addition of 12 2-bit numbers, which can
be expressed as short parallel sums to arbitrarily reduce gate
delay.

B. Comparison With CRT

While efficient implementations have been derived for
the special cases of DIV/MOD(2N ± 1)[1], [25], the only
algorithm proposed for an arbitrary integer is based on the
Chinese Remainder Theorem. We illustrate the competitive
advantages of AMI with a concrete example. Sections VI
and VII show that for global memory accesses, the best
number of banks is 48. This number is also very amenable
to interfacing with the rest of the memory system. The AMI
derivation shows that since the reciprocal of 48 is 0.00001,
the core circuit of the modulus computation of a 24-bit line
address will consist of a 2-bit by 12-line array adder with
wrap-around carry, with the last four bits of the modulus
appended from the low-order bits of the address. This circuit
is extremely compact and fast, and requires no special case
analysis.

For an efficient implementation based on the Chinese
Remainder Theorem (CRT) [25], we need to break the

MemCtrl	 MemCtrl	 MemCtrl	

MemCtrl	 MemCtrl	 MemCtrl	

SM	 SM	 SM	 SM	 SM	 SM	 SM	 SM	

SM	 SM	 SM	 SM	 SM	 SM	 SM	 SM	

L2	 Cache	

Interconnect	

Interconnect	

(a) GPU chip

Select&

Register&File&

Pending'Warps'

ALUs'

Cache/Scratch'Banks'(32'x'2KB)'

Tag&
Array&

Tag&
Array& Address/Tag&Sor4ng&Network&

Warp&Scheduler&

SIMT&Lanes&

XBAR&

(b) Streaming multiprocessor

Figure 4: Baseline GPU architecture.

address into digits such that the coefficients are trivial to
multiply. We choose the minimal digit size to hold the
modulus, base 64. We note that 64K MOD(48) is 16, so our
coefficients shift the value left by 4-bits. We then compute
the sum of 5 terms for each base 64 digit of the address
as Di MOD(48), sum these values, and then compute a
final MOD. Because there is no circular carry, the sum
requires extra bits, and the final MOD becomes non-trivial.
At the very least, this procedure requires roughly 2 cycles
to operate: one to compute the sum of terms, and one to
take the MOD of that sum. However, we can only achieve
2 cycles if there is an efficient way to compute the individual
MODs of each addend with 48.

Even if a more elaborate analysis of residual arithmetic
can separate the problem into a MOD(3) and MOD(16)
problem, we would end up with a similar 2-bit × 12 array
addition. However, the end sum would still require a full 6
bits as in the original case, so the array area will be closer to
that required for a 6-bit × 12 array addition. Further, such
a circuit still does not compute DIV as a byproduct.

Sophisticated CRT implementations (1) may require more
elaborate (non-general) derivations to reformulate the prob-
lem to eliminate MOD operations on each term, (2) often
result in larger array adders, and (3) in general require an
extra cycle to compute the final MOD. AMI outperforms
even the best known implementations using CRT.

IV. THROUGHPUT ARCHITECTURE BACKGROUND

In the remainder of the paper we present a case study
analyzing the effectiveness of our AMI technique in reducing
bank and set conflicts in a modern GPU. Our baseline
architecture is loosely modeled on NVIDIA’s Fermi ar-
chitecture, shown in Figure 4. This is a generic design
similar to others in the literature [28], [29], [30], and is not
intended to correspond directly to any existing product. The
GPU consists of 16 streaming multiprocessors (SMs), each
containing 64 SIMT (single-instruction, multiple thread)
lanes that each execute up to one thread instruction per
cycle. Each SM dynamically manages up to 8 different CTAs

(Cooperative Thread Arrays) simultaneously, populating up
to 48 warp slots with up to 1,536 total active SIMT lanes. Up
to two 32-lane warp instructions per cycle issue in order and
complete out of order. Each warp controller contains a small
instruction buffer and scoreboard to prepare instructions for
issue, and a reorder buffer for in-order retirement.

Each SM contains a 128KB SRAM array for storing
register values and a 64KB SRAM scratchpad, half of which
is used as a 32KB L1 cache. The baseline SRAM array is
divided into 32 fully independent 32-bit wide banks and
supports full scatter/gather via a bank sort network and
a 32×32 32-bit crossbar. Global tag arrays determine if
an L1 cache line is present. Each L1 cache line is 128-
bytes, spanning 32 banks. Our L1 cache is direct mapped.
While slightly pessimistic, GPUs have limited associativity
to conserve power, and AMI provides an alternate approach
to reducing set conflicts. L1 misses coalesce in MSHRs and
are sent to a 768KB global L2 cache. L2 misses go directly
to DRAM. As all our benchmark kernels fit in a few KB,
we ignore instruction cache misses.

Active lanes in the warp may not all successfully com-
plete their memory transaction due to (1) a conflict in the
tag array (too many cache lines referenced), (2) memory
divergence (not all cache lines present in L1), or (3) bank
conflicts. Incomplete memory instructions move to a replay
buffer which contends with new instructions for issue slots.
To preserve memory consistency, other in-flight memory
instructions from the same warp are squashed and reissued.
Our model is more aggressive than current GPUs, which
avoid a replay queue by squashing and reissuing all instruc-
tions from the warp beginning with the conflicted memory
instruction [31], [32]. Replays reuse major SM hardware
and preserve memory consistency but also cost energy and
reduce throughput performance [33].

To demonstrate a meaningful improvement over a state-
of-the-art architecture, we chose an aggressive base case
with dual global tag arrays that virtually eliminates tag
conflicts while increasing average base performance by 10%.
We examine techniques based on AMI for reducing bank

Table I: Benchmarks.

Rodinia Benchmarks Characteristic
backprop Back Propagation unstructured grid
needle Needleman-Wunch dynamic programming
hotspot physics simulation structured grid
srad image processing structured grid
lu LU Decomposition dense linear algebra
hwt Heart Wall structured grid

Parboil Benchmarks Characteristic
sad sum of absolute differences structured grid
cp distance cutoff coulombic potential unstructured grid
tpacf two point angular correlation function structured grid
mri-q scanner calibration structured grid
mri-fhd compute 3D image unstructured grid
rpes molecular dynamics simulation graph processing
pns petri net simulation graph traversal

conflicts during scratchpad access and bank and set conflicts
during L1 cache access. In Figure 4, one AMI unit is placed
in each address generation unit (one per lane for a total of
32) and one is placed at each cache tag array when applying
AMI to sets.

V. METHODOLOGY

Simulator: We created a custom GPU architecture sim-
ulator that models long latency replay mechanisms, sort
networks, crossbars, and a GPU-like primary memory sys-
tem. Our simulator is a fully execution-driven, highly de-
tailed, cycle-accurate simulation of the entire GPU core and
secondary memory system. We fully model the execution
pipelines, thread selection and retirement, multiple pipelines
in the primary memory system, tag and bank access, re-
order buffers, sort networks and crossbars, wire traversals,
and contention at all levels. Our performance numbers are
the total cycles taken by each application as simulated; all
benchmarks are simulated to completion.

For efficiency, we leverage a modified version of
Ocelot [34], [35] for the interpretation and functional execu-
tion of instructions in CUDA programs. Ocelot then feeds a
cycle-accurate timing simulation that is able to model the
conflicts described in Section IV fast enough to run the
largest possible datasets on all benchmarks for billions of
cycles, realistically stressing the memory system.

For this paper, we ran benchmarks on a single SM and
allocated them a single, direct mapped, 48KB slice of the
768KB L2 cache. This simplification results in somewhat
conservative L2 cache performance, since SMs cannot ben-
efit from shared data. However, unlike the findings in [36],
we found that global data sharing across tasks (CTAs) is
minimal in the applications we evaluated.

Power model: Modeling power requirements is challeng-
ing, as the structures examined in this paper are not modeled
in conventional simulators [37], and the area and power
required depend highly on the exact VLSI implementation.
For replay costs, we estimated core pipeline power and
redundant register reads as a fixed fraction of SM power in
the manner of [38]. Power in the primary memory pipeline

is dominated by the cross-bar switch, whose power is best
approximated by a wire-transmission model. We modeled
the area and power of the cross-bar similar to CACTI [39],
using a standard cell library for geometry and computing ac-
tive power based on actual wire traversals during simulation.
We chose the conservative VLSI layout of a monolithic grid
connecting data lanes to SRAM banks, and modeled active
and static power using ITRS Roadmap wire models, taking
the approach of [40]. The power needed for register accesses,
tag accesses, SRAM banks, and L2 caches, as well as the
size and power for crossbar logic came from standard cell
data reported in [41]. Power and size of AMI circuits were
conservatively scaled from 3-bit full-adder results from the
same paper.

Benchmarks: Table I shows the Rodinia [42] and Par-
boil [43] benchmarks used in our study. We always use
the largest standard input data sets available for the bench-
marks to stress the memory system in the most realistic
manner possible, with typical benchmarks running for tens
of billions of cycles. For our characterization, we also
count memory accesses in an architecturally relevant way
to capture the behavior of (1) coalescing of scalar thread
memory accesses into cache lines, and (2) coalesced scalar
references from multiple threads in a warp to the same
address.

VI. BENCHMARKS AND MODULI

This section characterizes the memory access behavior
of our benchmarks and the sensitivity of this behavior to
different numbers of L1 and scratchpad banks.

A. Memory Access Patterns

Stereotypical views of throughput applications include
extremely high arithmetic intensity (low memory intensity),
little to no reuse of data (streaming applications), and
regular, sequential data access, which would make notions of
bank conflicts irrelevant. However, we find that the majority
of these benchmarks exhibit more intense and more complex
memory behavior.

Figure 5 shows how values are reused across threads
and warps for benchmarks with more than 0.01% memory
intensity, defined as the fraction of instructions that are
load or store operations. Some benchmarks have two
distinct phases, labeled A and B. We found most inter-task
(CTA) sharing of data was among small groups of tasks
separated by large distances in space and time, requiring
complex task scheduling to leverage.

In the figure, a vector broadcast represents a CTA-wide
access to the same value that need only be fetched from the
memory system once. A warp broadcast represents the same
concept, but limited to the extent of a warp (32 threads). A
lane broadcast represents the same concept but for a partial
warp. Finally, scatter/gather represents individual thread
accesses to different addresses. Roughly half the benchmarks

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

	 sa
d-‐A
	 	
	 hw

t	 	 	 lu
	 	

	 tp
ac
f	 	
	 rp
es	
	

	 sr
ad
-‐A	

	 ho
tsp
ot-‐
A	
	 pn
s	 	

	 ba
ckp
rop
-‐A	

	 ho
tsp
ot-‐
B	

	 ne
ed
le	
	

av
era
ge
	

ScaDer	 Gather	

Lane	 Broadcast	

Warp	 Broadcast	

Vector	 Broadcast	

Figure 5: Categorization of GPU memory accesses.

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

40%	

	 lu
	 	
hw
t	

	 ne
ed
le	
	
	 sr
ad
	 	

	 ba
ckp
rop
	 	
rpe
s	
tpa
cf	

	 sa
d	 	

	 ho
tsp
ot	
	
pn
s	

	 m
ri-‐=

d	 	 cp
	

	 m
ri-‐q
	 	

L1	 cache	

Scratchpad	

Figure 6: Memory Intensity

have more than 50% of all memory instructions as some
form of scalar broadcast, which results from an architecture
that has a vector nature, but lacks scalar registers to span
vector elements. As the architecture already coalesces these
accesses to eliminate unnecessary bank conflicts, we do
not consider them in our bank conflict analysis. A second
observation is that a significant fraction of accesses cannot
be completely coalesced (as emphasized by lane broadcasts
and part of the scatter/gathers), subjecting them to both tag
and bank conflicts.

B. Memory Conflicts

Bank conflicts tend to be more common and expensive in
GPUs than in conventional architectures. In current systems,
each bank conflict triggers one or more instruction replays,
which costs the processor throughput (issue) slots, lowers
total throughput performance, and uses extra power. Replay-
ing memory access instructions multiple times adds large
amounts of latency that is difficult for threads and available
parallelism to cover. The impact of bank conflicts depends
both on memory access intensity and on the bank access
pattern.

Memory intensity: Figure 6 shows the memory inten-
sity of the benchmarks, which is critical in interpreting

0	

5	

10	

15	

20	

25	

30	

35	

40	

31
+	

32
+	

33
+	

34
+	 35
	

36
+	 37
	

38
	

39
	

40
+	 41
	

42
	

43
	

44
	

45
	

46
	

47
	

48
+	 49
	

50
	

51
	

52
	

53
	

54
	

55
	

56
+	 57
	

58
	

59
	

60
+	 61
	

62
+	

63
+	

64
+	

65
+	

L1
	 C
ac
he

	 B
CP

KI
	

backprop	 	

hwt	 	

lu	 	

needle	

srad	 	

average	

Figure 7: Benchmark sensitivity to L1 bank count.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

31
+	

32
+	

33
+	

34
+	 35
	

36
+	 37
	

38
	

39
	

40
+	 41
	

42
	

43
	

44
	

45
	

46
	

47
	

48
+	 49
	

50
	

51
	

52
	

53
	

54
	

55
	

56
+	 57
	

58
	

59
	

60
+	 61
	

62
+	

63
+	

64
+	

65
+	

Sc
ra
tc
hp

ad
	 B
CP

KI
	

backprop	 	

hwt	 	

lu	 	

needle/5	

srad	 	

average	

Figure 8: Benchmark sensitivity to scratchpad bank count.

the severity of conflicts, as conflicts effectively multiply
memory intensity. Five benchmarks, lu, hwt, needle, srad
and backprop, have at least 10% memory intensity, which we
will group together as high memory intensive benchmarks.
The next 5 benchmarks have roughly 5% memory intensity,
rpes, tpacf, sad, hotspot, and pns, which we classify as low
memory intensive benchmarks, while the last 3 benchmarks,
mri-fhd, mri-q and cp, read from constant memory and apply
reductions, so they have essentially no memory intensity.
The chart also subdivides the memory references into L1
cache accesses and scratchpad accesses. L1 cache accesses
are subject to both set conflicts and bank conflicts, while
scratchpad accesses are only subject to bank conflicts.

We focus primarily on the five high memory intensive
benchmarks since those will show the greatest effects from
changes in the memory system. We found that optimizations
to the memory system do not degrade performance for
the benchmarks with low or no memory intensity (Section
VII-B).

C. Sensitivity to Number of Banks

Figures 7 and 8 show the sensitivity of bank conflicts to
bank count for L1 cache and scratchpad accesses, assuming
constant L1 or scratchpad capacity, respectively. In contrast
to the ideal results above, these and all subsequent results in
the paper are produced using a detailed cycle accurate sim-
ulation of the memory system. In each graph, the y-axis is
the number of bank conflicts per 1000 instructions (BCPKI).
The x-axis sweeps the bank count and indicates with a “+”
those moduli which are particularly easy to compute, as
described in Section III. In general, the number of bank
conflicts decreases with increasing bank count. However, the
figures show significant spikes with scratchpad bank counts
at multiples of 8, indicating systematic conflicts between
bank count and the memory access stride. The benchmark
hwt has irregular memory access patterns, leading to fewer
conflicts than the other more strided applications. The L1
cache is less sensitive to bank count and its bank conflicts
often spike at different bank counts than the scratchpad.

These figures show that the prime numbers are not nec-
essarily the best choice for bank counts. For the L1 cache,
the bank conflicts fall to zero at a bank count of 48, which
not only is not prime but also is not an odd number, and
many even numbers are good candidates for both L1 and
scratchpad.

VII. PERFORMANCE RESULTS

As indicated above, this section uses a detailed, cycle-
accurate simulation to evaluate the performance of AMI in
the context of a full secondary memory system.

Bank and moduli configurations: AMI indexing can be
disabled or configured to index by any modulus choice of
sets or banks less than the existing physical sets or banks.
For sets, using less than the total number of cache lines is a
net benefit. For banking, in the context of a GPU, we cannot
constructively index less than 32 banks without (in most
cases) increasing bank conflicts, so altering the physical
scratchpad/L1 is necessary.

We evaluate two different physical scratchpad augmen-
tations. In one case, we simply add a 33rd or 34th SRAM
bank, increasing area and leakage power by 3-6%, but having
minimal impact on the crossbar networks. This enables
indexing modulo 32 to 34 within the scratchpad or L1 cache.
The L1 and scratchpad are disjoint, so they can freely use
different index moduli. The second approach is to keep the
cache size the same, but convert it to 64 half-sized banks,
doubling the crossbar size from 32:32 to 32:64. The cost of
this change is negligible in power and area (Section VII-D),
and it allows indexing with any moduli up to 64 for both the
L1 cache and scratchpad. For the L1 cache, cache lines are
always maintained as 128 consecutive bytes, regardless of
the number of banks, to preserve compatibility with the rest
of the memory system. In the following sections, the term
“bank count” may be used interchangeably with the indexing

328	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

lu	 	 hwt	 	 needle	 	 srad	 	 backprop	 	

Co
m
bi
ne

d	
BC

PK
I	

32/32	

62/48	

Figure 9: Total bank conflicts per thousand instructions for
baseline vs AMI-Banking.

modulus and does not represent the underlying physical bank
count.

While we present performance sweeps in Section VII-C,
in the next section we highlight a few sample moduli to
illustrate the benefits of AMI at different physical bank
configurations. We chose 34 and 62 as two extremes for
scratchpad access, and 48 in the middle for L1 cache access.
None of these moduli have been studied before, and all are
easy to compute (Figure 3) and have robust performance
across all benchmarks, achieving near optimum in both
performance and power.

A. AMI Bank Conflict Reduction

As shown in Figure 8, for the base case of 32 banks,
four of the five memory intensive benchmarks have severe
bank conflict issues of 20% or greater. One benchmark,
hwt, only has moderate conflicts of 12%, due to irregular
memory access patterns, which tend to be less pathological.
Figure 9 demonstrates that applying AMI-banking with a
single, static number of banks across all benchmarks and
kernels reduces 98% of bank conflicts. In the figure, the
gray bar represents the baseline architecture with 32 banks
for the scratchpad and 32 banks for the L1 cache. The
AMI enhanced architecture uses 62 banks for the scratchpad
and 48 banks for the L1 cache. In 4 of the 5 benchmarks
with the most severe conflict issues (backprop, lu, needle,
and srad), conflicts are reduced to zero, without requiring
any programmer intervention. The one outlier, hwt, has an
irregular memory access pattern, making it less amenable
to AMI improvements, but also resulting in fewer initial
conflicts.

B. AMI Performance

Speedup: Figure 10 shows the increase in throughput
performance resulting from bank and set conflict reduction.
Our notation in the figures is (#SP banks/#L1 banks), with
S+ denoting the addition of AMI-sets. Applying AMI to
scratchpad banks and using the cheapest solution of 33 banks

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

lu	
	

hw
t	 	

ne
ed
le	
	

sra
d	 	

ba
ckp
rop
	 	

GE
OM

EA
N	

Sp
ee
d	
U
p	

33/32	

S+33/32	

S+62/48	

S+IDEAL	

Figure 10: AMI speedup over base case of 32/32 banks and
2 tag arrays.

yields a geometric mean 11% speedup, or nearly half the
ideal speedup for no bank conflicts. Applying AMI-sets to
the L1 cache, an extremely low cost optimization, increases
aggregate speedup to 21.4%. For execution speed, support-
ing the two lowest cost AMI implementations (S+33/32)
already achieves 90% of ideal speedup. Finally, applying
a more aggressive choice of static AMI bank numbers
to both the scratchpad and L1 cache leads to a 23.1%
geometric mean speedup, or 97% of ideal speedup. This
performance from static bank counts suggests that dynamic
AMI mappings per benchmark are not likely to be worth the
additional complexity, at least for this workload.

Three benchmarks (lu, needle, and srad) see large through-
put performance gains of 18%–78%, while hwt and back-
prop see moderate performance gains of 2.4–4.2%. Irregular
memory access patterns and a high ratio of load-dependent
instructions prevent hwt from seeing a large increase. The
limited effects in backprop are due to cache misses that
mask the additional latency caused by local replays. These
overall improvements are very significant for a throughput
architecture, which by its very nature is designed to mask
high latency through massive task level parallelism, and they
are achieved over a very aggressive base case, with very
limited application of AMI.

Finally, we note that there were no deleterious effects for
the 8 remaining low memory intensity benchmarks. Those
benchmarks showed a geometric mean speedup of 0.94%,
the largest winner being hotspot, with a 4.92% speedup, and
sad and tpacf, with 1.66% and 1.33% speedups, respectively.
Only one benchmark, pns, saw a negligible (0.06%) slow
down, which can be avoided by switching off AMI.

Replay and Energy Reduction: Figure 11 shows total
replays per thousand instructions (RPKI). Comparing with
Figure 9, we see that bank conflicts can increase replays by
an order of magnitude since the relatively long pipelines of
throughput architectures lead to a large number of instruc-
tions in flight.

2,380	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

lu	 	 hwt	 	 needle	 	 srad	 	 backprop	 	

Re
pl
ay
s	 P

er
	 T
ho

us
an

d	
In
st
ru
c4
on

s	

32/32	

62/32	

S+62/32	

S+62/48	

S+IDEAL	

Figure 11: Reduction in replays from applying AMI.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

lu	 	 hwt	 	 needle	 	 srad	 	 backprop	 	

Figure 12: Fraction of total instructions executed relative to
baseline 32/32.

Overall, 4 of the 5 memory intensive benchmarks show
absolute reduction in replays of nearly 20% or more, while
3 have replays reduced by 50% or more. Hwt only showed
a modest reduction in replays of about 7%, owing both to
its limited reduction in bank conflicts from AMI due to
its irregular memory access pattern and the low number
of instructions associated with each replay. Two of the
benchmarks had substantial replay reductions from just ap-
plying AMI to scratchpad banks and four of the benchmarks
benefited from applying AMI to L1 cache sets. Finally, 3 of
the benchmarks had significant improvements from applying
AMI to L1 banks, despite L1 banks having minimal impact
on execution speed. All benchmarks were able to achieve
nearly ideal (conflict-free) levels of replay reduction with
appropriate use of AMI.

Figure 12 shows the fraction of total instructions executed
by (S+62/48) relative to the baseline 32/32 architecture.
The reduction in executed instructions stems directly from
the set and bank conflict replays eliminated by AMI. The
benchmark needle sees the most impressive improvement,
reducing its executed instruction count by about 95%. In-

0	

100	

200	

300	

400	

500	

600	

700	

800	

0%	

2%	

4%	

6%	

8%	

10%	

12%	

14%	

16%	

18%	
31

+	
32

+	
33

+	
34

+	 35
	

36
+	 37
	

38
	

39
	

40
+	 41
	

42
	

43
	

44
	

45
	

46
	

47
	

48
+	 49
	

50
	

51
	

52
	

53
	

54
	

55
	

56
+	 57
	

58
	

59
	

60
+	 61
	

62
+	

63
+	

64
+	

65
+	

speedup	

RPKI	

Figure 13: Speedup and RPKI vs number of scratchpad
banks.

structions executed can be used as a first order proxy for
power consumption, indicating that any power costs for AMI
are offset by the benefits from reduced replays.

C. Performance sensitivity to bank count

Figure 13 shows the variation in speedup and replays
when varying scratchpad bank count and holding the rest
of the system constant. Bank counts with a + represent
those with the simplest AMI index computation. The graph
shows significant performance benefits (up to 17% speedup
or 62% replay reduction) from just altering the number of
scratchpad banks. About a dozen different bank counts are
comparable in achieving most of the performance benefits
in both speedup and RPKI. This effect is important, first,
because it only requires a small number of indexing options
to optimize all benchmarks, so a single, static choice can
achieve near ideal performance over all benchmarks. Sec-
ond, ease of index computation is not the only integration
consideration in a system, and certain moduli may be favored
for architectural reasons.

While all benchmarks benefit from having a bank modulus
other than 32, there are variations in performance with
moduli, and different benchmarks (and kernels) see better
results at different moduli. Furthermore, optimal moduli
differ between scratchpad and L1-cache, and differ for
throughput performance vs energy savings (L1 sensitivities
in Figure 7).

AMI allows hardware designers to make clean tradeoffs
between index cost, networking cost, average speedup, av-
erage energy savings, and robustness across benchmarks, at
a relatively insignificant cost in power, area, or complexity.

D. Integration costs

AMI circuits: We need to add 32 AMI circuits per
core (one for each ALU lane), and two for the tag arrays.
Active and leakage power are highly dependent on the exact
VLSI implementation of a circuit used. As a conservative

estimate of power, we extrapolate power and area figures
from standard cells used in [41], which were based on
32nm BSIM-4 predictive technology models (PTM). The
AMI circuit is very similar to a ripple adder with the same
number of bits as the address in the simplest case, or double
that in the next simplest case. Linear extrapolation of the 3-
bit adder cell from [41] leads in the worse case to 222fJ
energy per DIV/MOD computation and an area of 8.6um2,
representing overheads of 0.5% in active power and 0.1%
in leakage power compared to the 32-bit FMAD in each
lane. Performing an AMI index computation for each lane
for every global and scratchpad memory access results in
an average addition of 0.68 milliwatts active power, ranging
from 0 to 2.26 milliwatts for the highest benchmark intensity.
The delay of AMI circuits is less than one cycle, but even
if AMI forced adding a cycle to the pipeline, it would have
no visible impact on performance, because GPU scratchpad
and cache latency is tens of cycles and there is ample time
to run AMI in parallel, off the critical path.

L1 sets: A single AMI circuit is used at each tag array to
restrict tag lookup to less than the total amount. The cost of
an AMI circuit is negligible in power, area, and delay, and
the reduction in set conflicts more than offsets having fewer
cache lines. However, because a set location now depends
on more of the address, additional tag bits are needed, the
amount depending on the modulus. In the worse case, storing
an extra 8 bits per tag entry only increases scratchpad area
by half a percent. Our implementation retains the notion of
128-byte cache lines, requiring no changes to the TLB or
L2 cache interface. Mapping a given cache line to a physical
location involves rotation, which in our case is provided by
the existing crossbar network.

Scratchpad/L1 banks: To implement true scatter gather,
a large crossbar connects 32 ALU lanes to the default 32
scratchpad/L1 banks. Implementing AMI involves changing
the crossbar to 32×N, and possibly adding additional SRAM
banks. For a choice of 33, adding one more SRAM bank
would be the most sensible, while a choice of 62 would
likely double the bank count and crossbar size. When adding
banks to the L1/scratchpad, active access power is actually
reduced, because the same number of bank accesses occur
on smaller banks. Leakage power increases slightly due to
the overhead of control circuitry as banks become smaller.
Adding a single bank only reflects a 3% increase in area,
while doubling the number of banks also only requires a
minimal increase in area and leakage power due to increased
overhead per bank.

Crossbar: The largest change in the crossbar network
moves from 32×32 to 32×64, doubling the number of
access muxes and wire links. We simulated link by link
crossbar traversals for all benchmarks. Our simulation mod-
eled a monolithic rectangular crossbar in which each link
activation was measured. The average data traversal length
was a little less than the average manhattan distance due

to lane zero being used with greater frequency. We then
conservatively estimated total power as roughly double the
cost of simulated wire energy of that configuration to ac-
count for active logic energy. Linearly estimating the area of
the SRAM banks from [41] and using wire capacitance and
minimum spacing for lanes from the ITRS Roadmap [44],
the active wire power at 64 banks ranges from 0.6 milliwatts
to 1.9 milliwatts. Doubling that as a total estimate yields 1.2
milliwatts, which varies linearly with the number of banks
chosen. In comparison, the energy to access the SRAM
banks is an order of magnitude greater, at 116 milliwatts,
and access to registers in the core pipeline is even higher.
Thus the extra power needed for AMI banking is a small
fraction of core power.

VIII. CONCLUSION

In this paper, we introduce a new scheme for address
mapping using Arbitrary Modulus Indexing (AMI). We show
that for non-power-of-2 indexing, our scheme can be imple-
mented as or more efficiently than previous schemes, even
for the most competitive case of Mersenne prime indexing.
We then show that set and bank conflicts in the primary
memory system of a replay-style throughput architecture
have a deleterious effect on system performance caused by
the alignment of the bank count with natural strided memory
access patterns across the threads in a warp, similar to pre-
viously known effects for vector supercomputers. We show
how to use AMI to obtain significant gains in performance
and power efficiency on such an architecture.

The resulting system is simple to implement and provides
robust benefits across all of our benchmarks, on average
eliminating 98% of bank conflicts, and completely eliminat-
ing bank conflicts on 4 of the 5 benchmarks with the most
serious conflict issues, with no performance detriments for
benchmarks with low memory intensity. Applying AMI to
scratchpad banks, L1 banks, and L1 sets achieved 98% of
ideal performance, resulting in a geometric mean speedup
of 24% across the 5 most memory intensive benchmarks,
significant for an aggressive baseline architecture designed
to mask latency with explicit TLP. AMI also resulted in
a 64% reduction in instruction replays. The cost of our
implementation is just a few percent of the area and active
power of a 32-bit array multiplier and adds just a few gate
delays to the pipeline, while worst case power increases due
to sort networks and cross bars is under 2 milliwatts.

AMI provides great design flexibility, enabling trade-offs
in throughput performance, power reduction, and implemen-
tation cost. Our scheme works for all moduli, and relatively
efficient implementations of our scheme apply to a large
number of moduli. This opens up the possibility of separat-
ing the indexing modulus from the physical implementation
of a cache or memory banks and tuning the modulus for best
performance on a given workload. In fact, it is feasible to
implement a single mapping circuit that can be dynamically

tailored to moduli best suited for individual applications,
although our performance results indicate this is unnecessary
for the benchmarks we used. AMI benefits are orthogonal to,
and can enhance other indexing schemes designed to work
on power of 2 sized caches. Given this flexibility, we expect
schemes based on AMI to be useful for other aspects of the
memory systems of various types of architectures.

ACKNOWLEDGMENT

The authors would like to thank the numerous anonymous
reviewers for their helpful feedback and Benoı̂t D. de
Dinechin for providing valuable insights into prior work.
This work was supported in part by the National Science
Foundation under award CCF-0916745. Simulation work
was significantly enhanced by servers donated by Intel under
their Academic Support Program.

REFERENCES

[1] B. D. de Dinechin, “A Ultra Fast Euclidean Division Al-
gorithm for Prime Memory Systems,” in Proceedings of the
ACM/IEEE Conference on Supercomputing, November 1991,
pp. 56–65.

[2] Q. Yang and L. W. Yang, “A Novel Cache Design for Vector
Processing,” in Proceedings of the International Symposium
on Computer Architecture, May 1992, pp. 362–371.

[3] A. Seznec and J. Lenfant, “Odd Memory Systems May
be Quite Interesting,” in Proceedings of the International
Symposium on Computer Architecture, May 1993, pp. 341–
350.

[4] T. Sun and Q. Yang, “A Comparative Analysis of Cache
Designs for Vector Processing,” IEEE Transactions on Com-
puters, vol. 48, no. 3, pp. 331–344, March 1999.

[5] S. Che, J. W. Sheaffer, and K. Skadron, “Dymaxion: Optimiz-
ing Memory Access Patterns for Heterogeneous Systems,” in
International Conference on High Performance Networking
and Computing (Supercomputing), November 2011.

[6] B. L. Chamberlain, S. J. Deitz, D. Iten, and S.-E. Choi, “User-
defined Distributions and Layouts in Chapel: Philosophy and
Framework,” in Proceedings of the USENIX Conference on
Hot Topics in Parallelism, May 2010.

[7] T. Chilimbi, M. Hill, and J. Larus, “Making Pointer-based
Data Structures Cache Conscious,” IEEE Computer, vol. 33,
no. 12, pp. 67–74, December 2000.

[8] B. Bershad, D. Lee, T. Romer, and J. Chen, “Avoiding Con-
flict Misses Dynamically in Large Direct-mapped Caches,” in
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operation Systems,
October 1994, pp. 158–170.

[9] A. Seznec, “A Case for Two-way Skewed-associative
Caches,” in Proceedings of the International Symposium on
Computer Architecture, May 1993, pp. 169–178.

[10] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, “Using Prime
numbers for Cache Indexing to Eliminate Conflict Misses,”
in Proceedings of the International Symposium on High-
Performance Computer Architecture, February 2004, pp. 288–
299.

[11] M. Kharbutli, Y. Solihin, and J. Lee, “Eliminating Conflict
Misses using Prime Number-based Cache Indexing,” IEEE
Transactions on Computers, vol. 54, no. 5, pp. 573–586, May
2005.

[12] T. Givargis, “Improved Indexing for Cache Miss Reduction in
Embedded Systems,” in Design Automation Conference, June
2003, pp. 875–880.

[13] K. Patel, E. Macii, L. Benini, and M. Poncino, “Reducing
Cache Misses by Application-specific Re-configurable Index-
ing,” in International Conference on Computer Aided Design
(ICCAD), November 2004, pp. 125–130.

[14] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt,
I. Hernandez, T. Juan, G. Lowney, M. Mattina, and A. Seznec,
“Tarantula: a Vector Extension to the Alpha Architecture,”
in Proceedings of the International Symposium on Computer
Architecture, May 2002, pp. 281–292.

[15] M. Valero, T. Lang, and E. Ayguadé, “Conflict-free Access
of Vectors with Power-of-two Strides,” in International Con-
ference on High Performance Networking and Computing
(Supercomputing), November 1992, pp. 149–156.

[16] B. R. Rau, “Pseudo-randomly Interleaved Memory,” in ACM
SIGARCH Computer Architecture News, vol. 19, no. 3, May
1991, pp. 74–83.

[17] A. Agarwal and S. D. Pudar, “Column-associative Caches:
A Technique for Reducing the Miss Rate of Direct-mapped
Caches,” in Proceedings of the International Symposium on
Computer Architecture, May 1993, pp. 179–190.

[18] C. Zhang, X. Zhang, and Y. Yan, “Two Fast and High-
associativity Cache Schemes,” IEEE Micro, vol. 17, no. 5,
pp. 40–49, Sept./Oct. 1997.

[19] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling
Ways and Associativity,” in Proceedings of the International
Symposium on Microarchitecture, December 2010, pp. 187–
198.

[20] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi,
“Cuckoo Directory: A Scalable Directory for Many-core
Systems,” in Proceedings of the International Symposium
on High-Performance Computer Architecture, February 2011,
pp. 169–180.

[21] E. Hallnor and S. Reinhardt, “A Fully Associative Software-
managed Cache Design,” in Proceedings of the International
Symposium on Computer Architecture, May 2000, pp. 107–
116.

[22] D. Lawrie and C. Vora, “The Prime Memory System for Array
Access,” IEEE Transactions on Computers, vol. 100, no. 5,
pp. 435–442, May 1982.

[23] T. Austin, D. Pnevmatikatos, and G. Sohi, “Streamlining Data
Cache Access with Fast Address Calculation,” in Proceedings
of the International Symposium on Computer Architecture,
June 1995, pp. 369–380.

[24] Q. S. Gao, “The Chinese Remainder Theorem and the Prime
Memory System,” in Proceedings of the International Sym-
posium on Computer Architecture, May 1993, pp. 337–340.

[25] M. Teng, “Comments on “The Prime Memory Systems for
Array Access”,” IEEE Transactions on Computers, vol. 100,
no. 11, pp. 1072–1072, November 1983.

[26] M. Calhoun, “On the Binary Decimal Expan-
sion of the Reciprocal Prime’s,” 2010. [Online].
Available: http://math.stackexchange.com/questions/3976/
on-the-binary-decimal-expansion-of-the-reciprocal-primes

[27] H. S. Warren, “Hacker’s Delight, 2nd edition.” [Online].
Available: http://www.hackersdelight.org/divcMore.pdf

[28] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA Workloads Using a Detailed
GPU Simulator,” in Proceedings of the International Sym-
posium on Performance Analysis of Systems and Software,
April 2009, pp. 163–174.

[29] NVIDIA, “NVIDIA’s Next Generation CUDA Compute

Architecture: Fermi,” http://nvidia.com/content/PDF/fermi
white papers/NVIDIA Fermi Compute Architecture
Whitepaper.pdf, 2009.

[30] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU Microarchitecture through
Microbenchmarking,” in Proceedings of the International
Symposium on Performance Analysis of Systems and Soft-
ware, March 2010, pp. 235–246.

[31] P. Micikevicius, “GPU Performance Analysis and
Optimization,” GPU Technology Conference, http://developer.
download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/
S0514-GTC2012-GPU-Performance-Analysis.pdf, May
2012.

[32] A. L. Minkin, S. J. Heinrich, R. Selvanesan, C. McCarver,
S. G. Carlton, M. Y. Siu, Y. Y. Tang, and R. J. Stoll, “Cache
Miss Processing Using a Defer/Replay Mechanism,” USA
Patent 8,266,383 B1, September 11, 2012.

[33] A. E. Turner, “On Replay and Hazards in Graphics Processor
Units,” UBC Masters thesis, https://circle.ubc.ca/handle/2429/
43493, June 2012.

[34] A. Kerr, G. Diamos, and S. Yalamanchili, “GPUOcelot -
A Binary Translator Framework for PTX,” October 2009.
[Online]. Available: http://code.google.com/p/gpuocelot

[35] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot:
A Dynamic Compiler for Bulk-Synchronous Applications in
Heterogeneous Systems,” in Proceedings of the International
Conference on Parallel Architectures and Compilation Tech-
niques, September 2010, pp. 353–364.

[36] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,
R. Iyer, and C. R. Das, “Orchestrated Scheduling and
Prefetching for GPGPUs,” in Proceedings of the International
Symposium on Computer Architecture, June 2013, pp. 332–
343.

[37] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,
T. Aamodt, and V. Reddi, “GPUWattch: Enabling Energy Op-
timizations in GPGPUs,” in Proceedings of the International
Symposium on Computer Architecture, June 2013, pp. 487–
498.

[38] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler,
W. J. Dally, E. Lindholm, and K. Skadron, “Energy-efficient
Mechanisms for Managing Thread Context in Throughput
Processors,” in Proceedings of the International Symposium
on Computer Architecture, June 2011, pp. 235–246.

[39] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An Integrated
Cache Timing, Power, and Area Model,” Technical Report
2001/2, Compaq Computer Corporation, Tech. Rep., 2001.

[40] P. Kogge et al., “ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems,” University of
Notre Dame, Tech. Rep. TR-2008-13, 2008.

[41] X. Guo, E. Ipek, and T. Soyata, “Resistive Computation:
Avoiding the Power Wall with Low-leakage, STT-MRAM
Based Computing,” in Proceedings of the International Sym-
posium on Computer Architecture, June 2010, pp. 371–382.

[42] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron, “Rodinia: A Benchmark Suite for
Heterogeneous Computing,” in International Symposium on
Workload Characterization, October 2009, pp. 44–54.

[43] “Parboil Benchmark Suite,”
http://impact.crhc.illinois.edu/parboil.php. [Online].
Available: http://impact.crhc.illinois.edu/parboil.php

[44] “International Technology Roadmap for Semiconductors
(ITRS), 2011 Edition.” [Online]. Available: http://www.itrs.
net/Links/2011ITRS/Home2011.htm

