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Abstract—Massive datasets prevalent in scale-out, enterprise,
and high-performance computing are driving a trend toward
ever-larger memory capacities per node. To satisfy the memory
demands and maximize performance per unit cost, today’s
commodity HPC and server nodes tend to feature multi-socket
shared memory NUMA organizations. An important problem in
these designs is the high latency of accessing memory on a remote
socket that results in degraded performance in workloads with
large shared data working sets.

This work shows that emerging DRAM caches can help
mitigate the NUMA bottleneck by filtering up to 98% of remote
memory accesses. To be effective, these DRAM caches must be
private to each socket to allow caching of remote memory, which
comes with the challenge of ensuring coherence across multiple
sockets and GBs of DRAM cache capacity. Moreover, the high
access latency of DRAM caches, combined with high inter-socket
communication latencies, can make hits to remote DRAM caches
slower than main memory accesses. These features challenge ex-
isting coherence protocols optimized for on-chip caches with fast
hits and modest storage capacity. Our solution to these challenges
relies on two insights. First, keeping DRAM caches clean avoids
the need to ever access a remote DRAM cache on a read. Second,
a non-inclusive on-chip directory that avoids tracking blocks in
the DRAM cache enables a light-weight protocol for guaranteeing
coherence without the staggering directory costs. Our design,
called Clean Coherent DRAM Caches (C°D), leverages these
insights to improve performance by 6.4-50.7% in a quad-socket
system versus a baseline without DRAM caches.

I. INTRODUCTION

High performance computers, enterprise workstations, and
scale-out servers all operate on massive datasets, driving a trend
in these market segments toward ever-larger memory capacities
per node. Due to pin limitations and channel bandwidth
constraints, a typical CPU socket is limited in the number
of memory channels and DIMMs it can support. To enable
high-capacity memory systems and achieve high throughput
out of the expensive memory deployment, HPC, enterprise,
and scale-out markets all favor multi-socket shared memory
server configurations.

A well-known downside of NUMA servers is the so-
called NUMA bottleneck, whereby an application’s per-thread
performance is diminished compared to a single-socket baseline
due to a combination of inter-socket communication delays and
bandwidth pressure on memory channels and inter-socket links.
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Existing OS and user-space techniques [1]] aimed at reducing
the NUMA bottleneck through memory and thread mapping
policies are effective in avoiding load imbalance across the
memory channels. However, they do not address the inherent
lack of memory locality in applications with large shared data
working sets. As a result, accesses to memory owned by remote
sockets experience significantly higher latency than accesses
to local socket’s memory. Indeed, the engineering challenges
associated with ensuring predictable performance in NUMA
servers have recently led Facebook to abandon their dual-socket
machines in favor of single-socket ones [2].

The central thesis of this paper is that DRAM caches can
be effective in alleviating the NUMA bottleneck by exploiting
their large capacities to uncover temporal locality beyond the
reach of on-chip caches. This paper explores the design space
of multi-socket DRAM cached!] and answers two fundamental
questions regarding their use in NUMA servers.

Question 1: private or shared? A shared DRAM cache
maximizes the total cache capacity, thereby offering the largest
reduction in main memory accesses (62.4-98% with 1GB of
cache per socket), but does not provide a reduction in off-socket
accesses. In contrast, a private DRAM cache per socket is able
to filter 13.7-98% of all memory accesses while reducing
off-socket trips by 35.9% on average. Because inter-socket
communication delays can easily double the latency of a remote
memory access compared to a local access [3], [4], we find
that private DRAM caches have a fundamental advantage over
shared designs by cutting the average memory access time
(AMAT) despite the lower hit rate.

Question 2: how to provide effective coherence for
private caches? Existing work on DRAM caches has solely
looked at single-socket designs that, by their very nature,
do not require a coherence solution. Meanwhile, we find
that, compared to SRAM caches, DRAM caches have unique
features that challenge conventional coherence schemes. Chief
among these is the fact that access latencies of DRAM caches
are roughly on par with main memory, meaning that a hit in
a remote DRAM cache generally does not lower the AMAT
compared to servicing the access by the main memory. Indeed,

! In this work, we treat die-stacked and on-package designs similarly, without
restricting ourselves to either one.



both snoopy and directory-based techniques have commonly-
occurring pathologies whereby hits to remote sockets result
in a higher AMAT than memory accesses. While directory-
based techniques with precise sharing vectors have fewer such
pathologies than snoopy schemes, we find that the massive
capacity of DRAM caches incurs prohibitive directory storage
costs. In principle, the directory itself could be stored in the
DRAM cache; however, that would incur high access latency
on the critical path.

In order to avoid the performance and cost overheads of
existing coherence schemes, we exploit a critical insight that
the high-latency on-critical-path accesses to remote DRAM
caches can be avoided altogether by keeping the DRAM cache
clean. The clean property guarantees that no DRAM cache has
a modified copy of the block, allowing a socket’s read misses
to be serviced directly by the memory without needing to probe
remote DRAM caches and/or their associated directory.

Our second insight is that allocating directory entries for
(clean) blocks cached solely in the DRAM cache has limited
value, as read requests that miss in the local socket bypass
remote DRAM caches, while write requests are generally off
the critical path.

Based on these insights, we propose C°D, for Clean Coherent
DRAM Caches. C3D relies on clean private DRAM caches for
fast hits in the local DRAM cache and, on a miss, complete
bypassing of remote DRAM caches. Bypassing eliminates the
pathologies that are inherent in dirty DRAM cache designs.
C3D uses a non-inclusive directory that avoids tracking DRAM
cache blocks, thus avoiding the associated storage costs. To
guarantee coherence upon write requests to untracked blocks,
C3D broadcasts invalidations to DRAM caches. In practice,
broadcasts are relatively infrequent, adding just 5% additional
inter-socket traffic versus a full directory in a quad-socket
machine. To avoid broadcast traffic for writes to thread-private
memory regions, C3D uses a page table-based mechanism to
track page ownership.

To summarize, we study contemporary parallel and server
workloads in 2- and 4-socket NUMA deployments and make
the following contributions:

o Identify a significant opportunity in reducing memory read
accesses to remote sockets by up to 99% (71% average) via
the use of private DRAM caches.

e Show that the pathologies in dirty DRAM cache designs
result in an average slowdown of 12.9% for snoopy and
1.7% for directory-based coherence protocols.

e Introduce C3D, which uses clean private DRAM caches to
elide slow remote hits, while eschewing a huge directory at
the DRAM cache level. In a 4-socket 32-core system, C>D
improves performance by 6.4-50.7% while reducing both
inter-socket and memory traffic by an average of 35.9% and
49%, respectively, as compared to a baseline without DRAM
caches.

II. MOTIVATION

Two- and four-socket multi-core NUMA systems are the de-
facto standard in today’s high performance and datacenter
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computing to satisfy the large memory and computation
requirements. Fig. [T] shows a typical multi-socket system, with
each socket containing a portion of the node’s physical memory
and a multi-core CPU. The CPU’s cache hierarchy consists
of one or more per-core private cache levels and a last-level
on-chip cache (LLC) shared between the cores within the
socket. Globally, the LLC is private to each socket, thereby
allowing local caching of L1 victims to minimize the incidence
of high-latency inter-socket lookups.

A. The NUMA Bottleneck

A well-known problem in multi-socket shared memory
systems is the so-called NUMA bottleneck, whereby memory
traffic experiences degraded performance compared to a single-
socket setup due to bandwidth and/or latency overheads.
NUMA bandwidth overheads can arise if one or more memory
interfaces become congested if a disproportionate fraction of
the global memory traffic is directed toward them. Latency
overheads are caused by the delay incurred in inter-socket
communication on accesses to remote memory. For instance,
on the Intel SandyBridge-E dual-socket system, the Intel MLC
tool [5] reports a local memory latency of 60 to 70ns and
remote latency of 120 to 130ns, corroborating earlier studies
showing that accessing local memory is considerably faster
than remote [3]], [4].

Obviously, the NUMA bottleneck is not a concern if
the majority of memory accesses stay within the socket
issuing the request. To accomplish that, the OS community
has proposed various memory mapping policies and thread
placement techniques to improve the memory locality [6], [7].
However, such approaches are fundamentally limited in their
effectiveness as large datasets require distribution and many
applications share vast regions of data, thereby confounding
locality-centric mapping strategies. For example, Dashti et
al. [1]] showed that in a 4-socket system, only 25-33% of
memory accesses originating at a given socket are satisfied by
local memory, regardless of whether the memory mapping is
address-interleaved (memory pages are spread evenly across
all sockets) or first touch (a memory page is placed on a socket
where it is first accessed).

Our analysis of a range of contemporary parallel and server
workloads on a simulated quad-socket system corroborate these



\ Fraction of memory accesses satisfied by remote memory |

facesim 76.6% | streamcluster | 73.6% freqmine 74.6%
fluidanimate | 75.2% canneal 75% tunkrank 61.6%
nutch 75.2% cassandra 75.2% | classification | 75.2%
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Figure 2. NUMA bottleneck analysis.

findings. As shown in Table [} the first-touch memory mapping
policy is able to satisfy, on average, only 26.5‘%E| of memory
accesses with memory local to the requesting socket, with the
majority of accesses entailing a trip to a remote socket.

B. Latency or Bandwidth?

Given the absence of affinity in the memory access streams
of contemporary parallel and server workloads, we next study
the root cause(s) of the NUMA bottleneck. We consider three
sources of performance degradation: inter-socket communica-
tion latency (which includes QPI, on-chip interconnect, and
coherence controller latencies), memory controller congestion,
and QPI congestion. We model the effect that each of these
has on performance by modeling configurations where the
inter-socket communication latency is 0, memory bandwidth is
infinite, or QPI bandwidth is infinite. Our studies are done on a
simulated 32-core quad-socket system modeled after a modern
AMD-like NUMA server (see §V|for details of our simulation
methodology) using a mix of contemporary parallel and server
workloads. For each workload, we consider a first-touch and
interleaved mapping policies and use the best performing one
based on a separate profiling run [1].

Fig. 2] presents the results of the study by normalizing the
performance of each of the three idealized configurations to
that of the baseline. In general, we observe little benefit from
infinite DRAM or QPI bandwidth, indicating that bandwidth is
not a bottleneck in contemporary NUMA servers. In contrast,
we see significant sensitivity to inter-socket communication
delays, with the 0-QPI-latency configuration delivering speed-
ups ranging from 14-60% across our workload spectrum. We
thus conclude that minimizing off-socket accesses represents
the most promising direction for improving performance of
modern workloads on NUMA servers.

C. Avoiding Remote Accesses with Caching

Caching is a promising solution to the NUMA problem as
local replicas avoid the need to go off-socket [8]. Intuitively,

2We collect this statistic while executing the parallel region of these
workloads.
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Figure 3. Memory accesses as a function of LLC size normalized to a system
with a 16MB LLC.

large cache capacities are needed to provide a significant miss
reduction beyond today’s multi-MB on-chip caches. Fig. [3]
confirms the intuition by showing the reduction in remote
memory accesses with larger cache sizes normalized to a Il6MB
baseline cache. We observe that even in applications operating
on large datasets, there is significant temporal locality within
each socket’s memory access stream, making caching beneficial
for NUMA system. However, uncovering this locality requires
high-capacity caches (256MB and 1GB data points), which
are able to eliminate 38.6-45.5% of remote memory accesses.

Emerging die-stacked and on-package DRAM cache archi-
tectures present ideal candidates for such high capacity caches.
However, existing work has not considered the use of DRAM
caches in NUMA servers, which present two fundamental
options for organizing the multiple DRAM caches:

1) Shared organization. This design treats each DRAM cache
as a memory buffer, with the aggregate cache capacity scaling
with the number of sockets. Because capacity is shared across
sockets, this option provides the maximum hit rate and does not
require a coherence solution, since each memory address can
only reside in its home socket’s DRAM cache. Alas, the shared
organization can only help filter accesses to main memory, but
does not help in reducing off-socket accesses.

2) Private organization. The private design turns each socket’s
DRAM cache into a massive victim cache that captures the
socket’s LLC evictions. As such, private DRAM caches can
reduce off-socket traffic by exploiting temporal locality beyond
the reach of on-chip caches. On the downside, because DRAM
cache capacity is not shared, the private design may not be able
to filter as much memory traffic as the shared design. Another
concern for a private design is the need for a coherence solution,
as multiple caches may have replicas.

Our results in Fig. [2] clearly point to private DRAM caches
as the preferred design choice, since they directly attack
the inter-socket delay problem by reducing off-socket traffic.
The principal challenge for private DRAM cache designs
is guaranteeing coherence. Existing work on DRAM caches
has focused exclusively on single-socket systems, which are
immune from the replica problem inherent in the multi-socket
configuration with private caches. The rest of the paper is
dedicated to solving this challenge.



III. COHERENT DRAM CACHES: THE NAIVE APPROACHES

As observed in large private caches can be effective in
relieving the NUMA bottleneck by capturing distant temporal
reuse in each socket’s access stream. Emerging DRAM cache
architectures are well-suited for this purpose due to their high
capacity, reaching into hundreds of MBs or even GBs per
socket. However, the data replication in private DRAM caches
necessitates them to be coherent.

To ensure local (intra-socket) and global (inter-socket) co-
herence, today’s multi-socket systems incorporate hierarchical
coherence [9], [10]. This section explores extending the existing
snoopy and directory based coherence protocols for maintaining
inter-socket coherence in a commodity (2- and 4-socket)
NUMA system with DRAM caches.

A. Snoopy Coherence Protocol

As the number of sockets in current multi-socket NUMA
systems is small, it is tempting to use a snoopy protocol for
inter-socket coherence. The snoopy protocol broadcasts every
local DRAM cache miss. Upon receiving the broadcast, every
socket checks if it has cached the requested block. If any of the
sockets has a dirty copy, it is forwarded to the requesting socket.
In case of write requests, all clean copies of the requested block
must be invalidated. If none of the sockets has a dirty copy,
the request is served from the memory.

In the presence of DRAM caches, they must be searched
upon receiving a snoop request. Because DRAM caches and
main memory employ the same DRAM technology, even the
most aggressive latency projections for DRAM caches show
them to be at most twice as fast as main memory [11]. Realistic
expectations are that the difference in latency between the
two will be negligible. Indeed, the recently-released Intel Phi
Knight’s Landing has an in-package DRAM cache whose access
latency exceeds that of its memory [12]. As a result, we observe
that obtaining a block from a remote DRAM cache via a snoop
can be much slower than accessing main memory, since the
slow DRAM cache problem is compounded by the inter-socket
communication delays. We refer to this phenomenon as the
slow remote hit pathology. Even if none of the sockets has
a copy, all DRAM caches must still be snooped before the
request can be served from memory. Therefore, the furthest
socket’s response latency is on the critical path and determines
the AMAT, even if the block is uncached in any of the sockets.

One potential optimization to avoid the high DRAM cache
access latency is to employ a missmap [L1]. If the missmap
indicates that the requested block is not present in the DRAM
cache, the socket can respond without probing it. However, if
the block is present, DRAM cache still has to be accessed 1)
to check if it is dirty and 2) to invalidate it in case of a write
request. Furthermore, the missmap does not help in addressing
the high inter-socket communication delays.

B. Directory-based Coherence

Today’s multi-socket systems tend to use a directory for inter-
socket coherence. One could extend the directory protocol to
additionally track blocks residing in DRAM caches in the

global directory. Each socket contains a slice of the global
directory that tracks the blocks belonging to the local memory
of the socket that are cached in the system. In addition, each
block in the DRAM caches carries coherence metadata.

As the global directory tracks all the blocks cached in the

system, it eschews some of the inefficiencies of the snoopy
protocol. For example, the high-latency remote DRAM cache
accesses can be avoided on a DRAM cache miss for uncached
blocks by directly accessing main memory. Similarly, if the
requested block is cached clean in remote sockets, a read miss
for this block can also be served from memory. Unfortunately,
if the block is modified in a remote socket’s DRAM cache,
a high-latency access to the owner socket is unavoidable. In
such a case, a multi-socket system with DRAM caches would
actually be slower than the baseline without DRAM caches.
The following example illustrates why.
Modified block in a remote DRAM cache: Suppose a dirty
block is cached in the DRAM cache on one of the sockets
other than the home socket (the socket where the directory
slice resides). On a DRAM cache miss for this block, the
requesting socket will forward the request to the home socket
as shown by step (1) in Fig. 4] The home socket will lookup its
slice of global directory and forward the request to the owner
socket (where the dirty block is cached), as shown by steps @
through @ In turn, the owner socket will forward the dirty
block to the requesting socket, as shown by steps @ to @

We observe that the dirty block in the DRAM cache would
have been in memory in the baseline system without DRAM
caches. Therefore, the request would have been served from
the memory. However, with DRAM caches, the memory cannot
service the request as one of the DRAM caches contains a
dirty copy. Since accessing memory from the home socket
is faster than accessing a remote DRAM cache, the baseline
system would provide a lower AMAT for these cases than a
system with DRAM caches.

In addition to the slow remote hit pathology, the addition

of DRAM caches to the baseline’s coherence protocol (that
only covers on-chip caches) introduces the following directory-
related overheads.
Global Directory Size: Existing systems generally use a
sparse global directory to track the cached blocks. As larger
caches capture more blocks, the directory must be made
proportionately larger. However, due to one to two orders-
of-magnitude difference in capacity between DRAM caches
and on-chip caches, directory storage requirements can become
a significant burden in a practical system. For example, a
256MB DRAM cache, even with a minimally-provisioned (1x)
sparse directory, would require 16MB of directory storage per
socket. For a 2x-provisioned directory, as featured in AMD’s
Magni Cours Opteron processor [9]], the storage costs increase
to 32MB for a 256MB cache or a whopping 128MB for a
1GB DRAM cache.

Having such a huge on-chip directory in SRAM is clearly
impractical. An alternative is to move the directory off-
chip, potentially leveraging the DRAM cache for storage.
Unfortunately, a DRAM directory introduces a new problem.
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Figure 4. Accessing modified blocks from a remote DRAM Cache.

Global Directory Access Latency: Directory access latency is
directly proportional to the directory size. For a larger directory,
the additional access latency gets added to the critical path
and the AMAT increases correspondingly. The access latency
would be particularly high for a DRAM-resident directory, as
DRAM access latency is up to an order-of-magnitude higher
than that of SRAM.

Summary: Accesses to remote DRAM caches cause slow re-
mote access pathologies in both snoopy and directory protocols.
While a directory-based approach results in fewer remote
DRAM cache accesses than snoopy, it incurs unaffordable
directory storage and latency overheads.

IV. CLEAN COHERENT DRAM CACHES

In this section, we describe the proposed C3D design and
how it addresses the chief limitations of the naive designs:
slow hits in remote sockets, global directory size and global
directory access latency.

In §IV-A] we tackle the first two challenges while still relying
on an inclusive global directory tracking DRAM cache blocks.
We then show in §IV-B]that tracking blocks in DRAM caches is
not beneficial, thereby enabling a massive reduction in directory-
related overheads. describes our proposed coherence
protocol that reflects the above ideas. Finally, discusses
an optimization for further reducing C3D’s inter-socket traffic.

A. Clean DRAM Cache

As explained in §ITI} local DRAM cache misses (with respect
to the requesting socket) can be satisfied faster by memory
than by a remote DRAM cache. This is easily accomplished
for clean blocks, but maintaining coherence for dirty blocks
residing in a remote socket’s DRAM cache mandates an access
to the owner cache.

Our critical insight is that the slow remote hit for modified
blocks can be avoided by keeping DRAM caches clean. This
requires also writing back dirty LLC evictions to memory, while
retaining the clean block in the local DRAM cache. Keeping
the DRAM cache clean allows a greater fraction of DRAM
cache misses (in other sockets) to be satisfied by memory,
avoiding the slow path. At the same time, the hit rate of the

local DRAM cache is not diminished as a result of writing
through to memory, since a subsequent read request from the
same socket can still be served from its local DRAM cache
without having to probe the global directory and accessing
memory.

B. Non-inclusive directory

While clean DRAM caches overcome the problem of slow
hits to remote DRAM caches, they are still encumbered by
excessive directory sizes, leading to significant storage and
latency overheads. The directory size requirement of the naive
design is high because it is an inclusive directory that is
guaranteed to track all blocks cached by the large DRAM
caches. However, with clean DRAM caches, the only modified
blocks are in LLC or higher-level caches. Thus, the bulk of
the global directory’s capacity is expended on tracking clean
blocks in DRAM caches. Is it worth it?

As far as read requests that miss in the local DRAM cache
are concerned, there is little benefit in tracking the coherence
state of DRAM caches. Indeed, with clean DRAM caches, a
block cannot be in modified state in a remote DRAM cache; it
can only be in modified state in an on-chip cache. Therefore,
tracking modified blocks in just the on-chip caches suffices.

The only benefit to tracking the coherence state of clean
DRAM caches would be for write requests. By tracking the
clean blocks in DRAM caches, the directory would be able to
precisely identify sockets to which it needs to send invalidation
messages. In the absence of this information, invalidation
messages must be broadcast to all DRAM caches, possibly
resulting in wasted inter-socket and DRAM cache bandwidth
whenever none or only a subset of the sockets are caching the
block. However, since repeated write requests would likely hit
in the LLC (and be tracked by the directory), broadcasting
invalidations for just the remaining write misses results in
minimal additional traffic. Moreover, the additional latency
(due to the broadcast) incurred by write requests is off the
critical path, as stores are already out of the critical path in
modern processors, all of which have a store buffer. Maintaining
a huge directory to avoid the minimal additional traffic incurred
by write requests that miss in the requesting socket’s on-chip



cache hierarchy does not appear to be a cost-effective trade-
off. Therefore, we propose a non-inclusive directory in which
we avoid tracking the blocks solely residing in clean DRAM
caches; instead we employ the directory for tracking the blocks
cached by LLC or higher. Doing so minimizes directory costs
while still providing fast hits for frequently communicating
writes, which tend to stay on chip and are precisely identified
via the global directory.
In summary, our design (C3D) features:

e Fast read hit in the local socket’s DRAM cache with no
messages sent to remote sockets.

e No accesses to remote sockets’ DRAM caches on a read
miss in a local socket. Local read misses are serviced either
by a remote socket’s on-chip cache or by memory. This
avoids the slow remote hit pathology.

e Minimal directory overhead for blocks held solely in DRAM
caches.

e Writes to blocks not tracked by the directory trigger a
broadcast to invalidate any copies in DRAM caches. Since
writes are generally not in the critical path, the performance
impact of broadcasts is minimal and the extra traffic modest.
presents a further optimization to elide broadcasts for
thread-private data.

C. Coherence Protocol for C3D

In this section, we flesh out the coherence protocol that
incorporates our two ideas: (a) clean DRAM caches and (b)
non-inclusive directory. But first, we analyze the implications
of a non-inclusive directory that avoids tracking cache blocks
solely held in the DRAM caches.

Since there may be a block in one of the DRAM caches
unbeknownst to the directory, a directory miss does not imply
that the block is uncached in any of the sockets as in a classical
directory protocol. Therefore, a write miss for a block without
a directory entry requires a broadcast to invalidate any potential
DRAM cache sharers. Second, we observe that there is little
benefit to allocating a directory entry (and to start tracking
sharers) on a read miss that is previously untracked at the
directory. This is because, without an expensive broadcast that
checks other DRAM caches, there is no way to arrive at a valid
sharing vector. This also explains why there is little benefit to
maintaining an exclusive state, as confirming that there are no
other sharers requires a broadcast that checks other DRAM
caches.

Based on these observations, C*D’s global directory can
have a block in one of three stable states: Modified, Shared
and Invalid. The following examines in more detail the cases
handled by each of these stable states, whose state transition
diagram is depicted in Fig. [

Invalid: The meaning of the Invalid state is slightly different
from the norm. In a conventional directory-based protocol, the
Invalid state implies that the block is not present in the cache
hierarchy (inclusivity). However, C?D’s protocol allows the
block to be present in one or more DRAM caches (and/or
higher) without the directory tracking this information (non-

inclusivity). In other words, the only invariant that the Invalid
state guarantees is that the value in memory is not stale (because
of clean DRAM caches). Consequently, a read (GetS) request
to a block in Invalid state is satisfied by memory, and the
block is not inserted into the global directory. A Write (GetX)
requestE] with a block in Invalid state requires broadcasting
invalidations to all other DRAM caches before the response
can be sent to the requester and the directory transitions to
Modified.

Modified: The Modified state is most similar to that in a
conventional MSI protocol: a block in Modified satisfies the
invariant that the block is present in exactly one socket; the
clean property implies that a DRAM cache cannot exclusively
hold a Modified block. However, note that it is possible for
a DRAM cache to hold a (stale copy of a) block held in
Modified state in its LLC or higher (to deal with LLC evictions
correctly).

Evicting an entry in Modified state from the directory requires
either: (a) simply invalidating the copy in the owning socket
(DRAM cache and/or higher) or (b) issuing a downgrade
request to the owner allowing the owner to retain the copy
in Shared state. We choose (a) as it requires fewer transient
states and message exchanges.

Evictions by the LLC in Modified state cause a write-back
(PutX) message first to be sent to the DRAM cache which then
transitions to Shared and updates its copy of the data. The
DRAM cache then forwards the PutX to the global directory;
finally, the global directory acknowledges receipt directly to
the LL.C and transitions to Invalid.

Downgrade requests from the directory are sent directly to the

LLC, and are then responded to like a LLC eviction (but with
the LLC transitioning to Shared). Invalidation requests from
the directory take the opposite path of downgrades, with them
being sent to the DRAM cache first, which acts by transitioning
to Invalid. The DRAM cache then forwards the invalidation to
the LLC (which transitions to Invalid) and directly responds to
the global directory with a PutX.
Shared: In a conventional MSI protocol, the Shared state
provides two invariants: first, that the value in memory is not
stale; second, a block in Shared state has a valid sharing vector,
which helps in limiting invalidation messages on a subsequent
GetX requests to that block. The Shared state in the C°D
protocol continues to satisfy these invariants, in spite of the
non-inclusive directory. This follows from the fact that, unlike
a conventional MSI protocol, there does not exist a direct
transition from Invalid to Shared (GetS requesters in Invalid are
not tracked, with directory staying in Invalid).

In the directory, the only possible transition leading to Shared
is from Modified. As we know that a block in Modified is
exclusive to exactly one socket, a subsequent GetS request in
Modified will transition to the Shared state with the sharing
vector being updated to now contain the previous owner as well
as the requester. Any further GetS requests can immediately

3Note that the protocol handles Upgrade requests (requester already has
data in Shared) similarly to GetX requests, but Upgrade responses do not carry
data.
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Figure 5. C3D global directory stable states.

be satisfied with the sharing vector being updated with the
corresponding requester.

As we have a valid sharing vector in the Shared state, upon a
GetX request, invalidations only need to be sent to those sockets
which are tracked in the sharing vector. We note, however,
that the sharing vector is only precise until one socket evicts
the block from both LLC (and higher) and DRAM cache, as
evictions in Shared are silent; it follows that the sharing vector
is a superset of sharers after complete eviction of a block
from a socket, therefore still valid. Note that silent evictions
in Shared from the DRAM cache imply that the DRAM cache
itself is also non-inclusive with respect to LLC and higher.
Verification: We verified the coherence protocol using the
model checker Mury [13], proving absence of deadlock and
race conditions. Furthermore, we also verified that the Single-
Writer-Multiple-Reader (SWMR) invariant and SC per memory
location [[14] are not violated. We modeled the global directory
(3+10 states), DRAM cache (3+5 states), LLC (3+7 states),
with a total of 15 message types — assuming no ordering
constraints on interconnect. A detailed state transition table as
well as the Mury model is available onling’}

D. Avoiding Broadcasts for Private Data

One downside of the C3D design is its use of broadcasts to
invalidate remote DRAM caches upon a write to a block with
an untracked directory entry. While write-related coherence
traffic is generally not on the critical path, it may contribute to
QPI congestion and extra energy expenditure. In this section,
we describe an optimization to the C3D protocol to completely
elide broadcasts on write accesses to thread-private data. The

4https://github.com/icsa-caps/c3d-protocol

optimization is particularly useful in the context of single-
threaded applications whose write working-set size is larger
that the LLC; in such cases, sharing is generally not expected
(except for user/kernel interactions), and much of the broadcast
traffic can be suppressed.

Our approach relies on a simple private/shared page classifi-
cation mechanism to identify thread-private memory regions.
Similar to prior work [15], we extend the page table entries with
a field that stores the owner thread’s id and a bit that denotes
the current classification. On the first access, the processor will
trigger a TLB miss that will be handled by the OS. The OS
will first mark the page as private and store its core id (CID)
in the owner field. On a subsequent TLB miss, if the triggering
thread’s CID does not match the owner’s CID, the OS will
take an action depending on the cause of the mismatch. If the
mismatch is caused by thread migration, the OS will update
the CID field with the new CID and shoot down the page in
the memory hierarchy. If the mismatch is due to active sharing
(different thread ID), the page will be re-classified as a shared
page. During this private-to-shared transition, the OS will need
to trap the owner thread to guarantee all pending writes to that
page are flushed. Note that the page does not need to be shot
down in the memory hierarchy in the event of re-classification.

Given the shared/private classification bit in the TLB, a GetX
request due to a miss in the on-chip cache hierarchy will carry
the classification as part of the request to the directory. If the
directory is in Invalid state and receives a GetX request with a
private bit set, the directory can transition the block to Modified
state without broadcasting invalidations.

V. METHODOLOGY

Simulation Environment and Parameters: Table [[I] lists the
system parameters used in our studies. We model two 32-core
NUMA configurations: with two sockets (16 cores/socket) and
four sockets (8 cores/socket). Both setups have a 16MB LLC
per socket. For each DRAM cache, we use a direct-mapped
organization with a 4K-entry miss predictor [L6]. Without loss
of generality, we assume a die-stacked DRAM design with
an access latency 50% lower than that of main memory [11]]
and supplement our evaluation with a sensitivity study to this
parameter in

For the inter-socket latency, we measure the latency dif-
ference between local and remote memory on a dual-socket
Intel SandyBridge-E machine, which is around 50-60ns. Note
that this latency is compound and includes on-chip routing to
system agent, QPI packet translation, inter-socket link, on-chip
routing to the directory controller, and the directory access
itself. Based on this, we model a 40ns round-trip delay per hop,
excluding the directory access. This is a conservative estimate,
as higher inter-socket latencies improve the relative benefits
of DRAM caches in general and our scheme in particular. We
also study the sensitivity to this parameter in

Simulating many-core NUMA systems with high-capacity
DRAM caches and massive application working set sizes
is challenging with existing publically-available toolsets. To
overcome this challenge, we build a custom trace-driven
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32-core, 32-entry store queue, TSO, 3GHz
width = 1 IPC [11], 64B line buffer
8-core/socket in 4-socket; 16-core/socket in 2-socket
Total-Store-Order (TSO)
64KB/8way, 3-cycle, private
16MB/16-way, 7-cycle for tag, 13-cycle for data
1GB, block-based, direct-mapped, 40ns
12.8GB/s per channel, 8 channels
region-based miss predictor [16], 4K-entry, 2-cycle
10-cycle, sparse 2x/32-way, socket-grain sharing vector
7-cycle, embedded in L2, full sharing vector
Ring (4-Socket), P2P (2-Socket)
20 ns per hop, 25.6GB/s
16-byte control / 80-byte data packet
50 ns, DDR3-1600 (12.8GB/s), 2 channels

Processor

Memory Model
L1 1/D
L2 cache (LLC)

L3 cache (DRAM)

Global Directory
Local Directory

Inter-socket
interconnect

Main Memory

Table II
SYSTEM PARAMETERS

simulator with a simple timing processor model and a cycle-
accurate memory subsystem that, among other things, models
the latency and bandwidth of inter-chip communication, DRAM
memory and cache, and coherence protocol actions including
transient states. The simulated parameters are listed in Table
Our traces are collect from workloads described in using
Pin [17] and Simics [18] as described next.

Workloads: We evaluate the various designs using contem-
porary parallel and server workloads consisting of PARSEC
3.0 [19]] and CloudSuite [20] benchmarks. For PARSEC, we
use all of the benchmarks which have large working set sizes
(over 100MB) in their native input [21]. We first fast-forward
to the parallel region and warm-up the DRAM caches with
100 million accesses. Then, we collect the results for half a
billion instructions per core.

For CloudSuite, we use the three workloads from CloudSuite
1.0 that have 32-core Simics checkpoints available online and
run them on Simics 3.0 [18]]. To collect the traces, we execute
100 million instructions for each core as warm-up and collect
the results for a billion instructions per core. We also use the
Graph Analytics (tunkrank) benchmark from CloudSuite 2.0
(for which Simics checkpoints are not available) as it is readily
runnable on our Pin-based infrastructure. We use the same
methodology for Graph Analytics as we do for the PARSEC
suite.

Memory Allocation Policy:
allocation policies:

We studied three memory

e Interleave (INT): Adjacent pages are interleaved across
memory controllers in a round-robin fashion.

e First-touch-1 (FT1): The first touch to the page from
application start determines the page’s location in memory.
In many cases, we found this policy to perform poorly as
large regions of memory get mapped to one node before the
application enters the parallel phase. Therefore, we use an
alternative approach (FT-2).

e First-touch-2 (FT2): We first fast-forward to the parallel
region and only then start to allocate memory to sockets
based on first touch. The warm-up period is extended into
the parallel phase and measurements are performed in steady
state.

For the evaluation, we do profiling runs with all three policies
and select the best-performing one for each application.

A. Evaluated Designs

Baseline: The baseline has no DRAM cache. Caches across
sockets are kept coherent using a global directory and local
caches within a socket are kept coherent using a local directory
(parameters are shown in Table [[). The local directory settings
are the same in all evaluated designs.

Snoopy: The snoopy design, introduced in ensures
inter-socket coherence by snooping all remote caches on a
miss. In this design, the global directory in the baseline is
retained and used instead as a block level snoop filter. To avoid
serializing the memory access in case of a miss in remote
caches, we access the memory in parallel with probing remote
caches.

Full directory (full-dir): This is the design presented in
We model a full global directory (i.e., no recalls) with
an inclusive cache hierarchy. Despite the massive capacity
required by the directory, we optimistically assume a 10-cycle
directory access latency, which is the same latency incurred
by the baseline’s global directory.

C3D (c3d): This is our proposed design as described in It
features clean DRAM caches, a non-inclusive global directory
that does not track blocks cached solely in DRAM caches (same
parameters at baseline), and the coherence protocol elaborated
in The DRAM caches are non-inclusive of the higher
levels of the cache hierarchy, as our coherence protocol does
not force inclusion (§IV-C).

C3D + Full directory (c3d-full-dir): This combines the
proposed C3D with an idealized full global directory (no recalls,
10 cycle access latency). We made a small modification to
the C3D protocol to make modified blocks transition to the
shared state after receiving a writeback. This idealized design
eliminates all broadcasts incurred in the C3D protocol, thus
allowing us to study the effect of broadcasts in the base C>D
design on performance.

VI. EVALUATION

The goals of our evaluation are as follows. First and foremost,
we want to evaluate how our proposal performs in comparison
with the baseline (no DRAM cache) and alternative techniques
for ensuring coherence of DRAM caches. Second, we want to
measure how much our proposal (and the alternatives) are able
to reduce inter-socket traffic in comparison with the baseline,
which basically explains our results. Third, we evaluate the TLB
technique we introduced in to understand the necessity
of this optimization. Finally, we study the sensitivity of C3D
to DRAM cache and inter-socket latencies to evaluate how
robust our gains are.

A. Performance Analysis

4-socket: Fig. [6] shows the performance of the evaluated
designs in quad-socket systems featuring 1GB of DRAM cache
per socket. We observe that C3D is, on average, 19.2% better
than the baseline, which is the key result. This validates our
approach: DRAM caches are effective in filtering out remote
accesses, while clean caches with C3D’s coherence protocol
and LLC directory deliver an efficient coherence substrate.
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Figure 6. 4-socket (8-core/socket) performance comparison

One major winner with C3D is streamcluster (50.7%
speedup), as its working set fully fits in the DRAM caches.
Other benchmarks, like nutch, whose working sets don’t fit in
the DRAM caches also benefit from C3D as private DRAM
caches filter out a portion of remote accesses, thus reducing
AMAT, without incurring performance pathologies that afflict
other designs.

The snoopy design is generally ineffective, slowing down
most workloads. The reason is that it relies on checking
all remote DRAM caches on each local miss to guarantee
coherence, exposing both inter-socket and DRAM cache access
latencies on the critical path.

The full-dir design improves performance over snoopy by
enabling a fast path (to memory) in the event of a local miss
with the block clean or untracked in the global directory.
Nonetheless, full-dir hurts performance for the majority of
PARSEC workloads. The workloads that suffer have a high
degree of inter-thread communication, which exposes the slow
remote hit pathology in the full-dir design (§III). In contrast,
server applications, which are known to have less inter-thread
communication [20], benefit from full-dir, outperforming the
baseline by 6.4% to 22.9%. The exception is nutch, which
sees a significant slowdown. The reason is that the thread that
handles the request is usually different from the thread that
handles the processing. The high communication cost between
these threads hurts performance whenever the threads are not
on the same sockef]

Finally, we observe a small difference (19.2% versus 20.3%)
between C3D and the idealized c3d-full-dir designs, indicating
that the broadcast invalidation messages in C>D do not hamper
performance significantly.

1.8

B snoopy full-dir ®c3d ™ c3d-full-dir

\’\

el n“ )\
e

1.6

1.4 “

0.6

Speedup
[
eN

[=}
o

(reu‘“‘“ ™ V\“‘d‘ 3“‘“
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SWe believe this particular case can be handled by a better NUMA-aware
thread scheduler. However, this is beyond the scope of this paper.

2-socket: The general trends in the two-socket system, shown
in Fig.|7] closely follow those in the quad-socket configuration.
Overall, we observe higher speedups for C3D in the dual-socket
system. This is because LLC has a higher miss rate as each
socket has more cores (16) sharing the LLC as compared to the
4-socket system (8). This provides a higher opportunity for the
DRAM cache to be beneficial by filtering expensive off-socket
accesses. On average, C3D achieves a 24.1% performance gain
with a IGB DRAM cache per socket, which is within 3% of
the idealized c3d-full-dir design (26.3%).

B. Memory and Inter-Socket Traffic

In this section, we study the effect of the various designs
on the memory and inter-socket traffic. For this analysis, we
use a 4-socket system with 1GB DRAM cache. Fig. [§] shows
the reduction in inter-socket (i.e., remote) memory traffic for
the C®D design. As shown in the figure, DRAM caching can
reduce up to 98% of memory accesses (in streamcluster) and
49% on average compared to the baseline system without
DRAM caches. As expected, there is no reduction (but also
no increase) in write traffic as compared to the baseline, as
the DRAM caches in C3D are write through.

In addition to overall memory accesses, we also look into
the average memory read accesses as most of them are on the
critical path of system performance. Fig. [§] shows the remote
memory reads over the baseline. We can see up to 99% (70.9%
on average) of remote reads are avoided in our workload set.
This result clearly indicates that having a private DRAM cache
is key to mitigating the NUMA bottleneck.
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Figure 9. Inter-socket traffic comparison
With regard to the inter-socket traffic (Fig. EI), C3D generates

35.9% less traffic compared to baseline due to a reduction in
remote memory accesses. Furthermore, we can see C3D has
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Figure 10. C®D performance improvement over different DRAM cache
latencies

only about 5% more traffic compared to both full-dir and c3d-
full-dir designs. This can be explained by the fact that any
additional traffic in C3D can only arise as a result of writes.
However, the bulk of the traffic is read data; writebacks are
only nominally higher with C3D, and the additional broadcast-
related control messages constitute a small fraction of the
overall bytes transferred due to their small size compared to the
data packets. It is worth noting that C3D actually reduces inter-
socket traffic over full-dir in several workloads (e.g., facesim).
This is because of the additional overhead inherent in dirty
DRAM caches as described in

C. Reducing Broadcast Traffic

In we presented a TLB-based technique to filter
broadcast invalidation messages incurred by the C3D protocol.
We found that filtering broadcasts to pages classified as private
can avoid about 5% broadcast messages in our workloads.
However, the reduction in the overall inter-socket traffic is
almost negligible (less than 0.1% traffic), as broadcast traffic
constitutes a small fraction of the overall inter-socket traffic
dominated by data-carrying messages.

However, the optimization is useful in the context of single-
threaded workloads that have no shared data component. Since
such workloads are a realistic part of many practical server
deployments, we evaluate the proposed optimization using the
memory-intensive mcf benchmark from SPEC’06. Our study
confirms that the write-related inter-socket traffic incurred in
mcf can be completely removed by using our TLB classification.
However, even in the case of the single-threaded workload,
the reduction in overall traffic is small as reads dominate.
We thus conclude that the TLB classification is a useful but
non-essential component of C3D.

D. Sensitivity Studies

In this section, we study the effect of DRAM cache latencies
and different inter-socket latencies on the efficacy of C3D with
1GB DRAM cache.

DRAM cache latency: As shown in Fig. when the
DRAM cache latency is equal to memory latency (50 ns),
C3D continues to deliver over 17.3% performance gain versus
the baseline. The high efficacy can be attributed to C3D’s
avoidance of remote DRAM cache accesses on a read. On
the other hand, if the DRAM cache latency is much faster
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Figure 11. C3D performance improvement over different inter-socket latencies

than DRAM, local DRAM hits deliver a further performance
boost (compared to memory accesses even on the local socket),
leading to a 24% performance improvement. It is worth noting
that snoopy and full-dir designs also follow a similar trend in
our study.

Inter-Socket latency: Generally, C3D’s speedup is com-
ing from two sources: (a) the removal of remote memory
accesses (i.e., avoiding the NUMA bottleneck) and (b) the
latency/bandwidth difference between die-stacked DRAM
accesses and off-chip memory. Therefore, in this experiment,
we vary the inter-socket latency and see how it will impact
C3D’s performance.

As we can see from Fig[TT] even with an unrealistically small
5ns (15-cycle) inter-socket communication latency (remember
that the latency is compound and includes multiple on-
chip interactions; see @, C>D delivers a 10% performance
improvement over the baseline. As expected, we see the C3D’s
speedup increases as the communication latency increases. In
this figure, we can again see C>D consistently outperforming
full-dir and snoopy across different communication latencies.

E. Summary

To summarize, C>D improves NUMA system performance
by 6.4-50.7%. Our results also show that C3D can consistently
outperform the baseline even with slow DRAM caches or fast
inter-socket communication. Finally, our results demonstrate
that there is no benefit in a huge directory for DRAM caches,
thus avoiding a potential storage and latency bottleneck.

VII. RELATED WORK
A. DRAM Caches

A large body of recent work has proposed using die-stacked
DRAM as a cache [11], [16], [22], [23], [24], [25], [26], [27],
[28]]. Prior work on this topic primarily focus on reducing the
access latency of DRAM caches, avoiding miss penalty, and
reducing the tag overhead. Among prior work, Sim et al. [26]]
propose mostly-clean cache for load-balancing the memory
access stream between a die-stacked DRAM cache and off-chip
memory. In contrast, our work advocates a completely clean
cache to ensure fast coherence in NUMA systems with DRAM
caches. In general, prior work has not considered multi-socket
DRAM caches and its associated cache coherence problem,
although Lee et al. [29] allude to this challenge.



B. Cache Coherence

Cache coherence techniques can be broadly divided into
snooping based techniques [30] and directory based tech-
niques [31].

Snooping based: In snooping protocols, writes to non-
exclusive cache lines need to be broadcast. Pior work has
looked at reducing the number of such broadcasts using filtering
techniques that track coherence state for large regions [32],
[33]], [34]. However, the efficacy of such mechanisms is
fundamentally limited by false sharing which increases with
region size [34]; using smaller regions, on the other hand,
would require correspondingly larger tracking storage.
Directory based: Scalable multiprocessors use directory based
protocols. Although avoiding the costly broadcasts, the size
of the directories is a problem that a number of researchers
have attempted to optimize. One way to reduce the size of the
directory is to reduce the total number of directory entries or
the directory height. Sparse directories [35] use the idea of
caching to reduce the directory height. More recent techniques,
such as Multigrain coherence directory [36]], attack the same
problem. While these works are quite effective — for example,
multi-grain directory can reduce 66% space overhead of a 2x
sparse directory — the size of the directory will still be around
38 MB per socket for our situation. In contrast to the above
work which optimize over the LLC directory, we propose a new
approach in which we simply do not track the clean DRAM
cache blocks for massive storage savings.

Another way to reduce the size of the directory is to reduce
the size of each directory entry or the directory width. Limited
pointer directories [30]], for instance, reduces directory width
by maintaining a coarse-grained sharing vector. Prior work has
also suggested eliminating individual tags in the directory by
maintaining tags per cache sets using Bloom filters [37]. The
directory width is not a major issue in our setting, as we focus
on systems with only a few sockets. For higher socket counts,
these techniques can be used.

C. Tertiary Caching and COMA

The idea of employing caches to mitigate NUMA effects has
been proposed previously in cache-only-memory architecture
(COMA) [8lI, [381, [39], [40] and tertiary caching [41], [42],
[43]. In tertiary caching, a fixed size of the local node’s memory
is used as a hardware managed cache that caches only remotely
allocated blocks. In COMA, all of the local memory is used
as a cache. In both approaches, the caches are kept coherent.
At a conceptual level, our work is similar: we also use private
DRAM caches to mitigate NUMA, thus exposing the need
for coherence. However, there are important differences that
motivate our specific approach (clean DRAM caches, non-
inclusive directory).

First, back then, the latency to access a remote node was
significantly higher than the latency to access a home node.
Indeed, for the Sequent NUMA-Q processor — a real machine
which employed a 32 MB DRAM tertiary cache — accessing a
remote node was 10x slower than accessing a local node [42].
Therefore, the addition of DRAM cache accesses in the critical

path of coherence transactions did not significantly affect
performance; in contrast, in current systems, because of faster
inter-socket interconnect, accessing a remote node is “only”
about 2x slower. As a result, we find that the addition of a
DRAM cache access adversely impacts the critical path in
modern systems, thereby motivating our clean DRAM cache
approach. Having said this, even in Sequent-style tertiary
caches, the clean cache approach could be beneficial to avoid
slow remote accesses to dirty blocks whose home is the local
node.

Secondly, although prior approaches required a huge direc-
tory — the Sequent NUMA-Q required a 128 MB directory
per node (for 4 GB of memory) — the latency to access
the directory paled in comparison with inter-node latency. In
contrast, accessing such a huge directory in today’s systems,
with faster inter-node communication delays as compared to
the Sequent NUMA-Q, would significantly affect the critical
path. This observation motivates our decision to not track clean
DRAM cache blocks in the directory.

VIII. CONCLUSION

This work exploits emerging DRAM cache architectures
to tackle the NUMA bottleneck. Our insight is that the large
storage capacities offered by DRAM caches allow effective
caching of remote memory, thereby reducing high-latency inter-
socket accesses. However, to be effective, DRAM caches
must replicate remote data — an observation that echoes
earlier software work on mitigating the NUMA bottleneck
that explicitly called for “hardware support for replication” [1].
The principal challenge of replication is ensuring coherence
across the large DRAM caches.

To the best of our knowledge, this is the first work to study
coherence for multi-socket die-stacked DRAM caches. We
identify the high directory storage costs and the high latency
of remote hits as two essential problems that a practical design
must address. Our solution to both is C®D, a clean coherent
DRAM cache organization. C3D avoids slow remote hits and
maintains a non-inclusive directory that avoids tracking DRAM
cache blocks, thereby solving the directory cost bottleneck. In
quad-socket system with 1 GB per-socket DRAM caches, C>D
reduces remote accesses by an average of 49% (70.9% for
reads), improving system performance by 19.2%.
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