
Inter-thread Communication in Multithreaded,
Reconfigurable Coarse-grain Arrays

Dani Voitsechov1 and Yoav Etsion1,2

Electrical Engineering1 Computer Science2

Technion - Israel Institute of Technology
{dani,yetsion}@tce.technion.ac.il

ABSTRACT
Traditional von Neumann GPGPUs only allow threads to
communicate through memory on a group-to-group basis.
In this model, a group of producer threads writes interme-
diate values to memory, which are read by a group of con-
sumer threads after a barrier synchronization. To alleviate
the memory bandwidth imposed by this method of commu-
nication, GPGPUs provide a small scratchpad memory that
prevents intermediate values from overloading DRAM band-
width.
In this paper we introduce direct inter-thread communica-
tions for massively multithreaded CGRAs, where intermedi-
ate values are communicated directly through the compute
fabric on a point-to-point basis. This method avoids the
need to write values to memory, eliminates the need for a
dedicated scratchpad, and avoids workgroup-global barriers.
The paper introduces the programming model (CUDA) and
execution model extensions, as well as the hardware prim-
itives that facilitate the communication. Our simulations
of Rodinia benchmarks running on the new system show
that direct inter-thread communication provides an average
speedup of 4.5× (13.5× max) and reduces system power by
an average of 7× (33× max), when compared to an equiva-
lent Nvidia GPGPU.

1. INTRODUCTION
Conventional von Neumann GPGPUs employ the data-parallel
single-instruction multiple threads (SIMT) model. But pure
data parallelism can only go so far, and the majority of data
parallel workloads require some form of thread collabora-
tion through inter-thread communication. Common GPGPU
programming models such as CUDA and OpenCL control
the massive parallelism available in the workload by group-
ing threads into cooperative thread arrays (CTAs; or work-
groups). Threads in a CTA share a coherent memory that is
used for inter-thread communication.
This model has two major limitations. The first limitation
is that communication is mediated by a shared memory re-
gion. As a result, the shared memory region, typically im-
plemented using a hardware scratchpad, must support high
communication bandwidth and is therefore energy costly.
The second limitation is the synchronization model. Since

the order of scheduling of the threads within a CTA is un-
known, a synchronization barrier must be invoked before
consumer threads can read the values written to the shared
memory by their respective producer threads.
Seeking an alternative to the von Neumann GPGPU model,
both the research community and industry began exploring
dataflow-based systolic and coarse-grained reconfigurable ar-
chitectures (CGRA) [1–5]. As part of this push, Voitsechov
and Etsion introduced the massively multithreaded CGRA
(MT-CGRA) architecture [6, 7], which maps the compute
graph of CUDA kernels to a CGRA and uses the dynamic
dataflow execution model to run multiple CUDA threads.
The MT-CGRA architecture leverages the direct connectiv-
ity between functional units, provided by the CGRA fab-
ric, to eliminate multiple von Neumann bottlenecks includ-
ing the register file and instruction control. This model thus
lifts restrictions imposed by register file bandwidth and can
utilize all functional units in the grid concurrently. MT-
CGRA has been shown to dramatically outperform von Neu-
mann GPGPUs while consuming substantially less power.
Still, the original MT-CGRA model employed shared mem-
ory and synchronization barriers for inter-thread communi-
cation, and incurred their power and performance overheads.
In this paper we present dMT-CGRA, an extension to MT-
CGRA that supports direct inter-thread communication through
the CGRA fabric. By extending the programming model, the
execution model, and the underlying hardware, the new ar-
chitecture forgoes the shared memory/scratchpad and global
synchronization operations.
The dMT-CGRA architecture relies on the following compo-
nents: We extend the CUDA programming model with two
primitives that enable programmers to express direct inter-
thread dependencies. The primitives let programmers state
that thread N requires a value generated by thread N−k, for
any arbitrary thread index N and a scalar k.
The direct dependencies expressed by the programmer are
mapped by the compiler to temporal links in the kernel’s
dataflow graph. The temporal links express dependencies
between concurrently-executing instances of the dataflow graph,
each representing a different thread.
Finally, we introduce two new functional units to the CGRA
that redirect dataflow tokens between graph instances (threads)
such that the dataflow firing rule is preserved.

1

ar
X

iv
:1

80
1.

05
17

8v
1

 [
cs

.A
R

]
 1

6
Ja

n
20

18

The remainder of this paper is organized as follows. Sec-
tion 2 describes the motivation for direct inter-thread com-
munication on an MT-CGRA and explains the rationale for
the proposed design. Section 3 then presents the dMT-CGRA
execution model and the proposed programming model ex-
tensions, and Section 4 presents the dMT-CGRA architec-
ture. We present our evaluation in Section 5 and discuss
related work in Section 6. Finally, we conclude with Sec-
tion 7.

2. INTER-THREAD COMMUNICATION IN
A MULTITHREADED CGRA

Modern massively multithreaded processors, namely GPG-
PUs, employ many von-Neumann processing units to deliver
massive concurrency, and use shared memory (a scratchpad)
as the primary mean for inter-thread communication. This
design imposes two major limitations:

1. The frequency of inter-thread communication barrages
shared memory with intermediate results, resulting in
high bandwidth requirements from the dedicated scratch-
pad and dramatically increases its power consumption.

2. The asynchronous nature of memory decouples com-
munication from synchronization and forces program-
mers to use explicit synchronization primitives such as
barriers, which impede concurrency by forcing threads
to wait until all others have reached the synchroniza-
tion point.

The dataflow computing model, on the other hand, offers
more flexible inter-thread communication primitives. The
dataflow model couples direct communication of interme-
diate values between functional units with the dataflow fir-
ing rule to synchronize computations. We argue that the
massively multithreaded CGRA (MT-CGRA) [6, 7] design,
which employs the dataflow model, can be extended to sup-
port inter-thread in the proposed direct MT-CGRA (dMT-
CGRA) architecture. Specifically, inter-thread communica-
tion on the dMT-CGRA architecture is implemented as fol-
lows. Whenever an instruction in thread A sends a data token
to an instruction in thread B, the latter will not execute (i.e.,
fire) until the data token from thread A has arrived. This sim-
ple use of the dataflow firing rule ensures that thread B will
wait for thread A. The dataflow model therefore addresses
the two limitation of the von Neumann model:

1. The CGRA fabric, with its internal buffers, enables
most communicated values to propagate directly to their
destination, thereby avoiding costly communication with
the shared memory scratchpad. Only a small fraction
of tokens that cannot be buffered in the fabric are spilled
to memory.

2. By coupling communication and synchronization us-
ing message-passing extensions to SIMT programming
models, dMT-CGRA implicitly synchronizes point-to-
point data delivery without costly barriers.

The remainder of this section argues for the coupling of com-
munication and synchronization, and discusses why typical
programs can be satisfied by the internal CGRA buffering.

2.1 Dataflow and message passing
We demonstrate our dMT-CGRA message-passing extensions
using a separable convolution example [8] that is included

thread_code(thread_t tid) {

/ / common : n o t n e x t t o m a r g i n
i f (! is_margin(tid - 1) &&

!is_margin(tid + 1)) {
result[tid] = globalImage[tid -1] * kernel [0]

+ globalImage[tid] * kernel [1]
+ globalImage[tid+1] * kernel [2];

}
/ / c o r n e r : n e x t t o l e f t m a r g i n
e l s e i f (is_margin(tid - 1)) {

result[tid] = globalImage[tid -1] * kernel [0]
+ globalImage[tid] * kernel [1];

}
/ / c o r n e r : n e x t t o r i g h t m a r g i n
e l s e i f (is_margin(tid - 1)) {

result[tid] = globalImage[tid] * kernel [1];
+ globalImage[tid+1] * kernel [2];

}
}

(a) Spatial convolution using only global memory

thread_code () {
/ / map t h e t h r e a d t o 1D s p a c e (CUDA− s t y l e)
tid = threadIdx.x;

/ / l o a d image i n t o s h a r e d memory
sharedImage[tid] = globalImage[tid];

/ / pad t h e m a r g i n s w i t h z e r o s
i f (is_margin(tid))

pad_margin(sharedImage , tid);

/ / b l o c k u n t i l a l l t h r e a d s f i n i s h t h e l o a d p h a s e
barrier (): / / e . g . CUDA s y n c t h r e a d s

/ / e x e c u t e t h e c o n v o l u t i o n ; (k e r n e l
/ / (p r e l o a d e d i n s h a r e d memory)
result[tid] =

sharedImage[tid -1] * kernel [0]
+ sharedImage[tid] * kernel [1]
+ sharedImage[tid+1] * kernel [2];

}

(b) Spatial convolution on a GPGPU using shared memory

thread_code () {
/ / map t h e t h r e a d t o 1D s p a c e (CUDA− s t y l e)
tid = threadIdx.x;

/ / l o a d one e l e m n t f r o m g l o b a l memory
mem_elem = globalImage[tid];

/ / t a g t h e v a l u e o f t h e v a r i a b l e t o be s e n t ,
/ / i n c a s e t h e v a r i a b l e g e t s r e w r i t t e n .
tagValue <mem_elem >();

/ / w a i t f o r t o k e n s f r o m t h r e a d s t i d +1 and t i d −1
lt_elem = fromThreadOrConst <mem_elem , /∗ t i d ∗ / -1,0>();
rt_elem = fromThreadOrConst <mem_elem , /∗ t i d ∗ / +1,0>();

/ / e x e c u t e t h e c o n v o l u t i o n
result[tid] = lt_elem * kernel [0]

+ mem_elem * kernel [1]
+ rt_elem * kernel [2];

}

(c) Spatial convolution on a MT-CGRA using thread cooperation

Figure 1: Implementation of a separable convolution [8])
using various inter-thread data sharing models. For brevity,
we focuses on 1D-convolutions, which are the main and it-
erative component in the algorithm.

with the NVIDIA software development kit (SDK) [9]. This
convolution applies a kernel to an image by applying 1D-
convolutions on each image dimension. For brevity, we fo-

2

cus our discussion on a single 1D-convolution with a kernel
of size 3. The example is depicted using pseudo-code in Fig-
ure 1.
Separable convolution can be implemented using global mem-
ory, shared memory, or a message-passing programing model.
The trivial parallel implementation, presented in Figure 1a,
uses global memory. If the entire kernel falls within the
image margins, the matrix elements should be simply mul-
tiplied with the corresponding elements of the convolution
kernel. If either thread IDs (TID) TID - 1 or TID + 1 are
outside the margins, their matching element should be zero.
Although this naive implementation is very easy to code, it
results in multiple memory assesses to the image, which are
translated to high power consumption and low performance.
GPGPUs use shared memory to overcome this issue, as shown
in Figure 1b. The code first loads each element of the matrix
once and stores it in the shared memory (sharedImage ar-
ray in the code), and the image in shared memory is padded
with zeros. A barrier synchronization must then be used to
ensure that all threads finished loading their values to shared
memory. Only after the barrier can the actual convolution
be computed. Nevertheless, although the computation phase
now accesses shared memory, the lack of direct inter-thread
communication forces redundant accesses, as each image
and kernel element is loaded by multiple threads.
A dataflow architecture, on the other hand, can seamlessly
incorporate a message passing framework for inter-thread
communication. Figure 1c demonstrates how separable con-
volution can be implemented in dMT-CGRA. The funda-
mental message passing primitive in dMT-CGRA is that threads
are allowed to request the values of other threads’ variables.
Given that the underlying single-instruction multiple-threads
(SIMT) model, threads are homogeneous and execute the
same code (with diverging control paths).
As Figure 1c show, each thread first loads one matrix ele-
ment to a register (as opposed to the shared memory write in
Figure 1b). Once the element is loaded, the thread goes on
to wait for values read from other threads. The programmer
must tag the version of the named variable (in case the vari-
able is rewritten) that should be available to remote threads
using the tagValue call. Thread(s) can then read the remote
value using the fromThreadOrConst() call (see Section 3.1
for the full API), which takes three arguments: the name
of the remote variable, the thread ID from which the value
should be read, and a default value in case the thread ID is
invalid (e.g., a negative thread ID). Similar to CUDA and
OpenCL, thread IDs are mapped to multi-dimensional coor-
dinates (e.g., threadIdx in CUDA [10]) and Thread IDs are
encoded as constant deltas between the source thread ID and
the executing thread’s ID.
Communication calls are therefore translated by the com-
piler to edges in the code’s dataflow graph representing de-
pendencies between instances of the graph (i.e., threads).
This process folds the data transfers into the underlying dataflow
firing rule (to facilitate compile-time translation, the argu-
ments are passed as C++ template parameters).
This implicit embedding of the communication into the dataflow
graph gives the model its strengths. Primarily, the dataflow
graph enables the dMT-CGRA processor to forward values
between threads directly, eliminating the need for shared-

/ / IDs i n a t h r e a d b l o c k a r e mapped t o
/ / 2D s p a c e (e . g . , CUDA)
thread_code () {

/ / map t h e t h r e a d t o 2D s p a c e (CUDA− s t y l e)
tx = threadIdx.x;
ty = threadIdx.y;

/ / l o a d A and B i n t o s h a r e d memory
sharedA[tx][ty] = A[tx][ty];
sharedB[tx][ty] = B[tx][ty];

/ / b l o c k u n t i l a l l t h r e a d s f i n i s h t h e l o a d p h a s e
barrier (): / / e . g . CUDA s y n c t h r e a d s

/ / c o m p u t e an e l e m e n t i n s h a r e d C (d o t p r o d u c t)
sharedC[tx][ty] = 0;
f o r (i=0; i<K; i++)

sharedC[tx][ty] += sharedA[tx][i]* sharedB[i][ty];
}

/ / w r i t e b a c k d o t p r o d u c t r e s u l t t o g l o b a l memory
C[tx][ty] = sharedC[tx][ty]

}

(a) Matrix multiplication on a GPGPU using shared memory.

thread_code () {
/ / mapp ing t h e t h r e a d t o 2D s p a c e (CUDA− s t y l e)
tx = threadIdx.x;
ty = threadIdx.y;

/ / c o m p u t e memory a c c e s s p r e d i c a t e s
En_A = (tx == 0);
En_B = (ty == 0);

/ / c o m p u t e t h e d o t p r o d u c t . t h e l o o p i s s t a t i c a l l y
/ / u n r o l l e d t o c o m p u t e t h e i n d i c e s a c o m p i l e− t i m e
C[ty][tx] = 0;

pragma unroll
f o r (i=0; i<K; i++) {

a = fromThreadOrMem <{0, -1}>(A[tx][i], En_A);
b = fromThreadOrMem <{1, 0}>(B[i][ty], En_B);

C[ty][tx] += a*b;
}

}

(b) Dense matrix multiplication on the dMT-CGRA architecture using di-
rect inter-thread communication.

Figure 2: Multiplications of dense matrices C = A × B
using shared memory on GPGPU and direct inter-thread
communication on an MT-CGRA. Matrix dimensions are
(N×M) = (N×K)× (K×M).

memory mediation. In addition, the embedding allows threads
to move to the computation phase once their respective val-
ues are ready, independently of other threads. Since no bar-
riers are required, the implicit dataflow synchronization does
not impede parallelism.

2.2 Forwarding memory values between threads
Often times multiple concurrent threads load the same mul-
tiple address, thereby stressing the memory system with re-
dundant loads. The synergy between a CGRA compute fab-
ric and direct inter-thread communication enables dMT-CGRA
to forward values loaded from memory through the CGRA
fabric, and thus eliminate most of these redundant loads.
Figure 2 presents this property using matrix multiplication
as an example. The figure depicts the implementation of a
dense matrix multiplication C = A×B on a GPGPU and on
dMT-CGRA. In both implementations each thread computes
one element of the result matrix C.
The classic GPGPU implementation, shown in Figure 2a,

3

Figure 3: The flow of data in dMT-CGRA for a 3x3 marix
multiplication. The physical CGRA is configured with the
dataflow graph (bottom layer), and each functional unit in
the CGRA multiplexes operations from different instances
(i.e., threads) of the same graph.

demonstrates how multiple threads stress memory. The im-
plementation concurrently copies the data from global mem-
ory to shared memory, executes a synchronization barrier
(which impedes parallelism), and then each thread computes
one element in the result matrix C. Consequently, each ele-
ment in the source matrices A and B, whose dimensions are
N ×K and K ×M, respectively, is accessed by all threads
that compute a target element in C whose coordinates corre-
spond to either its row or column. As a result, each element
is loaded by N×M threads.
We propose to eliminate the redundant memory accesses by
introducing a new memory-or-thread communication prim-
itive. The new primitive uses a compile-time predicate that
determines whether to load the value from memory or to for-
ward the loaded value from another thread. The dMT-CGRA
toolchain maps the operation to special units in the CGRA
(described in Section 4) and, using the predicate, configures
the CGRA to route the correct value.
Figure 2b depicts an implementation of a dense matrix mul-
tiplication using the proposed primitive. Each thread in the
example computes one element in the destination matrix C,
and the programming model maps each thread to a spatial
coordinate (similar to CUDA/OpenCL). Rather than a reg-
ular memory access, the code uses the fromThreadOrMem
primitive, which takes two arguments: a predicate, which
determines where to get the value from, a memory address,
from which the required value should be loaded, and one
parameter a two-dimensional coordinate, which indicate the
thread from which the data may be obtained (the coordinates
are encoded as the multi-dimensional difference between the

source thread and the executing thread’s coordinates).
Finally, Figure 3 illustrates the flow of data between threads
for a 3× 3 matrix multiplication. While the figure shows a
copy of the dataflow graph for each thread (we remind the
reader that the underlying dMT-CGRA is configured with a
single dataflow graph and executes multiple threads by mov-
ing their tokens through the graph out-of-order, using dy-
namic dataflow token-matching). As each thread computes
one element in target matrix C, threads that compute the first
column load the elements of matrix A from memory, and the
threads that compute the first row load the elements of ma-
trix B. As the figure shows, threads that load values from
memory forward them to other threads. For example, thread
(0,2) loads the bottom row of matrix A and forwards its val-
ues to thread (1,2), which in turn sends them to thread (2,2).
Since thread (2,2).
The combination of a multithreaded CGRA and direct inter-
thread communication thus greatly alleviates the load on the
memory system, which plagues massively parallel proces-
sors. The following sections elaborate on the design of the
programming model, the dMT-CGRA execution model, and
the underlying architecture.

3. EXECUTION AND PROGRAMMING MODEL
This section describes the dMT-CGRA execution model and
the programming model extensions that support direct data
movement between threads.

The MT-CGRA execution model. The MT-CGRA exe-
cution model combines the static and dynamic dataflow mod-
els to execute single-instruction multiple-threads (SIMT) pro-
grams with better performance and power characteristics than
von Neumann GPGPUs [6]. The model converts SIMT ker-
nels into dataflow graphs and maps them to the CGRA fab-
ric, where each functional unit multiplexes its operation on
tokens from different instances of a dataflow graph (i.e., threads).
An MT-CGRA core comprises a host of interconnected func-
tional units (e.g., arithmetic logical units, floating point units,
load/store units). Its architecture is described in Section 4.
The interconnect is configured using the program’s dataflow
graph to statically move tokens between the functional units.
Execution of instructions from each graph instance (thread)
thus follows the static dataflow model. In addition, each
functional unit in the CGRA employs dynamic, tagged-token
dataflow [11, 12] to dynamically schedule different threads’
instructions in order to prevent memory stalled threads from
blocking other threads, thereby maximizing the utilization
of the functional units.
Prior to executing a kernel, the functional units and inter-
connect are configured to execute a dataflow graph that con-
sists of one or more replicas of the kernel’s dataflow graph.
Replicating the kernel’s dataflow graph enables the archi-
tecture to better utilize the MT-CGRF grid. The configura-
tion process itself is lightweight and has negligible impact on
system performance. Once configured, threads are streamed
through the dataflow core by injecting their thread identifiers
and CUDA/OpenCL coordinates (e.g., threadIdx in CUDA)
into the array. When those values are delivered as operands
to successor functional units they initiate the thread’s com-
putation, following the dataflow firing rule. A new thread

4

/ / r e t u r n t h e t a g g e d− t o k e n f o r a g i v e n t i d
<token , tag > = elevator_node(tid)
{

/ / d o e s t h e s o u r c e t i d f a l l s w i t h i n t h e t h r e a d b l o c k ?
i f (in_block_boundaries(tid - ∆)) {

/ / v a l i d s o u r c e t i d ? w a i t f o r t h e t o k e n .
token = wait_for_token(tid - ∆);
r e t u r n <token , tid >;

}
e l s e {

/ / i n v a l i d s o u r c e t i d ? p u s h t h e c o n s t a n t v a l u e .
r e t u r n <C, tid >;

}
}

Figure 4: The functionality of an elevator node (with a ∆

TID shift and a fallback constant C.

can thus be injected into the computational fabric on every
cycle.

Inter-thread communication on an MT-CGRA. As de-
scribed above, the MT-CGRA execution model is based on
dynamic, tagged-token dataflow. Each token is coupled with
a tag so that functional units can match each thread’s input
tokens. The multithreaded model uses TIDs as token tags,
which allows each functional unit to match each thread’s in-
put tokens. When using this model, the crux of inter-thread
communication is changing a token’s tag to a different TID.
We implement the token re-tagging by adding special eleva-
tor nodes to the CGRA. Like an elevator, which shifts peo-
ple between floors, the elevator node shifts tokens between
TIDs. An elevator node is a single-input, single-output node
and is configured with two parameters — a ∆T ID and a con-
stant C. The functionality of the node is described as pseudo
code in Figure 4 (and is effectively the implementation of the
fromThreadOrConst function first described in Figure 1c).
For each downstream thread id T ID, the node generates a
tagged-token consisting of the value obtained from the in-
put token for thread ID T ID−∆. If T ID−∆ is not a valid
TID in the thread block, the downstream token consists of a
preconfigured constant C.
The elevator node thus communicates tokens between threads
whose TIDs differ by ∆, which is extracted at compile-time
from either the fromThreadOrConst or fromThreadOrMem
family of functions (Section 3.1). These inter-thread com-
munication functions are mapped by the compiler to elevator
nodes in the dataflow graph and to their matching counter-
parts in the CGRA.
Each elevator node includes a small token buffer. This buffer
serves as a single-entry output queue for each target TID.
The ∆T ID that a single elevator node can support is thus
limited by the token buffer size. To support ∆T ID that are
larger than a single node’s token buffer, we design the ele-
vator nodes so that they can be cascaded, or chained. When-
ever the compiler identifies a ∆T ID that is larger than a
single elevator node’s token buffer, it maps the inter-thread
communication operation to a sequence of cascading eleva-
tor nodes. In extreme cases where ∆T ID is too large even for
multiple cascaded nodes, dMT-CGRA falls back to spilling
the communicated values to the shared memory. Cascading
of elevator nodes is further discussed in Section 4.
Nonetheless, our experimental results show that inter-thread

0.87

0.00

0.20

0.40

0.60

0.80

1.00

0 32 64 96 128 160 192 224 256

P
ro

b
ab

ili
ty

Transmission Distance

16

Figure 5: cumulative distribution function (CDF) of delta
lengths across various benchmarks. We see the 87% of the
code we evaluated uses communicates across ∆T ID of 16,
indicating strong communicates locality.

communication patterns exhibit locality across the TID space,
and that values are typically communicated between threads
with adjacent TID (a Euclidean distance was used for 2D and
3D TID spaces). Figure 5 shows the cumulative distribution
function (CDF) of the ∆T ID’s exhibited by the benchmarks
used in this paper (the benchmarks and methodology are de-
scribed in Section 5.1). The figure shows that the commonly
used delta are small and a token buffer of 16 is enough to
support 87% of the benchmark without the need to cascade
elevator nodes.
The second functional unit needed to implement inter-thread
communication is the enhanced load/store (eLDST) unit. The
eLDST extends a regular LDST unit with a predicated by-
pass, allowing it to return values coming either from memory
or from another thread (through an elevator unit). An eLDST
units coupled with an elevator unit (or multiple thereof) thus
implement the fromThreadOrMem primitive.

3.1 Programming model extensions
We enable direct inter-thread communication by extending
the CUDA/OpenCL API. The API, listed in Table 1, allows
threads to communicate with any other thread in a thread
block. In this section we describe the three components of
the API.

3.2 Communicating intermediate values
The fromThreadOrConst and tagValue functions enables threads
to communicate intermediate values in a producer-consumer
manner. The function is mapped to one or more elevator
nodes, which send a tagged-token downstream once the sender
thread’s token is received. This behavior blocks the con-
sumer thread until the producer thread sends the token. The
fromThreadOrConst function has two variants. The variants
share three template parameters: the name of the variable to
be read from the sending thread, the ∆T ID between the com-
municating threads (which may be multi dimensional), and
a constant to be used if the sending TID is invalid or outside
the transmission window.
The transmission window is defined as the span of TIDs
that share the communication pattern. The second variant of
the fromThreadOrConst function allows the programmer to
bound the window using the win template parameter. More
concretely, we define the transmission window as follows:
The fromThreadOrConst functions encodes a monotonic com-
munication pattern between threads, e.g., thread TID pro-
duces a value to thread TID+∆, which produces a value to

5

Function Description
token fromThreadOrConst<variable, TID∆, constant>() Read variable from another thread, or constant if the thread does not exist.
token fromThreadOrConst<variable, TID∆, constant, win>() Same as above, but limit the communication to a window of win threads.
void tagValue<variable>() Tag a variable value that will be send to another thread.

token fromThreadOrMem<TID∆>(address, predicate) Load address if predicate is true, or get the value from another thread.
token fromThreadOrMem<TID∆, win>(address, predicate) Same as above, but limit the communication to a window of win threads.

Table 1: API for inter-thread communications. Static/constant values are passed as template parameters (functions that require
∆T ID have versions for 1D, 2D, and 3D TID spaces).

LD

ST

+

(a) The static dMT-CGRA mapping when
executing prefix sum.

thread_code () {
/ / mapp ing t h e t h r e a d t o
/ / 1D s p a c e (CUDA− s t y l e)
tid = threadIdx.x;

/ / l o a d one v a l u e (LD)
/ / f r o m g l o b a l memory
mem_val = inArray[tid];

/ / add t h e l o a d e d v a l u e t o
/ / t h e sum s o f a r
sum =
fromThreadOrConst <sum ,-1,0>()
+ mem_val;

tagValue <sum >();

/ / s t o r e p a r t i a l sum t o
/ / g l o b a l memory
prefixSum[tid] = sum;

}

(b) Prefix sum implementation using inter
thread communication.

LD

ST

+

LD

ST

+

LD

ST

+

Thread-ID=1

Thread-ID=2

Thread-ID=0

...

(c) The dynamic execu-
tion of prefix sum.

Figure 6: Example use of the tagValue function.

thread TID+2×∆, and so forth. The transmission window is
defined as the maximum difference between TIDs that par-
ticipate in the communication pattern. For a window of size
win, the thread block will be partitioned into consecutive
thread groups of size win, e.g., threads [T ID0 . . .T IDwin−1],
[T IDwin . . .T ID2×win−1], and so on. The communication pat-
tern T ID→ T ID+∆ will be confined to each group, such
that (for each n) thread T IDn×win−1 will not produce a value,
and thread T IDn×win will receive the default constant value
rather than wait for thread T IDn×win−∆.
Bounding the transmission window is useful to group threads
at the sub-block level. In our benchmarks (Section 5.1), for
example, we found grouping useful for computing reduction
trees. A bounded transmission window enables mapping dis-
tinct groups of communicating threads to separate segments
at each level of the tree.
The tagValue function is used to tag a specific value (or ver-
sion) of the variable passed to fromThreadOrConst. The
call to tagValue may be placed before or after the call to

fromThreadOrConst, as shown in the prefix sum example
depicted in Figure 6 (the example is based on the NVIDIA
CUDA SDK [9]). The prefix sum problem takes an array
a of values and, for each element i in the array, sums the
array values a[0] . . .a[i]. The code in Figure 6b uses the tag-
Value to first compute an element’s prefix sum, which de-
pends on the value received from the previous thread, and
only then send the result to the subsequent thread. Fig-
ure 6a illustrates the resulting per-thread dataflow graph, and
Figure 6c illustrates the inter-thread communication pattern
across multiple threads (i.e, graph instances). The resulting
pattern demonstrates how decoupling the tagValue call from
the fromThreadOrConst call allows the compiler to schedule
the store instruction in parallel with the inter-thread com-
munication, thereby exposing more instruction-level paral-
lelism (ILP).

3.3 Forwarding memory values
The fromThreadOrMem function allows threads that load the
same memory address to share a single load operation. The
function takes ∆T ID as a template parameter, and an address
and predicate as run time evaluated parameters (the function
also has a variant that allows the programmer to bound the
transmission window). Using the predicate, the function can
dynamically determine which of the threads will issue the
actual load instruction, and which threads will piggyback on
the single load and get the resulting value forwarded to them.
An typical use of the fromThreadOrMem function is shown
in the matrix multiplication example in Figure 2b. In this
example, the function allows for only a single thread to load
each row and each column in the matrices, and for the re-
maining threads to receive the loaded value from that thread.
In this case, the memory forwarding functionality reduces
the number of memory accesses from N×K×M to N×M.

4. THE dMT-CGRA ARCHITECTURE
This section describes the dMT-CGRA architecture, focus-
ing on the extensions to the baseline MT-CGRA [6] needed
to facilitate inter-thread communication. Figure 7 illustrates
the high-level structure of the MT-CGRA architecture.
The MT-CGRA core itself, presented in Figure 7a, is a grid
of functional units interconnected by a statically routed net-
work on chip (NoC). The core configuration, the mapping of
instructions to functional units, and NoC routing are deter-
mined at compile-time and written to the MT-CGRA when
the kernel is loaded. During execution tokens are passed
between the various functional units according to the static
mapping of the NoC. The grid is composed of heterogeneous
functional units, and different instructions are mapped to
different unit types in the following manner: Memory op-
erations are mapped to the load/store units, computational

6

TID

to
ke

n
bu

�e
r

op1 op2
from crossbar switch

Typical Unit

CU
SJ

U

CU

CU
SJ

U

SJ
U

Co
m

pu
te

Co
m

pu
te

Lo
ad

/S
to

re

Load/Store

.....

SCU

SCU

SCU

SCU

SCU

SCU

SCU

SCU

SCU

SCU

SCU

SCU

L1

LVC

Live value units

Live value units

SCU-Special Compute Unit
CU-Control Unit LVC-Live Value Cache

SJU-Split/Join Unit

Legend

(a) An SGMF MT-CGRA core

TID

to
ke

n
bu

�e
r

op1 op2
from crossbar switch

Typical Unit

CU
SJ

U

CU

CU
SJ

U

SJ
U

Co
m

pu
te

Co
m

pu
te

Lo
ad

/S
to

re

Load/Store

.....

SCU

SCU

SCU

SCU

SCU

SCU

SCU

SCU

SCU

SCU

SCU

SCU

L1

LVC

Live value units

Live value units

SCU-Special Compute Unit
CU-Control Unit LVC-Live Value Cache

SJU-Split/Join Unit

Legend

(b) A typical MT-CGRA unit
Figure 7: MT-CGRA core overview

operations are mapped to the floating point units and ALUs
(compute units), control operations such as select, bitwise
operations and comparisons are mapped to control units (CU),
and split and join operations (used to preserve the original
intra-thread memory order) are mapped to Split/Join units

(SJU).
During the execution of parallel tasks on an MT-CGRA core,
many different flows representing different threads reside in
the grid simultaneously. Thus, the information is passed as
tagged tokens composed from the data itself and the associ-
ated TID, which serves as tag. The tag is used by the grid’s
nodes to determine which operands belong to which threads.
Figure 7b illustrates the shared structure of the different units.
While the funcnionality of the units differ, they all include
tagged-token matching logic to support thread interleaving
through dynamic dataflow. Specifically, tagged-tokens ar-
rive from the NoC and are inserted into the token buffer.
Once a all operands for a specific TIDs are available, they
are passed to the unit’s logic (e.g., access memory in LDST
units, compute in ALU/FPU). When the unit’s logic com-
plete its operation, the result is passed as a tagged token back
to the grid through the unit’s crossbar switch.
In this paper we introduce two new units to the grid — the
elevator node and the enhanced load/store unit (eLDST).
While existing units may manipulate the the token itself,
they to not modify the tag in order to preserve the associa-
tion between tokens an threads. The two new units facilitate
inter-thread communication by modifying the tags of exist-
ing tokens.
Figure 8 and Figure 9 depict the elevator node and eLDST
units, respectively. Nevertheless, we introduce the new units
to the grid by converting the existing control units to ele-
vator nodes and LDST units to eLDST units. The conver-
sion only includes adding combinatorial logic to the exist-
ing units, since all units in the grid already have an internal
opcode register and token buffers. The µarchitectural over-
head of the conversion thus consists of only the combina-
tional logic shown in Figure 8 and Figure 9. Consequently,
the conversion of existing units incurs negligible area and
power overhead.

4.1 Elevator node
The elevator node implements the fromThreadOrConst func-
tion, which communicates intermediate value between threads,
and is depicted in Figure 8. When mapping fromThreadOr-
Const call, the node is configured with the call’s ∆T ID and
default constant value. An elevator node receives tokens
tagged with a T ID and changes the tag to T ID+∆ accord-
ing to its preconfigured ∆. It then sends the resulting tagged-
token downstream.
Figure 8b shows the pseudo-code for the node’s functional-
ity. In the most common case, the node receives an input
token from one thread and sends the retagged token to an-
other thread. In this case, threads serve as both data pro-
ducers, sending a token to a consumer thread, and as con-
sumers, waiting for a token from another producer thread.
Alternatively, a thread T ID may not serve as a producer if its
target thread’s ID T ID+∆ is invalid or outside the current
transmission window. Correspondingly, when the sending
thread’s ID (e.g., T ID−∆) is outside the transmission win-
dow, the elevator node injects the preconfigured constant to
the tagged-token sent downstream.
Figure 8a depicts the structure of an elevator unit. For threads
acting that both produce and consume tokens, the controller
passes the input token to its receiver by modifying the tag

7

token buffer

transmission
window size

delta

tid
base

tid Data

CONST

ctrl indx

o_tid

o_data

Data valid
bits

Datatid

MUX

(a) An elevator node stores the in-flight tokens in the unit’s token buffer. A
controller manipulates TIDs and controls the value of the output tokens.

/ / r e a d a t o k e n f r o m t h e node ’ s i n p u t and
/ / m a n i p u l a t e t h e t a g
i f (tid%BATCH < DELTA)
{ / / f o r t h r e a d s a c t i n g o n l y a s p r o d u c e r s

token_buffer.validate(tid)
token_buffer.add(tid+DELTA ,data)

}
e l s e i f (tid%BATCH + DELTA < BATCH)
{ / / f o r t h r e a d s a c t i n g a s p r o d u s e r s and c o n s u m e r s

token_buffer.add(tid+DELTA ,data)
}

/ / i f t h e t o k e n b u f f e r h o l d s a r e a d y t h r e a d
/ / pop i t ’ s t o k e n and t e s t w h e t h e r i t s h o u l d
/ / r e t u r n a v a l u e o r a c o n s t
i f (! token_buffer.isEmpty ()){

(o_data ,o_tid) = token_buffer.pop()
i f (o_tid%BATCH >= DELTA)
/ / t h e t h r e a d h a s a p r o d u c e r

out <=(o_tid ,o_data)
e l s e
/ / g e n e r a t e a c o n s t v a l u e f o r t h r e a d s
/ / w i t h o u t p r o d u c e r s

out <=(o_tid ,CONST)
}

(b) Pseudo-code for the elevator node controller when treating ∆T ID
greater than zero.

Figure 8: The elevator node and its controller’s pseudo-code.

from T ID to T ID + ∆, and pushing the resulting tagged-
token to the T ID+∆ entry in the token buffer. In addition,
the original input T ID should be acknowledged by mark-
ing the thread as ready in the token buffer. Alternatively, if
thread T ID simply needs to receive the pre-defined constant
value as a token, the controller pushes a tagged-token com-
prising the constant and T ID to the token buffer. In this case,
setting the acknowledged bit does not require an extra write
port to the token buffer but only the ability to turn two bits
at once.

4.2 Enhanced load/store unit (eLDST)
The eLDST unit is used to implement the fromThreadOrMem
function, which enables threads to reuse memory values loaded

token buffer

transmission
window size

delta

tid
base

tidEn

LDST ctrl

indx

tid data

Data valid
bits

M
U

X

Addr

L1

$

data

tid

Figure 9: An eLDST node, comprising a LDST unit with
additional adder to manipulate the TID, and a comparator to
test if the result is outside the margins. The En input (predi-
cate) determines whether a new value should be introduced.
The output is looped back in to create new tokens with higher
TIDs with the same data loaded by a previous thread.

another thread without issuing redundant memory accesses.
Figure 9 presents the eLDST unit, which is a LDST unit en-
hanced with control logic that determines whether the token
should be brought in from memory or from another thread’s
slot in the token buffer. The eLDST units operates as fol-
lows: if the Enable (En) input is set, the receiving thread will
access the memory system and load the data. Otherwise, if
the En is not set the thread’s TID will either be added to the
token buffer where it will wait for another thread to write
the token, or the controller will find the token holding the
data fetched from memory waiting in the token buffer. In
the latter scenario, the thread may continue its flow through
the dataflow graph. When the eLDST produces an output to-
ken, the token is duplicated and one copy is internally parsed
by the node’s logic. While the original token is passed on
downstream in the MT-CGRA, ∆ is added to the TID of the
duplicated token. If the resulting TID is equal or smaller
than the transmission window, the tagged-token will be push
to the token buffer. Otherwise, the duplicated token will
be discarded since it’s consumer is outside the transmission
window. Using this scheme, each value is loaded once from
memory and reused windowsize

∆
times, thereby significantly re-

ducing the memory bandwidth.

4.3 Supporting large transmission distances
The dMT-CGRA architecture uses the token buffers in eleva-
tor nodes and eLDST units to implement inter-thread com-
munication. During compilation, the compiler examines the
distance between the sending thread and the receiving thread
represented as the ∆T ID passed to the fromThreadOrConst
or fromThreadOrMem functions. If the distance is smaller or
equal to the size of the token buffer, the fromThreadOrConst
or fromThreadOrMem calls will be mapped to a single eleva-
tor node or eLSDT unit, respectively. But if ∆T ID is larger
than the token buffer, the compiler must cascade multiple
nodes to support the large transmission distance.

8

 =16
 <token,tid>

transmission distance = 18
token buffer = 16

 <token,tid+16>
 = 2

 <token,tid+18>

(a) Cascading elevator nodes to manage a ∆T ID that is larger than the token
buffer.

i1

i0

sel

P

LD
i1

i0

sel

en

(b) When a fromThreadOrMem procedure needs to deal with ∆ larger than
the token buffer size, the function will be mapped to a cascade of predicated
elevator nodes in a closed cycle.

Figure 10: Cascading elevator nodes

Long distances in fromThreadOrConst calls. When a
fromThreadOrConst function needs to communicate values
over a transmission distance that is larger than the size of the
token buffer, the compiler cascades multiple elevator nodes
(effectively chaining their token buffers) in order to support
the required communication distance.
Figure 10a depicts such a scenario. The required transmis-
sion distance shown in the figure is 18, but the token buffer
can only hold 16 entries. To deal with the long distance the
compiler maps the operation to two cascaded elevator nodes.
The compiler further configures the ∆T ID of the first node
to 16 (the token buffer size) and that of the second one to 2,
resulting in the desired cummulative transmission distance
of 18.
In the general case of a transmission window that is larger
than the token buffer size, the number of cascaded units will
be

⌈
T ID∆

Token Bu f f er Size

⌉
. In extreme cases, where the ∆T ID is

so large that it requires more elevator nodes that are available
in the CGRA, the communicated values will be spilled to
the Live Value Cache, a compiler managed cache used in the
MT-CGRA architecture [7]. This approach is similar to the
spill fill technique used in GPGPUs.
Nevertheless, spilling values is a rarity since typical trans-
mission distance are small, as shown in Figure 5. The fig-
ure shows the cumulative distribution function (CDF) of the
transmission distances in the benchmarks used in this paper.
As the CDF shows, the commonly used distances are small
and a token buffer of 16 is sufficient to support 87% of the
benchmarks without the need to cascade elevator nodes.

Long distances in fromThreadOrMem procedures. By
default, fromThreadOrMem calls are mapped to eLDST units.
Unlike the elevator node that can be cascaded to increase
the maximal transmission distance, the eLDST can not sim-

Parameter Value
dMT-CGRA Core 140 interconnected

compute/LDST/control units
Arithmetic units 32 ALUs
Floating point units 32 FPUs

12 Special Compute units
Load/Store units 32 LDST Units
Control units 16 Split/Join units

16 Control/Elevator units
Frequency [GHz] core 1.4, Interconnect 1.4

L2 0.7, DRAM 0.924
L1 64KB, 32 banks, 128B/line, 4-way
L2 786KB, 6 banks, 128B/line, 16-way
GDDR5 DRAM 16 banks, 6 channels

Table 2: dMT-CGRA system configuration.

ply be cascaded since it acts as a local buffer for its in-flight
memory accesses. For example, in Figure 3 the columns of
matrix B are loaded by the first three threads and transmitted
over a distance of three threads (∆T ID = 3). In this case,
while the third thread loads its data, the eLDST must be able
to hold on the first two loaded values in order to transmit
them later. As a result, a token buffer of at-least three entries
is required. A system with a token buffer smaller than that
would require external buffering.
The additional external buffer is constructed by mapping the
operation to a loop of cascaded elevator nodes. As depicted
in Figure 10b, the loop is enclosed by control nodes serv-
ing as MUXs. To reuse memory values by distant threads
the output of the terminating MUX is connected to the input
of the first MUX. In this scenario the compiler will map the
load instruction to a predicated load-store unit. The predi-
cate passed to the fromThreadOrMem will serve as the se-
lector for the MUXs. When the predicate evaluates to false,
the original memory value is looped back through the second
MUX back to the elevator nodes cascade. A value originat-
ing from the TID entering the cascade will be retagged with
the target thread ID T ID+∑i ∆i. The sum of the elevator
node ∆T ID therefore accounts for the required communica-
tion distance. Nevertheless, as shown in Figure 5, the typical
∆T ID fits inside the eLDST unit’s token buffer.

5. EVALUATION

5.1 Methodology
The amount of logic that is found in a dMT-CGRA core is
approximately the same amount that is found in an Nvidia
SM and in an SGMF MT-CGRA core. In an Nvidia SM, that
logic assembles 32 CUDA cores, while in the dMT-CGRA
core the Nvidia SM is broken down into smaller coarse grained
blocks. The breakdown to a smaller granularity exposes
instruction-level parallelism (ILP) while the use of multi-
threading preserves the thread level parallelism (TLP).

Simulation framework. We used the GPGPU-Sim sim-
ulator [13] and GPUWattch [14] power model (which uses
performance monitors to estimate the total execution energy)
to evaluate the performance and power of the dMT-CGRA,
the MT-CGRA and the GPUs architecture. These tools model
the Nvidia GTX480 card, which is based on the Nvidia Fermi.
We extended GPGPU-Sim to simulate a MT-CGRA core
and a dMT-CGRA core and, using per-operation energy es-

9

0.0

2.0

4.0

6.0

8.0

10.0
Sp

e
e

d
u

p
 [

X
]

Benchmark

MT-CGRA

dMT-CGRA1
2
.0

1
3
.5

1
1
.8

Figure 11: The speedup of the dMT-CGRA architecture and
of a MT-CGRA architecture over the Fermi baseline .

timates obtained from RTL place&route results for the new
components, we extended the power model of GPUWattch
to support the MT-CGRA and dMT-CGRA designs.
The system configuration is shown in Table 2. By replacing
the Fermi SM with a dMT-CGRA core, we retain the non-
core components. The only difference between the proces-
sors’ memory systems is that dMT-CGRA uses write-back
and write-allocate policies in the L1 caches, as opposed to
Fermi’s write-through and write-no-allocate.

Compiler. We compiled CUDA kernels using LLVM [15]
and extracted their SSA [16] code. This was then used to
configure the dMT-CGRA grid and interconnect.

Benchmarks. We evaluated the dMT-CGRA architecture
using kernels from the Nvidia SDK [9] and from the Rodinia
benchmark suite [17], listed in Table 3. We evaluated only
kernels that use shared memory, and thus may benefit from
our proposed programing model.

5.2 Simulation results
This section evaluates the performance and power efficiency
of the dMT-CGRA architecture. The results are compared
to a baseline NVIDIA Fermi architecture and to an SGMF
architecture, a multi threaded coarse grained reconfigurable
array that does not support inter-thread communication (MT-
CGRA).

Performance.
Figure 11 demonstrates the performance improvements ob-
tained from our proposed programing model and architec-
ture over the Nvidia SDK and Rodinia kernels.
Figure 11 demonstrates the speedup achieved by a dMT-
CGRA core over a Fermi SM. While the performance im-
provement range varies across the different workloads, the
combination of our programing model and adapted MT-CGRA
architecture deliver speedups as high as 13.5× with a ge-
omean of 4.5×. Spatial architectures, such as the dMT-
CGRA and the MT-CGRA, are not bound by the width of the
instruction fetch. Unlike GPUs, these architectures can oper-
ate all the functional units on the grid. Thus, a fully utilized
spatial architecture composed of 140 units (such as the simu-
lated dMT-CGRA and MT-CGRA) delivers a 140

32 = 4.375×
speedup over a fully utilize 32-wide GPU core.
The MT-CGRA architecture suffers from a memory bottle-
neck and achieves an average speedup of 2.3×, significantly
lower than the speedup gained by the dMT-CGRA. The dMT-
CGRA communicates intermediate values between threads

0.0

2.0

4.0

6.0

8.0

10.0

12.0

En
e

rg
y

ef
fi

ci
e

n
cy

 [
X

]

Benchmark

MT-CGRA
dMT-CGRA2

1
.2

1
9
.1

3
3
.3

1
5
.7

Figure 12: Energy efficiency of a dMT-CGRA core over a
MT-CGRA and Fermi SM.

and enables memory data reuse by different threads. Con-
sequently, the memory system BW is significantly reduced,
usually eliminating the memory system bottleneck, thus en-
abling full ILP utilization.
The results indicate that kernels originating from the Nvidia
SDK gain significantly higher speedups than the kernels orig-
inating from the Rodinia benchmark suite. The kernels taken
from the Nvidia SDK were re-implemented and their base al-
gorithm was majorly revised to maximize the benefits from
the new programing model and architecture proposed in this
paper. Although the algorithms were altered, the function-
ally of those kernels was kept and the produced values are
the same as of the original implementations. For the Ro-
dinia kernels we used inter-thread communication instead of
shared memory but tried to preserve the original algorithm
as much as possible. The exceptions that stand out are the
LUD kernel in which we used our implementation of ma-
trix multiplication; and scan, a very sequential algorithm, in
which inter-thread communication achieves significant en-
ergy reduction but without a significant speedup. Addition-
ally, we preserved the original BPNN kernel algorithm, re-
sulting in an inter-thread communication slowdown of al-
most 40%. The communication between adjacent threads
limited the TLP and caused the slowdown. An implemen-
tation based on a different algorithm can potentially provide
better performance.

Energy efficiency analysis.
In this section we compare the energy efficiency of the eval-
uated architectures. Our evaluation compares the total en-
ergy required to complete the task, namely execute the ker-
nel, since the different architectures use different instruction
set architectures (ISAs) and execute a different number of
instructions for the same kernel. We simply multiply the ex-
ecution time by the average power consumption for each ar-
chitecture and divide it by the energy consumed by the Fermi
baseline.
Figure 12 shows the energy efficiency of the dMT-CGRA
and MT-CGRA architectures, compared to a Fermi GPU.
As this figure demonstrates, the dMT-CGRA architecture is
on average 7.4× more energy efficient while the MT-CGRA
increases the energy efficiency by only 3.5×. Our most
outstanding case is the convolution kernel implementation
using inter-thread communication. For this kernel the use
of the dMT-CGRA programing model and architecture not
only exposes available ILP and reduces the memory access
overhead, it also significantly simplifies and shortens the
code since no special treatment is needed for the margins, as
demonstrated in Figure 1. Additionally, the Nvidia SDK im-

10

Application Application Domain Kernel Description
scan Data-Parallel Algorithms scan_naive Prefix sum
matrixMul Linear Algebra matrixMul Matrix multiplication
convolution Linear Algebra convolutionRowGPU Convolution filter
reduce Data-Parallel Algorithms reduce Parallel Reduction
lud Linear Algebra lud_internal Matrix decomposition
srad Ultrasonic/Radar Imaging srad Speckle Reducing Anisotropic Diffusion
BPNN Pattern Recognition layerforward Training of a neural network
hotspot Physics Simulation hotspot_kernel Thermal simulation tool
pathfinder Dynamic Programming dynproc_kernel Find the shortest path on a 2-D grid

Table 3: A short description of the benchmarks that were used to evaluate the system

plementations leverage the full benefits of the dMT-CGRA
architecture and programing model and performed well.
In the most cases, as expected, we see that high performance
is usually translated into high energy efficiency, or in other
words, tasks that terminate quickly consume less energy.
The uncommon case is the scan kernel, where relative en-
ergy efficiency is extremely higher than its relative perfor-
mance. That happens because its algorithm explicitly re-
quires data transfers between threads. The programming
model presented in this paper reduces the memory overhead
for this kernel to the bare minimum.
To conclude, the evaluation demonstrates the performance
and power benefits of the dMT-CGRA architecture and pro-
graming model over a von Neumann GPGPU (NVIDIA Fermi)
and an MT-CGRA without the support of inter-thread com-
munication.

6. RELATED WORK

Dataflow architectures and CGRAs.
There is a rich body of work regarding the potentials of
dataflow based engines in general, and particularity coarse
grained reconfigurable arrays. DySER [3], SEED [18], and
MAD [19] extend von-Neumann based processors with dataflow
engines that efficiently execute code blocks in a dataflow
manner. Garp [20] adds a CGRA component to a simple core
in order to accelerate loops. While, TRIPS [21], WaveScalar [22]
and Tartan [23] portion the code into hyperblocks, schedule
their execution according to the dependencies between them.
However, these architectures mainly leverage their execu-
tion model to accelerate single threaded preference. With
the exception of TRIPS [21] that enables multi threading by
scheduling different threads to different tiles on the grid, and
WaveCache [23] that pipeline instances of hyperblocks orig-
inating from different threads. Nevertheless, neither of these
architecture support simultaneous dynamic dataflow execu-
tion of threads on the same grid. While, SGMF [6] and
VGIW [7] do support simultaneous dynamic multithreaded
execution on the same grid, they do not support inter thread
communication between threads.

Message passing and inter-core communication.
Support of inter thread communication is vital when im-
plementing efficient parallel software and algorithms. The
MPI [24] programing model is perhaps the most scalable and
commonly used message passing programing model. Many
studies implemented hardware support for fine-grain com-
munications across cores. The MIT Alewife machine [25],
MIT Raw [26], ADM [27], CAF [28] and the HELIX-RC ar-
chitecture [29] add an integrated hardware to multi-core sys-

tems, in order to provide fast communication and synchro-
nization between the cores on chip. While, XLOOPS [30]
provides hardware mechanisms to transfer loop-carried de-
pendencies across cores. These prior works have explored
hardware assisted techniques to add hardware support for
communication between cores, in this paper we applied the
same principles in a massively multithreaded environment
and implemented communication between threads.

Inter-thread communication.
To enable decoupled software pipelining on sequential algo-
rithms, DWSP [31] adds a synchronization buffer to support
value communication between threads. Nvidia GPUs sup-
port inter thread communication within a warp using shuffle
instructions as described in the CUDA programing guide [10],
this form of communication is limited to data transfers within
a warp and cannot be used in order to synchronize between
threads since all thread within a warp execute in lockstep.
Nevertheless, the addition of that instruction to the CUDA
programing model, even in it’s limited scope, demonstrates
the need for inter thread communication in GPGPUs.

7. CONCLUSIONS
Redundant memory access are a major bane for through-
put processors. Such accesses can be attributed to two ma-
jor causes: using the memory (global or local) for inter-
thread communication, and having multiple threads access
the same memory locations.
In this paper we introduce direct inter-thread communication
to the previously proposed multithreaded coarse-grain re-
configurable array (MT-CGRA) [6, 7]. The proposed dMT-
CGRA architecture eliminates redundant memory accesses
by allowing threads to directly communicate through the CGRA
fabric. The direct inter-thread communication 1. eliminates
the use of memory as a communication medium; and 2. al-
lows thread to directly forward shared memory values rather
than invoke redundant memory loads.
The elimination of redundant memory accesses both improve
performance and reduce the energy consumption of the pro-
posed dMT-CGRA architecture compared to MT-CGRA and
NVIDIA GPGPUs. dMT-CGRA obtains average speedups
of 1.95× and 4.5× over MT-CGRA and NVIDIA GPGPUs,
respectively. At the same time, dMT-CGRA reduces energy
consumption by an average of 53% compared to MT-CGRA
and 86% compared to NVIDIA GPGPUs.

8. REFERENCES
[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,

11

T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu,
K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H.
Yoon, “In-datacenter performance analysis of a tensor processing
unit,” in Intl. Symp. on Computer Architecture (ISCA), 2017.

[2] C. Nicol, “A coarse grain reconfigurable array (cgra) for statically
scheduled data flow computing,” tech. rep., Wave Computing, 2017.

[3] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically
specialized datapaths for energy efficient computing,” in Symp. on
High-Performance Computer Architecture (HPCA), Feb 2011.

[4] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional
neural networks,” IEEE Journal of Solid-State Circuits, vol. 52,
no. 1, 2017.

[5] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright,
“Pushing the limits of accelerator efficiency while retaining
programmability,” in Symp. on High-Performance Computer
Architecture (HPCA), 2016.

[6] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy
efficient design alternative for GPGPUs,” in Intl. Symp. on Computer
Architecture (ISCA), 2014.

[7] D. Voitsechov and Y. Etsion, “Control flow coalescing on a hybrid
dataflow/von Neumann GPGPU,” in Intl. Symp. on Microarchitecture
(MICRO), 2015.

[8] V. Podlozhnyuk, “Image convolution with CUDA,” tech. rep.,
NVIDIA, Jun 2007.

[9] NVIDIA, “CUDA SDK code samples.”

[10] NVIDIA, CUDA Programming Guide v7.0, Mar 2015.

[11] Arvind and R. Nikhil, “Executing a program on the MIT
tagged-token dataflow architecture,” IEEE Trans. on Computers,
vol. 39, pp. 300–318, Mar 1990.

[12] Y. N. Patt, W. M. Hwu, and M. Shebanow, “HPS, a new
microarchitecture: rationale and introduction,” in Intl. Symp. on
Microarchitecture (MICRO), 1985.

[13] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA workloads using a detailed GPU
simulator.,” in IEEE Intl. Symp. on Perf. Analysis of Systems and
Software (ISPASS), 2009.

[14] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: enabling energy
optimizations in GPGPUs,” in Intl. Symp. on Computer Architecture
(ISCA), 2013.

[15] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Intl. Symp. on Code
Generation and Optimization (CGO), 2004.

[16] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck, “Efficiently computing static single assignment form and the
control dependence graph,” ACM Trans. on Programming Languages
and Systems, vol. 13, no. 4, pp. 451–490, 1991.

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in IEEE Intl. Symp. on Workload Characterization
(IISWC), 2009.

[18] T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring the
potential of heterogeneous von neumann/dataflow execution models,”
in Intl. Symp. on Computer Architecture (ISCA), ACM, Jun 2015.

[19] C.-H. Ho, S. J. Kim, and K. Sankaralingam, “Efficient execution of
memory access phases using dataflow specialization,” in Intl. Symp.
on Computer Architecture (ISCA), Jun 2015.

[20] T. J. Callahan and J. Wawrzynek, “Adapting software pipelining for
reconfigurable computing,” in Intl. Conf. on Compilers, Architecture,
and Synthesis for Embedded Systems, 2000.

[21] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,

S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP
with the polymorphous TRIPS architecture,” in Intl. Symp. on
Computer Architecture (ISCA), 2003.

[22] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin,
“WaveScalar,” in Intl. Symp. on Microarchitecture (MICRO), Dec
2003.

[23] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, M. Budiu,
and S. C. Goldstein, “Tartan: Evaluating spatial computation for
whole program execution,” in Intl. Conf. on Arch. Support for Prog.
Lang. & Operating Systems (ASPLOS), Oct 2006.

[24] Message Passing Interface Forum, “MPI: A message-passing
interface standard,” Jun 2015. Version 3.1.

[25] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz,
J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, “The MIT
alewife machine: Architecture and performance,” in Intl. Symp. on
Computer Architecture (ISCA), 1995.

[26] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf,
M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe,
and A. Agarwal, “The Raw microprocessor: a computational fabric
for software circuits and general-purpose programs,” IEEE Micro,
vol. 22, no. 2, 2002.

[27] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible architectural
support for fine-grain scheduling,” in Intl. Conf. on Arch. Support for
Prog. Lang. & Operating Systems (ASPLOS), 2010.

[28] Y. Wang, R. Wang, A. Herdrich, J. Tsai, and Y. Solihin, “CAF: Core
to core communication acceleration framework,” in Intl. Conf. on
Parallel Arch. and Compilation Techniques (PACT), 2016.

[29] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y. Wei, and
D. Brooks, “HELIX-RC: An architecture-compiler co-design for
automatic parallelization of irregular programs,” in Intl. Symp. on
Computer Architecture (ISCA), 2014.

[30] S. Srinath, B. Ilbeyi, M. Tan, G. Liu, Z. Zhang, and C. Batten,
“Architectural specialization for inter-iteration loop dependence
patterns,” in Intl. Symp. on Microarchitecture (MICRO), Dec 2014.

[31] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August,
“Decoupled software pipelining with the synchronization array,” in
Intl. Conf. on Parallel Arch. and Compilation Techniques (PACT),
2004.

12

	1 Introduction
	2 Inter-thread Communication in a multithreaded CGRA
	2.1 Dataflow and message passing
	2.2 Forwarding memory values between threads

	3 Execution and programming model
	3.1 Programming model extensions
	3.2 Communicating intermediate values
	3.3 Forwarding memory values

	4 The dMT-CGRA Architecture
	4.1 Elevator node
	4.2 Enhanced load/store unit (eLDST)
	4.3 Supporting large transmission distances

	5 Evaluation
	5.1 Methodology
	5.2 Simulation results

	6 Related Work
	7 Conclusions
	8 References

