
MAVBench: Micro Aerial Vehicle Benchmarking

Behzad Boroujerdian*† Hasan Genc*† Srivatsan Krishnan‡ Wenzhi Cui† Aleksandra Faust∓ Vijay Janapa Reddi† ‡ §

†The University of Texas at Austin
‡Harvard University
∓Google Brain
§Google

https://github.com/harvard-edge/MAVBench

Abstract—Unmanned Aerial Vehicles (UAVs) are getting closer
to becoming ubiquitous in everyday life. Among them, Micro
Aerial Vehicles (MAVs) have seen an outburst of attention
recently, specifically in the area with a demand for autonomy. A
key challenge standing in the way of making MAVs autonomous
is that researchers lack the comprehensive understanding of
how performance, power, and computational bottlenecks affect
MAV applications. MAVs must operate under a stringent power
budget, which severely limits their flight endurance time. As such,
there is a need for new tools, benchmarks, and methodologies
to foster the systematic development of autonomous MAVs. In
this paper, we introduce the “MAVBench” framework which
consists of a closed-loop simulator and an end-to-end application
benchmark suite. A closed-loop simulation platform is needed to
probe and understand the intra-system (application data flow)
and inter-system (system and environment) interactions in MAV
applications to pinpoint bottlenecks and identify opportunities for
hardware and software co-design and optimization. In addition
to the simulator, MAVBench provides a benchmark suite, the first
of its kind, consisting of a variety of MAV applications designed
to enable computer architects to perform characterization and
develop future aerial computing systems. Using our open source,
end-to-end experimental platform, we uncover a hidden, and
thus far unexpected compute to total system energy relationship
in MAVs. Furthermore, we explore the role of compute by
presenting three case studies targeting performance, energy and
reliability. These studies confirm that an efficient system design
can improve MAV’s battery consumption by up to 1.8X.

I. INTRODUCTION

Unmanned aerial vehicles (a.k.a drones) are becoming an
important part of our technological society. With myriad use
cases, such as in sports photography [1], surveillance [2],
disaster management, search and rescue [3], [4], transportation
and package delivery [5]–[7], and more, these unmanned aerial
vehicles are on the cusp of demonstrating their full potential.

Hence, drones are rapidly increasing in number. Between
2015, when the U.S. Federal Aviation Administration (FAA)
first required every owner to register their drone, and 2017, the
number of drones has grown by over 200%. At the time of
writing, the FAA indicates that there are over 900,000 drones
registered with the FAA drone registry database (Figure 1).
By 2021, the FAA expects this number will exceed 4 million
units [8]. Such an upward trend can be explained by the new
opportunities that unmanned aerial vehicles are enabling.

* These two authors contributed equally.

0

466933
711680

943536

N
um

be
r o

f U
ni

ts
0

200,000

400,000

600,000

800,000

1,000,000

Pre 2015 2015-2016 2016-2017 2017-Present

Fig. 1: Rapidly growing interest in UAVs. Data mined from FAA
vehicle registration. The number of FAA registrations increased by
2X over the past two years, and it is rapidly growing. The FAA
projects that by 2021 the number will exceed 4M units [9].

The growth and significance of this emerging domain of
autonomous agents call for architects attention. Challenges
such as low endurance (how long the drone can last in the
air) and small battery capacities for drones demand hardware
and system architects’ attention. The limited on-board energy
budget manifests itself in the limited endurance and range of
drones. This can be seen in various off-the-shelf commercial
drones where endurance is typically less than 20 minutes, and
flight range is about 15 miles [6]. To practically deploy drones,
both their endurance and range must be improved.

In this paper, we investigate and show the role of computing
given the endurance and range challenges. For example, we
show how a powerful compute subsystem can be deployed
to mitigate the problem of limited endurance. The drone’s
compute subsystem dictates how fast a drone can maneuver,
fly, and efficiently finish its mission. Hence, a computing
subsystem that takes a long time to do path planning while
the drone is hovering in the air, results in the inefficient
consumption of energy. Furthermore, a more powerful com-
pute subsystem can lead to more intelligent decision making
(e.g., shorter paths to take). It is important to note that
enabling intelligence on drones is challenging because of the
computational power, size, weight, and cooling limitations.

To enable research and investigation, the foremost challenge
to address is the lack of systematic benchmarks and infrastruc-
ture for research. To address this shortcoming, we introduce
MAVBench, the first of its kind, a platform for the holistic

ar
X

iv
:1

90
5.

06
38

8v
2

 [
cs

.R
O

]
 1

 J
un

 2
01

9

https://github.com/harvard-edge/MAVBench

evaluation of aerial agents, involving a closed-loop simulation
framework and a benchmark suite. MAVBench facilitates the
integrated study of performance and energy efficiency of
not only the compute subsystem in isolation but also the
compute subsystem’s dynamic and runtime interactions with
the simulated micro-aerial vehicle (MAV) as a whole.

The goals of MAVBench, which builds on top of Air-
Sim [10], are to faithfully capture all the interactions a real
MAV encounters in the field and to ensure reproducible runs
across experiments, starting from the software layers down to
the hardware layers. Our simulation setup uses a hardware-in-
the-loop configuration that can enable hardware and software
architects to perform co-design studies to optimize system per-
formance by considering the entire vertical application stack
running on top of it, which includes the Robotics Operating
System (ROS) and complete applications. It reports a variety
of quality-of-flight (QoF) metrics, such as the performance,
power consumption, and trajectory statistics of the drone.

MAVBench provides an application suite covering a va-
riety of popular applications of micro aerial vehicles. We
constructed five distinct and widely used applications: Scan-
ning, Package Delivery, Aerial Photography, 3D Mapping
and Search and Rescue. MAVBench applications are whole,
comprised of holistic end-to-end application dataflows found
in a typical real world drone application. These applications’
dataflows are comprised of several state-of-the-art computa-
tional kernels, such as object detection [11], [12], occupancy
map generation [13], motion planning [14], localization [15],
[16], which we integrated together to create complete applica-
tions. MAVBench has the ability to “plug and play” different
computational kernels to study trade-offs for the same task.

MAVBench enables us to investigate, understand and quan-
tify the power and performance demands of typical MAV
applications from the underlying compute subsystem. More
specifically, it allows us to answer a very fundamental ques-
tion: what is the role of computing in autonomous MAVs?

We quantitatively demonstrate via simulations and measure-
ments that compute has a significant impact on how efficiently
the drone uses its energy while flying, affecting mission
times and overall energy consumption. An off-the-shelf MAV,
such as the DJI Matrice [17] or 3DR Solo [18], consumes
between 300 W to 400 W for its rotors, as much power
as a typical data center server, with an average endurance
that is typically less than 20 minutes. Compute on average
consumes less than 5% of that total system power. A state-of-
the-art compute platform like the Nvidia TX2 consumes about
10 W on average. However, the compute performed onboard
by the TX2 can affect flight mission time by as much as 2X.
We conduct frequency and core scaling experiments on the
TX2 to demonstrate how the compute performance affects the
drone’s velocity, which in turns impacts its mission time, and
consequentially the drone’s total system energy consumption.

Taking advantage of our platform, we provide three case
studies targeting performance, energy and reliability. The
performance case study examines a sensor-cloud architecture
for drones where the computation is distributed across the
edge and the cloud. Such an architecture shows a reduction
in the drone’s overall mission time by as much as 50% when

the cloud support is enabled. The energy case study, targets
Octomap [13], a computationally intensive kernel that is at the
heart of some of the MAVBench applications and demonstrates
how approximations in its internal representation, and thus
compute, can enable safe flight while improving overall energy
consumption. Last by not least, our reliability case study
investigates the impact of sensor noise on the performance
of one of our applications, namely package delivery, showing
a performance degradation of up to 90% while in presence of
high depth image noise. All three case studies demonstrate
the potential ways in which MAVBench can be used for
architecture and systems research. In general, the platform
allows a variety of hardware and software (co-)design studies.

In summary, we make the following contributions:
• We present a closed-loop simulation framework that

enables hardware and software architects to perform per-
formance and power optimization studies that are relevant
to computer system design and architecture.

• We introduce an end-to-end benchmark suite, comprised
of several workloads and their corresponding state-of-the-
art kernels. These workloads represent popular real-world
use cases of MAVs.

• We uncover the role of computing and its relationship
with flight time and endurance for unmanned MAVs.

• We present case studies to concretely explore and em-
phasize compute’s impact on performance, energy and
reliability of MAV systems.

The rest of the paper is organized as follows. Section II pro-
vides basic background about Micro Aerial vehicles, the rea-
sons for their prominence amongst UAVs, and the challenges
system designers face. Section III describes the MAVBench
closed-loop simulation platform. Section IV introduces the
MAVBench benchmark suite and describes the computational
kernels and full-system stack it implements. Section V uses
MAVBench to uncover an interesting relationship between
compute and the MAV’s total system energy consumption.
Section VI presents three case studies further examining the
impact of compute stack on performance, energy and reliabil-
ity of MAV systems. Section VII discusses related work, and
Section VIII summarizes and concludes the paper.

II. BACKGROUND

We provide a brief background about unmanned aerial vehi-
cles (UAVs). In Section II-A, we discuss the most ubiquitous
and growing segment of UAVs, i.e., Micro Aerial Vehicles
(MAVs) and its different flight-wing types. In Section II-B,
we present the overall system level constraints facing MAVs.

A. Micro Aerial Vehicles (MAV)

There is no single established standard to categorize all
drones. However, typically, a UAV is classified as a “Micro
UAV” if its weight is less than 2 kg, and it operates within a
radius of 5 km. MAVs’ small size increases their accessibility
and affordability by shortening their “development and deploy-
ment time,” as well as reducing the cost of “prototyping and
manufacturing” [19]. Furthermore, their small size coupled
with their ability to move flexibly empowers them with the

Disco FPV
(Fixed Wing)

Bebop 2 Power
(Rotor Wing)En

du
ra

nc
e

(H
ou

rs
)

0

0.2

0.4

0.6

0.8

Battery Capacity (mAh)
0 5000

(a) Flight endurance time plotted
against total battery capacity.

Disco FPV
(Fixed Wing)

Camera
Drones

Racing
Drones

Si
ze

 (m
m

)

0

500

1000

Battery Capacity (mAh)
0 5000

(b) Drone size plotted against to-
tal battery capacity.

Fig. 2: MAVs based on battery capacity and size. Endurance is
important for MAVs to be useful in the real-world. However, their
small size limits the amount of on-board battery capacity.

agility and maneuverability necessary for various applications,
such as sports photography, indoor mapping, surveillance, etc.

MAVs come in different shapes and sizes. A key distinction
is their wing type. On one end of the spectrum, MAVs have
fixed wings. On the other end, MAVs have rotor wings.
Fixed wing MAVs, as their names suggest, have fixed winged
airframe. Their wing structure is deployed for taking-off,
navigation, and landing. These MAVs typically require (small)
runways for taking-off and landing. Due to the aerodynamics
of their wings, they are capable of gliding in the air, which
improves their “endurance” (i.e., how long they last in the air).

Rotor wing MAVs are becoming the dominant kind. They
take off vertically, land vertically, and move with more agility
compared to their fixed-wing counterparts. They do not require
constant forward airflow movement over their wings from
external sources since they generate their own thrust using
rotors. Such capabilities enhance their benefits in constrained
environments, especially indoors, such as in buildings and
warehouses where there are many tight spaces and corners.

Although MAVs enjoy the aforementioned advantages, their
complex mechanical (rotors/payload etc) and electrical sub-
system (battery, processors) limit their endurance, and as such
present unique challenges for system architects and engineers.

B. MAV Constraints

MAVs are tightly constrained on their resources. These
constraints typically have to do with the limitations in the
mechanical subsystems (rotors/payload size etc.) and the elec-
trical subsystem (battery/processor etc.). For example, in pack-
age delivery, the payload size (i.e., the package) affects the
mechanical subsystem, requiring more thrust from the rotors
and this, in turn, affects the electrical subsystem by demanding
more energy from the battery source. Comprehending these
constraints is crucial to understand how to optimize the system.
The biggest of the constraints as they relate to computer
system design are performance and energy.

Performance Constraints: MAVs are required to meet
various real-time constraints. For example, a drone flying at a
high speed looking for an object requires fast detection kernels.
Such a task is challenging in nature for large-sized drones that
are capable of carrying high-end computing systems, and they
are virtually impossible on smaller sized MAVs. Hence, the

Environment

Companion Computer

 Flight Controller

Sensors Actuators

Fig. 3: Closed-loop data flow in a MAV. Information flows from
sensors collecting environment data into the MAV’s compute system,
down into the actuators and back to the environment.

stringent real-time requirements dictate the type of compute
engines that can be put on these MAVs.

Energy Constraints: The amount of battery capacity on
board plays an important role in the type of applications MAVs
can perform. Battery capacity has a direct correlation with the
endurance of these vehicles. To understand this relationship,
we show the most popular MAVs available in the market and
compare their battery capacity to their endurance. As Figure 2a
shows, higher battery capacity translates to higher endurance.
We see a step function trend, i.e., for classes of MAVs that has
similar battery capacity, they have similar endurance. On top of
this observation, we also see that for the same battery capacity,
a fixed wing has longer endurance compared to rotor based
MAVs. For instance, in Figure 2a, we see that the Disco FPV
(Fixed wing) has higher endurance compared to the Bebop 2
Power (Rotor wing) even though they have a similar amount
of battery capacity. Note that the size of MAV also has a
correlation with battery capacity as shown in Figure 2b.

III. CLOSED-LOOP SIMULATION

We discuss a closed-loop simulation environment for simu-
lating and studying MAVs. In Section III-A, we describe the
components of a MAV, how they interact and why the intra-
and inter-system interactions are important to capture. In Sec-
tion III-B, we show how our setup captures these components
and their interactions in a closed-loop setup. In Section III-C,
we describe how the simulator models energy consumption,
in addition to the functional and performance data described
in the earlier section. In Section III-D, we describe the knobs
that our simulator supports to enable exploratory studies, and
in Section III-E, we describe the limitations of our current
setup and opportunities for future enhancements.

A. MAV System Components Dissected

Closed-loop operation is an integral component of au-
tonomous MAVs. In such systems, the data flows in a (closed)
loop, starting from the environment, going through the MAV
and back to the environment as shown in Figure 3. The process
involves sensing the environment (Sensors), interpreting it and
making decisions (Compute), and finally navigating within or
modifying the environment (Actuators) in a loop.

Sensors: Sensors are responsible for capturing the state
associated with the agent and its surrounding environment.
To enable intelligent flights, MAVs must be equipped with a
rich set of sensors capable of gathering various forms of data
such as depth, position, and orientation. For example, RGB-D
cameras can be utilized for determining obstacle distances and

Companion Computer
ROS

Autopilot Hardware

Flight Stack

Unreal Engine

Airsim

Sensory Data
(RGBD, GPS) Flight Control Sensory Data

(IMU)

Flight
Commands

Workload

Fig. 4: Architectural overview of our closed-loop simulation.

positions. The number and the type of sensors are highly
dependent on the workload requirements and the compute
capability of on board processors for their interpretations.

Flight Controller (Compute): The flight controller (FC)
is an autopilot system responsible for the MAV’s stabilization
and conversion of high-level to low-level actuation commands.
While they themselves come with basic sensors, such as
gyroscopes and accelerometers, they are also used as a hub for
incoming data from other sensors such as GPS, sonar, etc. For
command conversions, FCs take high-level flight commands
such as“take-off” and lower them to a series of instructions
understandable by actuators such as rotors. FCs use light-
weight processors such as the ARM Cortex-M3 32-bit RISC
core for the aforementioned tasks.

Companion Computer (Compute): The companion com-
puter is a powerful compute unit (compared to the FC) that
is responsible for the processing of the high level, com-
putationally intensive tasks such as vision processing. Not
all MAVs come equipped with companion computers, rather
these are typically an add-on option for more processing.
NVIDIA’s TX2 is a representative example with significantly
more compute capability than an FC.

Actuators: Actuators allow agents to react to their sur-
roundings and further modify them. They range anywhere
from rather simple rotors to robotic arms capable of grasping
and lifting objects. Similar to sensors, their type and number
is a function of the workload and processing power on board.

B. Simulation Setup
We present how our setup, shown in Figure 4, maps to the

various components corresponding to a MAV’s operation.
Environments, Sensors and Actuators: Environments,

sensors and actuators are simulated with the help of a game
engine called Unreal [20]. With a physics engine at its heart, it
“provides the ability to perform accurate collision detection as
well as simulate physical interactions between objects within
the world” [21]. Unreal provides a rich set of environments
such as mountains, jungles, urban setups, etc. to simulate.

To capture a MAV’s dynamics and kinematics through its
actuators’ behavior and its sensory modules, we used AirSim,
an open-source Unreal based plug-in from Microsoft [22].
We limit our sensors and actuators to the ones realistically
deployable by MAVs, such as RGB-D cameras and IMUs.
Unreal and Airsim run on a powerful computer (host) capable

of physical simulation and rendering. Our setup uses an Intel
Core i7 CPU and a high-end NVIDIA GTX 1080 Ti GPU.

Flight Controller: AirSim supports various flight con-
trollers that can be either hardware-in-the-loop or completely
software-simulated. For our experiments, we chose the de-
fault software-simulated flight controller provided by Air-
Sim. However, AirSim also supports other FCs, such as the
Pixhawk [23], shown in black in Figure 4 which runs the
PX4 [24] software stack. AirSim supports any FC which can
communicate using MAVLINK, a widely used micro aerial
vehicle message marshaling library [25].

Companion Computer: We used an NVIDIA Jetson
TX2 [26], a high-end embedded platform from Nvidia with
256 Pacal CUDA cores GPU and a Quad ARM CPU; however,
the flexibility of our setup allows for swapping this embedded
board with others such as x86 based Intel Joule [27]. TX2
communicates with Airsim and also FC via Ethernet.

ROS: Our setup uses the popular Robot Operating System
(ROS) for various purposes such as low-level device control
and inter-process communication [28]. Robotic applications
typically consist of many concurrently-running processes that
are known as “nodes.” For example one node might be
responsible for navigation, another for localizing the agent
and a third for object detection. ROS provides peer-to-peer
communication between nodes, either through blocking “ser-
vice” calls, or through non-blocking FIFOs (known as the
Publisher/Subscriber paradigm).

Workloads: Our workloads runs within the ROS runtime
on TX2. They are extensively discussed in Section IV-B.

Putting It All Together: To understand the flow of data, we
walk the reader through a simple workload where the MAV
is tasked to detect an object and fly toward it. The object
(e.g. a person) and its environment (e.g. urban) are modeled
in the Unreal Engine. As can be seen in Figure 4, the MAV’s
sensors (e.g. accelerometer and RGB-D Camera), modeled in
Airsim, feed their data to the flight controller (e.g. physics data
to PX4) and the companion computer (e.g. visual and depth
to TX2) using MAVLink protocol. The kernel (e.g. object
detection), running within the ROS runtime environment on
the companion computer, is continuously invoked until the
object is detected. Once so, flight commands (e.g. move
forward) are sent back to flight controller, where they get
converted to a low level rotor instruction stream flying the
MAV closer to the person.

C. Energy Simulation and Battery Model

We extended the AirSim simulation environment with an
energy and a battery model. Our energy model is a function
of the velocity and acceleration of the MAV [29]. The higher
the velocity or acceleration, the higher the amount of energy
consumption. Velocity and acceleration values are sampled
continuously, their associated power calculated and integrated
for capturing the total energy consumed by the agent.

We used a parametric power estimation model proposed in

[30]. The formula for estimating power P is described below:

P =

β1β2
β3

T  ‖~vxy‖
‖~axy‖

‖~vxy‖ ‖~axy‖

+

β4β5
β6

T  ‖~vz‖
‖~az‖

‖~vz‖ ‖~az‖


+

β7β8
β9

T  m
~vxy · ~wxy

1


(1)

In the Equation 1, β1, ..., β9 are constant coefficients
determined based on the simulated drone. ~vxy and ~axy are
the horizontal speed and acceleration vectors whereas ~vz and
~az are the corresponding vertical values. m is the mass and
~wxy is the vector of wind movement.

We have a battery model that implements a coulomb counter
approach [31]. The simulator calculates how many coulombs
(product of current and time) have passed through the drone’s
battery over every cycle. This is done by calculating the power
and the voltage associated with the battery. The real-time
voltage is modeled as a function of the percentage of the
remaining coulomb in the battery as described in [32].

D. Simulation Knobs and Extensions
With the help of Unreal and AirSim, our setup exposes a

wide set of knobs. Such knobs enable the study of agents with
different characteristics targeted for a range of workloads and
conditions. For different environments, the Unreal market pro-
vides a set of maps free or ready for purchase. Furthermore, by
using Unreal programming, we introduce new environmental
knobs, such as (static) obstacle density, (dynamic) obstacle
speed, and so on. In addition, Unreal and AirSim allow for
the MAV and its sensors to be customized. For example, the
cameras’ resolution, their type, number and positions all can
be tuned according to the workloads’ need.

Our simulation environment can be extended. For the com-
pute on the edge, the TX2 can be replaced with other embed-
ded systems or even micro-architectural simulators, such as
gem5. Sensors and actuators can also be extended, and various
noise models can be introduced allowing for reliability studies.

E. Simulation Fidelity and Limitations
The fidelity of our end-to-end simulation platform is subject

to different sources of error, as it is with any simulation setup.
The major obstacle is the reality gap—i.e., the difference
between the simulated experience and the real world. This has
always posed a challenge for robotic systems. The discrepancy
results in difficulties where the system developed via simula-
tion does not function identically in the real world.

To address the reality gap, we iterate upon our simula-
tion components and discuss their fidelity and limitations.
Specifically, this involves (1) simulating the environment, (2)
modeling the drone’s sensors and flight mechanics, and last
but not least (3) evaluating the compute subsystem itself.

First, the Unreal engine provides a high fidelity environ-
ment. By providing a rich toolset for lighting, shading, and
rendering, photo-realistic virtual worlds can be created. In
prior work [33], authors examine photorealism by running a
Faster-RCNN model trained on PASCAL in an Unreal gen-
erated map. The authors show that object detection precision

can vary between 1 and 0.1 depending on the elevation and
the angle of the camera. Also, since Unreal is open-sourced,
we pro grammatically emulate a range of real-world scenarios.
For example, we can set the number of static obstacles and
vary the speed of the dynamic ones to fit the use case.

Second, AirSim provides high fidelity models for the MAV,
its sensors and actuators. Embedding these models into the
environment in a real-time fashion, it deploys a physics engine
running with 1000 Hz. As the authors discuss in [10], the high
precision associated with the sensors, actuators and their MAV
model, allows them to simulate a Flamewheel quadrotor frame
equipped with a Pixhawk v2 with little error.

Flying a square-shaped trajectory with sides of length 5 m
and a circle with a radius of 10 m, AirSim achieves 0.65 m
and 1.47 m error, respectively. Although they achieve high
precision, the sensor models, such as the “camera lens mod-
els,” “degradation of GPS signal due to obstacles,” “oddities
in camera,” etc. can benefit from further improvements.

Third, as for the compute subsystem itself, our hardware has
high fidelity since we use off-the-shelf embedded platforms
for both the companion computer and the flight controller. As
for the software, it is crucial to note ROS is widely used and
adopted as the de facto OS in the robotics research community.

IV. BENCHMARK SUITE

To quantify the power and performance demands of typical
MAV applications, we created a set of workloads that we
compiled into a benchmark suite. Our benchmarks run on top
of our closed-loop simulation environment. The suite aims
to cover a wide range of representative applications. Each
workload is an end-to-end application that allows us to study
the kernels’ impact on the whole application as well as to
investigate the interactions and dependencies between kernel.

By providing holistic end-to-end applications instead of
only focusing on individual kernels, MAVBench allows for
the examination of kernels’ impacts and their optimization at
the application level. This is a lesson learned from Amdahl’s
law, which recognizes that the true impact of a component’s
improvement needs to be evaluated globally rather than locally.

In Section IV-A, we present a high level software pipeline
associated (though not exclusive) to our workloads. In Sec-
tion IV-B, we present functional summaries of the workloads
in MAVBench, their use cases, and mappings from each
workload to the high level software pipeline. In Section IV-C,
we describe in details of the prominent computational kernels
that are incorporated into our workloads, and finally in Sec-
tion IV-D we provide a short discussion regarding the Quality-
of-Flight (QoF) metrics to evaluate MAV applications.

The MAVBench workloads have different computational
kernels, as shown in Table I. MAVBench aims at being com-
prehensive by (1) selecting applications that target different
robotic domains (robotics in hazardous areas, construction,
etc.) and (2) choosing kernels (e.g. point cloud, RRT) common
across a range of applications, not limited to our benchmark-
suite. The computational kernels (OctoMaps, RTT, etc.) that
we use in the benchmarks are the building blocks of many
robotics applications and hence they are platform agnostic.

Trajectory

IMU
Data

RRT

Perception

SLAM

Octomap
Generation

Point
Cloud

Generation

Planning Control

Trajectory
Smoothening

Flight Stack
(PX4)

Camera
Data Occupancy

Map

Sensors ActuatorsCompute

Path
Tracking

Rotors
Velocity

Fig. 5: High-level application pipeline for a typical MAV application. The upper row presents a universal pipeline that all our MAVBench
applications follow, which involves perception, planning and control. The lower row presents how a specific workload in MAVBench (e.g.
package delivery) maps to the universal high-level application pipeline.

(a) Scanning. (b) Aerial Photography. (c) Package Delivery. (d) 3D Mapping. (e) Search and Rescue.

Fig. 6: MAVBench workloads. Each workload is an end-to-end application targeting both industry and research use cases. All figures are
screenshots of a MAV executing a workload within its simulated environment. Fig. 6c shows a MAV planning a trajectory to deliver a
package. Fig. 6d shows a MAV sampling its environment in search of unexplored areas to map.

A. Application Dataflow

There are three fundamental processing stages in each ap-
plication: Perception, Planning and Control. In the perception
stage, the sensory data is processed to extract relevant states
from the environment and the drone. This information is fed
into the next two stages (i.e., planning and control). Planning
“plans” flight motions and forwards them to the actuators in
the control subsystem. Figure 5 summarizes this high-level
software pipeline, which each of our workloads embody.

Perception: It is defined as “the task-oriented interpretation
of sensor data” [34]. Inputs to this stage, such as sensory
data from cameras or depth sensors, are fused to develop
an elaborate model in order to extract the MAV’s and its
environment’s relevant states (e.g. the positions of obstacles
around the MAV). This stage may include tasks such as
Simultaneous Localization and Mapping (SLAM) that enables
the MAV to infer its position in the absence of GPS data.

Planning: Planning generally involves generating a
collision-free path to a target using the output of the perception
(e.g. a occupancy map of obstacles in the environment). In
short, this step involves first generating a set of possible paths
to the target, such as by using the probabilistic roadmap (PRM)
algorithm, and then choosing an optimal one among them
using a path-planning algorithm, such as A*.

Control: This stage is about following a desired path, which
is absorbed from the previous stage, while providing a set of
guarantees such as feasibility, stability and robustness [35]. In
this stage, the MAV’s kinematics and dynamics are considered,
such as by smoothening paths to avoid high-acceleration turns,
and then, finally, the flight commands are generated (e.g.

by flight controllers such as the PX4) while ensuring the
aforementioned guarantees are still respected.

B. Benchmarks

The MAVBench benchmark suite consists of five workloads,
each equipped with the flexibility to configure its computa-
tional kernel composition (described later in Section IV-C).
The following section sheds light on their functional sum-
mary. In addition, the inner workings of these workloads are
explained in terms of the three-stage high-level application
pipeline. Figure 6 presents screenshots of these different
workloads. The application dataflows are shown in Figure 7.

Scanning: In this simple though popular use case, a MAV
scans an area specified by its width and length while collecting
sensory information about conditions on the ground. It is a
common agricultural use case. For example, a MAV may fly
above a farm to monitor the health of the crops below. To do
so, the MAV first uses GPS sensors to determine its location
(Perception). Then, it plans an energy efficient “lawnmower
path” over the desired coverage area, starting from its initial
position (Planning). Finally, it closely follows the planned path
(Control). While in-flight, the MAV can collect data on ground
conditions using on-board sensors, such as cameras or LIDAR.

Aerial Photography: Drone aerial photography is an in-
creasingly popular use of MAVs for entertainment, as well as
businesses. In this workload, we design the MAV to follow
a moving target with the help of computer vision algorithms.
The MAV uses a combination of object detection and track-
ing algorithms to identify its relative distance from a target
(Perception). Using a PID controller, it then plans motions to

AirSim Interface

Planning

Control
Publish IMU

Mission Planner:Scanning
IMU

Publish GPS
Position

Motion Planner:Lawn Mower

Trajectory

Path Tracking/Command IssueMultiDoftraj

(a) Scanning.

AirSim Interface

Perception

Planning

Control
Publish Images

Object Detection
Image Raw

Track BufferedImage Raw

Track Real Time

Image Raw

 Point Cloud

Mission Control:
Aerial Photography

Bounding Box

 Bounding Box

Bounding Box

PID Bounding Box Path Tracking/Command IssueMultoDoftraj

(b) Aerial Photography.

AirSim Interface Perception

Planning

Control
Publish Images

Point Cloud Generation

Image Depth

SLAMImage Raw
Publish IMU Publish IMU

Publish GPS
OctoMap GenerationPosition

Collision Check

Position

Point Cloud

OctoMap

Motion Planner:Shortest Path + Smoothening

OctoMap

Path Tracking/Command Issue

Collision DetectedPose

Pose

MultiDoftraj
Mission Planner:Package Delivery

Trajectory

MultiDoftraj

(c) Package Delivery.

AirSim Interface Perception

Planning

ControlPublish Images

Point Cloud Generation

Image Depth

SLAMImage Raw
Publish IMU Publish IMU

Publish GPS
OctoMap GenerationPosition

Collision Check

Position

 Point Cloud

 OctoMap

Motion Planner:Frontier Exploration

 OctoMap

Path Tracking/Command Issue

Collision DetectedPose

Pose

MultiDoftraj
Mission Planner:Mapping

Trajectory

MultiDoftraj

(d) 3D Mapping.

AirSim Interface

Perception

Planning Control

Publish Images

Point Cloud Generation

Image Depth

SLAM
Image Raw

Object DetectionImage Raw

Publish IMU

Publish IMU

Publish GPS
OctoMap Generation

Position

Collision Check

Position

Point Cloud

OctoMap

Motion Planner:Frontier Exploration

OctoMap

Pose

Pose

Mission Planner:SAR

Object Detected

MultiDoftraj

Trajectory

Path Tracking/Command IssueMultiDoftraj

(e) Search and Rescue.

Fig. 7: Application dataflows. Nodes are denoted with a circle
and communication between the nodes is captured with an arrow.
If the communication paradigm between the nodes is of a sub-
scriber/publisher kind, the arrows are filled and black, whereas in the
case of the client/server paradigm, they are dotted and red. Nodes with
a subscriber/publisher communication paradigm or without any at all
run in parallel. Dotted lines denote various localization techniques.

keep the target near the center of the MAV’s camera frame
(Planning), before executing the planned motions (Control).

Package Delivery: In this workload, a MAV navigates
through an obstacle-filled environment to reach some arbitrary
destination, deliver a package and come back to its origin.

Using a variety of sensors such as RGBD cameras or GPS, the
MAV creates an occupancy map of its surroundings (Percep-
tion). Given this map and its desired destination coordinate, it
plans an efficient collision-free path. To accommodate for the
feasibility of maneuvering, the path is further smoothened to
avoid high-acceleration movements (Planning), before finally
being followed by the MAV (Control). While flying, the MAV
continuously updates its internal map of its surroundings to
check for new obstacles, and re-plans its path if any such
obstacles obstruct its planned trajectory.

3D Mapping: With use cases in mining, architecture, and
other industries, this workload instructs a MAV to build a
3D map of an unknown polygonal environment specified
by its boundaries. To do so, as in package delivery, the
MAV builds and continuously updates an internal map of
the environment with both “known” and “unknown” regions
(Perception). Then, to maximize the highest area coverage
in the shortest time, the map is sampled and a heuristic is
used to select an energy efficient (i.e. short) path with a high
exploratory promise (i.e. with many unknown areas along the
edges) (Planning). Finally, the MAV closely follows this path
(Control), until the entire area has been mapped.

Search and Rescue: MAVs are promising vehicles for
search-and-rescue scenarios where victims must be found in
the aftermath of a natural disaster. For example, in a collapsed
building due to an earthquake, they can accelerate the search
since they are capable of navigating difficult paths by flying
over and around obstacles. In this workload, a MAV is required
to explore an unknown area while looking for a target such as
a human. For this workload, the 3D Mapping application is
augmented with an object detection machine-learning-based
algorithm in the perception stage to constantly explore and
monitor its environment, until a human target is detected.

C. Benchmark Kernels

The MAVBench workloads incorporate numerous compu-
tational kernels that can be grouped under the three pipeline
stages described earlier in Section IV-A. Table I shows the
kernel make up of MAVBench’s workloads and their corre-
sponding time profile (measured at 2.2 GHz, 4 cores enabled
mode of Jetson TX2). MAVBench is equipped with multiple
implementations of each computational kernel. For example,
MAVBench comes equipped with both YOLO and HOG detec-
tors that can be used interchangeably in workloads with object
detection. The user can determine which implementations to
use by setting the appropriate parameters. Furthermore, our
workloads are designed with a “plug-and-play” architecture
that maximizes flexibility and modularity, so the computational
kernels described below can easily be replaced with newer
implementations designed by researchers in the future.

Perception Kernels: These are the computational kernels
that allow a MAV application to interpret its surroundings.

Object Detection: Detecting objects is an important ker-
nel in numerous intelligent robotics applications. So, it is
part of two MAVBench workloads: Aerial Photography and
Search and Rescue. MAVBench comes pre-packaged with
the YOLO [11] object detector, and the standard OpenCV
implementations of the HOG [12] and Haar people detectors.

Perception Planning Control

Point Cloud
Generation

Occupancy Map
Generation

Collision
Check

Object
Detection

Object
Tracking

Localization
PID

Smoothened
Shortest Path

Frontier
Exploration

Smoothened
Lawn Mowing

Path Tracking/
Command Issue

Buffered Real Time GPS SLAM
Scanning 89 1

Aerial
Photography

307 80 18 0 0 1

Package
Delivery

2 630 1 0 55 182 1

3D
Mapping

2 482 1 0 46 2647 1

Search and
Rescue

2 427 1 271 0 45 2693 1

TABLE I: MAVBench applications and their kernel make up time profile in ms. The application suite, as a whole, exercises a variety of
different computational kernels across the perception, planning and control stages, depending on their use case. Furthermore, within each of
the kernel computational domain, applications have the flexibility to choose between different kernel implementations.

Tracking: It attempts to follow an instance of an object as
it moves across a scene. This kernel is used in the Aerial
Photography workload. MAVBench comes pre-packaged with
a C++ implementation [36] of a KCF [37] tracker.

Localization: MAVs require a method of determining their
position. There are many ways that have been devised to
enable localization, using a variety of different sensors, hard-
ware, and algorithmic techniques. MAVBench comes pre-
packaged with multiple localization solutions that can be used
interchangeably for benchmark applications. Examples include
a simulated GPS, visual odometry algorithms such as ORB-
SLAM2 [15], and VINS-Mono [16] and these are accompanied
with ground-truth data that can be used when a MAVBench
user wants to test an application with perfect localization data.

Occupancy Map Generation: Several MAVBench work-
loads, like many other robotics applications, model their
environments using internal 3D occupancy maps that divide
a drone’s surroundings into occupied and unoccupied space.
Noisy sensors are accounted for by assigning probabilistic val-
ues to each unit of space. In MAVBench we use OctoMap [13]
as our occupancy map generator since it provides updatable,
flexible and compact 3D maps.

Planning Kernels Our workloads comprise several motion-
planning techniques, from simple “lawnmower” path planning
to more sophisticated sampling-based path-planners, such as
RRT [38] or PRM [39] paired with the A* [40] algorithm.
We divide MAVBench’s path-planning kernels into three cat-
egories: shortest-path planners, frontier-exploration planners,
and lawnmower path planners. The planned paths are further
smoothened using the path smoothening kernel.

Shortest Path: Shortest-path planners attempt to find
collision-free flight trajectories that minimize the MAV’s
traveling distance. MAVBench comes pre-packaged with
OMPL [14], the Open Motion Planning Library, consisting
of many state-of-the-art sampling-based motion planning al-
gorithms. These algorithms provide collision-free paths from
an arbitrary start location to an arbitrary destination.

Frontier Exploration: Some applications in MAVBench in-
corporate collision-free motion-planners that aim to efficiently
“explore” all accessible regions in an environment, rather
than simply moving from a single start location to a single
destination as quickly as possible. For these applications,
MAVBench comes equipped with the official implementation

of the exploration-based “next best view planner” [41].
Lawnmower: Some applications do not require complex,

collision-checking path planners. For example, agricultural
MAVs are frequently tasked with flying over farms in a simple,
lawnmower pattern, where the high-altitude of the MAV means
that obstacles can be assumed to be nonexistent. For such
applications, MAVBench comes with a simple path-planner
that computes a regular pattern for covering rectangular areas.

Path Smoothening: The motion planners discussed earlier
return piecewise trajectories that are composed of straight
lines with sharp turns. However, sharp turns require high
accelerations from a MAV, consuming high amounts of energy
(i.e., battery capacity). Thus, we use this kernel to convert
these piecewise paths to smooth, polynomial trajectories that
are more efficient for a MAV to follow.

Control Kernels The control stage of the pipeline enables
the MAV to closely follow its planned motion trajectories in
an energy-efficient, stable manner.

Path Tracking: MAVBench applications produce trajectories
that have specific positions, velocities, and accelerations for
the MAV to occupy at any particular point in time. However,
due to mechanical constraints, the MAV may drift from its
location as it follows a trajectory, due to small but accumulated
errors. So, MAVBench includes a computational kernel that
guides MAVs to follow trajectories while repeatedly checking
and correcting the error in the MAV’s position.

D. Quality-of-Flight (QoF) Metrics
Various figures of merits can be used to measure a drone’s

mission quality. While some of these metrics are universally
applicable across applications, others are specific to the appli-
cation under inquiry. On the one hand, for example, a mission’s
overall time and energy consumption are almost universally
of concern. On the other hand, the discrepancy between a
collected and ground truth map or the distance between the
target’s image and the frame center are specialized metrics for
3D mapping and aerial photography respectively. MAVBench
platform collects statistics of both sorts; however, this paper
mainly focuses on time and energy due to their universality.

V. THE ROLE OF COMPUTE IN MAVS

In this section, we discuss how compute affects MAV
systems. At the high level, compute plays a crucial role both in

M
ax

 V
el

oc
ity

 (m
/s

)

2

4

6

8

Process Time (sec)
0 2 4

(a) Theoretical max velocity.
M

ax
 V

el
oc

ity
 (m

/s
)

1
2
3
4
5

En
er

gy
 (k

J)

20

40

60

80

SLAM FPS
0 5

(b) Measured max velocity.

Fig. 8: (a) Theoretical relationship between processing time and max-
imum velocity. (b) Relationship between SLAM throughput (FPS)
and maximum velocity and energy of UAVs.

the overall mission time and total energy consumption of such
systems. First, we discuss each effect by providing relevant
theoretical background and supplement the discussion with a
microbenchmark. Then, we analyze MAVBench as a set of
representative applications in which such effects can manifest.

A. Compute and Flight Time Relationship

Compute can play an important role in reducing the drone’s
mission time by increasing the mission’s average velocity.
Concretely, we identify that the reduction in hover time and
the increase in maximum allowed velocity are the two major
ways with which more compute can contribute to a higher
average velocity. Here, we shed light on these different ways.

Hover Time Reduction: Hover time and the average ve-
locity have an inverse relationship, namely, the more drone
spends time on hovering, the lower its average velocity. Similar
to an idling CPU, a hovering drone is unfavorable since it is
not working toward its mission, but yet wasting its limited
energy. A hovering drone typically is waiting for its mission
planning stage to make a decision (e.g. deciding on a path to
follow). More compute power can help reduce hovering (e.g
by reducing the decision making time), hence decreasing the
negative effect hovering has on the average velocity.

Max Velocity Increase, Collision Avoidance Effect: The
maximum velocity of the drone is not only mechanically
bounded, but also compute bounded. For a given flight ve-
locity, a collision-free flight is only possible if the drone can
process its surrounding fast enough to react to it. Therefore,
a higher velocity requires a faster processing capability.
The collision avoidance task can be rather compute intensive
exercising various stages of the pipeline starting from the
pixel processing in the perception stage and ending with the
command issue in control. In order to guarantee collision
avoidance, a drone’s maximum velocity is determined based on
the aforementioned pixel to response time. Equation 2 specifies
the components involved in setting this velocity where δt, d,
amax and v denote process time, required stopping distance,
maximum acceleration limit of the drone and maximum veloc-
ity [42]. As Figure 8a shows, our simulated drone, in theory, is
bounded by the max velocity anywhere between 8.83 to 1.57

13
2

286.83

Compute Platform Quad Rotors

W

W
W

(a) Measured power breakdown.

Arming Motor
Hovering

Flying
Landing

Po
w

er
 (W

) @
 5

 m
/s

0

200

400

600

800

Po
w

er
 (W

) @
 1

0m
/s

0

200

400

600

Time Step
0 2000 4000 6000

(b) Measured mission power.

Fig. 9: (a) Measured power consumption of a flying 3DR Solo. (b)
Total measured power consumption while the drone is ”Flying” at two
different steady-state velocities. The power consumption is severely
dominated by the quad rotors by 20X.

m/s given a pixel to response time of the range 0 to 4 seconds.

vmax = amax(

√
δt2 + 2

d

amax
− δt) (2)

Max Velocity Increase, Localization Failure Effect: The
faster the speed of the drone, the higher the likelihood of its
localization failure because the environment changes rapidly
around a fast drone. Kernels such as SLAM which help
localize the drone by tracking a set of points/features through
successive camera frames struggle to keep up with the rate
of these changes. It is important to note that localization
failures can have catastrophic effects such as permanent loss
or spending of extra time (for example by backtracking) for
re-localization.

Minimizing or avoiding localization related failure scenarios
is highly favorable, if not necessary. To examine the relation-
ship between the compute, maximum velocity and localization
failure, we devised a micro-benchmark in which the drone was
tasked to follow a predetermined circular path of the radius
25 meters. For the localization kernel, we used ORB-SLAM2
and to emulate different compute powers, we inserted a sleep
in the kernel. We swept different velocities and sleep times and
bounded the failure rate to 20%. As Figure 8b shows, higher
FPS values, i.e. more compute, allows for a higher maximum
velocity for a bounded failure rate.

B. Compute and Energy Relationship
The compute subsystem can also have a significant role

in reducing total MAV energy consumption. To understand
this, first we present the power distribution associated with
3DR Solo [18], a popular off-the-shelf MAV. To measure
power, we attach a wattmeter known as Eagle Tree Systems
eLogger V4 [43] to the 3DR Solo’s battery during flight. The
wattmeter allows us to collect data over time at 50 Hz while
the drone flies. We command the drone to fly for fifty seconds
and pull the data off of the wattmeter after the drone lands.

As Figure 9 shows, the majority of the power consumption
is dedicated to rotors (locomotion) and the compute only
occupies a small portion of the entire pie and its role seemingly
trivial. Although small in quantity, compute can have a grand

effect on the system’s power. This is because by reducing
the mission time (as explained in the previous section), more
compute power can, in fact, reduce the bigger portion of
the pie, namely rotors energy consumption (due to a shorter
flight). Note that although more compute can lead to more
energy consumption of the compute subsystem, the reduction
in rotor’s energy can easily outweigh such an increase.

We profiled the mission time and the energy associated
with the aforementioned microbenchmark. As the bottom plot
in Figure 8b shows, higher compute capability results in
increased SLAM FPS and hence a reduction in mission time
by allowing for faster velocity. The reduced mission results
in reduced total system energy, as the top plot in Figure 8b
shows. By increasing processing speed by 5X, we were able
to reduce the drone’s energy consumption by close to 4X.

C. MAVBench Workloads Compute vs. Flight Time vs. Energy

We use our benchmark suite as a representative set of appli-
cations to examine the effect of compute on MAV systems. To
analyze this effect, we conducted sensitivity analysis to core
and frequency scaling of the TX2 board. TX2 has two sets of
cores, namely a HMP Dual Denver cores and a Quad ARM
A57. We turned off the Denver cores so that the indeterminism
caused by process to core mapping variations across runs
would not affect our results. Average velocity, mission, and
energy values of various operating points are profiled and
presented as heat maps (Figure 10—Figure 14) for a DJI
Matrice 100 drone. In general, compute can improve mission
time and lower energy consumption by as much as 5X.

Scanning: We observe trivial differences for velocity, en-
durance and energy across all three operating points (Fig-
ure 10a, Figure 10b, and Figure 10c). This is despite seeing
a 3X boost in the motion planning kernel, i.e. lawn mower
planning, which is its bottleneck (Figure 15). The trivial effect
of compute on this application is because planning is done
once at the beginning of the mission and its overhead is
amortized over the rest of the mission time. For example the
overhead of planning for a 5 minute flight is less than .001%.

Package Delivery: As compute scales with the number of
cores and/or frequency values, we observe a reduction of up to
84% and 82% for the mission time and energy consumption,
respectively (Figure 11b, and Figure 11c). The sequential
bottlenecks i.e. motion planning and OctoMap generation
kernel are sped up by frequency scaling to enable the observed
improvements. There does not seem to be a clear trend with
core scaling, concretely between 3 and 4 cores. We conducted
investigation and determine that such anomalies are caused
by the non-real-time aspects of ROS, AirSim and the TCP/IP
protocol used for the communication between the companion
computer and the host. We achieve up to 2.9X improvement
in OctoMap generation and that leads to maximum velocity
improvement. It is important to note that although we also gain
up to 9.2X improvements for the motion planning kernel, the
low number of re-plannings and its short computation time
relative to the entire mission time render its impact trivial.
Overall the aforementioned improvements translate to up to
4.8X improvement in the average velocity. Therefore, mission
time and the MAV’s total energy consumption are reduced.

0.8 1.5 2.2

4

3

2

7.5 7.5 7.5

7.5 7.5 7.5

7.5 7.5 7.5

Frequency (GHz)

of

 C
or

es

(a) Velocity (m/s)

0.8 1.5 2.2

4

3

2

90.2 90.1 90.1

90.3 90.1 90.1

90.3 90.1 90.1

Frequency (GHz)

of

 C
or

es

(b) Mission Time (s)

0.8 1.5 2.2

4

3

2

34.9 34.9 35.1

35 34.8 35.1

34.9 35.1 35

Frequency (GHz)

of

 C
or

es

(c) Energy (kJ)

Fig. 10: Scanning.

0.8 1.5 2.2

4

3

2

1.8 2.2 2.8

1.8 2.5 3

0.8 2 2.8

Frequency (GHz)

of

 C
or

es

(a) Velocity (m/s)

0.8 1.5 2.2

4

3

2

301.8 256.1 198.6

377.8 223.4 170.5

1053.3 257.5 178.8

Frequency (GHz)

of

 C
or

es

(b) Mission Time (s)

0.8 1.5 2.2

4

3

2

150.7 131.2 104.8

190.2 119.3 89.2

497.6 130.5 104.8

Frequency (GHz)

of

 C
or

es

(c) Energy (kJ)

Fig. 11: Package Delivery.

0.8 1.5 2.2

4

3

2

0.62 1.15 1.11

0.56 1.04 1.12

0.21 0.82 0.94

Frequency (GHz)

of

 C
or

es

(a) Velocity (m/s)

0.8 1.5 2.2

4

3

2

1256.6 607.7 608.6

1356.3 661.3 545.1

4009 1081.3 911.3

Frequency (GHz)

of

 C
or

es

(b) Mission Time (s)

0.8 1.5 2.2

4

3

2

649.6 424.9 421.8

743.4 444.2 383.5

2213.5 663.3 586.2

Frequency (GHz)

of

 C
or

es

(c) Energy (kJ)

Fig. 12: Mapping.

0.8 1.5 2.2

4

3

2

0.8 0.9 1.1

0.6 0.9 1

0.5 0.7 0.8

Frequency (GHz)

of

 C
or

es

(a) Velocity (m/s)

0.8 1.5 2.2

4

3

2

549.8 504.3 294.4

498.7 509.4 404.5

886.5 844.9 523.4

Frequency (GHz)

of
 C

or
es

(b) Mission Time (s)

0.8 1.5 2.2

4

3

2

305.1 283.7 186.4

256.5 294.1 246.4

438.2 448 281.7

Frequency (GHz)

of

 C
or

es
(c) Energy (kJ)

Fig. 13: Search and Rescue.

0.8 1.5 2.2

4

3

2

0.07 0.07 0.07

0.11 0.08 0.07

0.14 0.11 0.08

Frequency (GHz)

of

 C
or

es

(a) Error Rate(m/s)

0.8 1.5 2.2

4

3

2

130.73 96.40 140.79

65.88 131.61 150.65

38.29 98.88 96.40

Frequency (GHz)

of

 C
or

es

(b) Mission Time(s)

0.8 1.5 2.2

4

3

2

50.1 77.7 73.2

52.4 70.3 52.7

20.1 38.7 69.5

Frequency (GHz)

of

 C
or

es

(c) Energy (kJ)

Fig. 14: Aerial Photography.

Mapping: We observe a reduction of up to 86% and 83%
for the mission time and energy consumption, respectively, as
compute scales with the number of cores and/or frequency
values (Figure 12a, Figure 12b, and Figure 12c). The concur-
rency present in this application (all nodes denoted by circles
with a filled arrow connection or none at all in Figure 7d run

(2 core, 0.8 GHz)
(2 core, 1.5 GHz)
(2 core, 2.0 GHz)

(3 core, 0.8 GHz)
(3 core, 1.5 GHz)
(3 core, 2.0 GHz)

(4 core, 0.8 GHz)
(4 core, 1.5 GHz)
(4 core, 2.0 GHz)

R
un

tim
e

(s
)

0.01

0.1

1

10

MP
SC

OMG
PD
OMI

MP
PD

MP
MAP-3D

OMG
MAP-3D

MP
SAR

OMG
SAR

OD
AP

Track
Buffered-AP

Track Real
Time-AP

Fig. 15: Kernel breakdown for MAVBench. The abbreviations are as follows: OD-Object detection, MP-Motion Planning, OMG-OctoMap
Generation for kernels and SC-Scanning, PD-Package Delivery, MAP-3D Mapping, SAR-Search and Rescue, and AP-Aerial Photography for
applications. The x-axis lists the kernel-application names and y-Axis represents the runtime in seconds. Each bar graph represents one of
the configurations used in the hardware. The cores are varied from 2 to 4 and the frequency goes from from 0.8 GHz , 1.5 GHz or 2.2 GHz.

in parallel) justifies the performance boost from core scaling.
The sequential bottlenecks, i.e. motion planning and OctoMap
generation explains the frequency scaling improvements. We
achieve up to 6.3X improvement in motion planning (Fig-
ure 15) and that leads to hover time reduction. We achieve
a 6X improvement in OctoMap generation and that leads to
maximum velocity improvement. The improvements translate
to a 5.3X improvement in average velocity. Since mission time
is reduced, total energy consumption reduces.

Search and Rescue: We see a reduction of up to 67%
and 57% for the mission time and the energy, respectively,
as compute scales (Figure 13a, Figure 13b, and Figure 13c).
Similar to mapping, more compute allows for the reduction
of hover time and an increase in maximum velocity which
contribute to the overall reduction in mission time and energy.
In addition, a faster object detection kernel prevents the
drone from missing sampled frames during any motion. We
achieve up to 1.8X, 6.8X, and 6.6X speedup for the object
detection, motion planning and OctoMap generation kernels,
respectively. In aggregate, these improvements translate to
2.2X improvement in the MAV’s average velocity.

Aerial Photography: We observe an improvement of up
to 53% and 267% for error and mission time, respectively
(Figure 14a, Figure 14b, and Figure 14c). In aerial photogra-
phy, as compared to other applications, higher mission time
is more desirable than a lower mission time. The drone only
flies while it can track the person, hence a longer mission time
means that the target has been tracked for a longer duration. In
addition to maximizing the mission time, error minimization
is also desirable for this application. We define error as the
distance between the person’s bounding box (provided by the
detection kernel) center to the image frame center. Clock and
frequency improvements translate to 2.49X and 10X speedup
for the detection and tracking kernels and that allows for
longer tracking with a lower error. No significant trend is
observed in the energy data because energy depends on both
the mission time and the velocity, and as opposed to the other
applications, there is no need for the drone to minimize its
velocity. Instead, it needs to successfully track the person.

VI. CASE STUDIES

We show how our closed-loop simulation, along with our
open-source benchmark suite, can enable (1) performance, (2)

energy and (3) reliability studies, both at the architecture and
the holistic system-level. MAVBench simulation setup allows
for inspection of intra-system, as well as system and environ-
ment interactions. Studying the intra-system interactions opens
new avenues for hardware and software co-design, which
we demonstrate in the form of onboard/edge-only compute
versus offloading the compute to the unconstrained cloud.
Studying the system and environment interactions can unlock
new opportunities for trade-offs in computational complexity
for energy efficiency, which we demonstrate using software-
guided, hardware-assisted OctoMap resolution optimizations.

A. A Performance Case Study
As opposed to the study in Section V where we emulated a

fully-on-edge drone (i.e., a drone which all of its computation
is done on the drone itself), we examine a cloud/edge drone
where the computation is distributed across the edge and the
cloud. We compare a fully-on-edge drone equipped with a TX2
versus a fully-in-cloud drone with a powerful cloud support.
The “cloud” computational horsepower is composed of an Intel
i7 4740 @ 4GHz with 32 GB of RAM and a GeForce GTX
1080. For network connectivity we utilize a 1Gbp/s LAN,
which mimics a future 5G network [44], [45].

We target the planning stage of the PPC pipeline and focus
on the 3D Mapping as the application of choice to offload.
As we show in Figure 16, a drone that can enjoy the cloud’s
extra compute power sees a 3X speed up in planning time.
This improves the drone’s average velocity due to hover time
reduction, and hence reduces the drone’s overall mission time
by as much as 50%, effectively doubling its endurance.

Edge
Sensor-Cloud

Ti
m

e
(s

)

0

500

1000

Flight Time Planning Time

(a) Performance.

Edge
Sensor-Cloud

To
ta

l E
ne

rg
y

(k
J)

0

500

1000

(b) Energy.

Fig. 16: Comparing a full-on-edge drone versus a full-on-cloud drone.
Our system allows part or portion of the MAVBench workloads to
be offloaded to the cloud (or another local co-processing agent).

(a) Environment’s map. (b) Resolution of 0.15 (m). (c) Resolution of 0.5 (m). (d) Resolution of 0.80 (m).

Fig. 17: For the environment in (a), OctoMap’s resolution impact on the drone’s perception of its environment is shown in (b), (c), (d).

Pr
oc

es
si

ng
 T

im
e

(s
)

0.1

0.2

0.3

0.4

Planning Resolution (m)
0.2 0.4 0.6 0.8 1.0

Fig. 18: Reduction in OctoMap resolution (accuracy) can be traded
off with processing time. Increasing the x-axis means larger voxels to
represent the space more coarsely (less accurately). A 6.5X reduction
in resolution results in a 4.5X improvement in processing time.

B. An Energy Case Study

Focusing on energy efficiency, we conduct a ker-
nel/environment sensitivity analysis using the OctoMap
node [13], which is a major bottleneck in three of our end
to end applications, namely package delivery, 3D mapping
and search and rescue. OctoMap is used for the modeling
of various environments without prior assumptions. The map
of the environment is maintained in an efficient tree-like
data structure while keeping track of the free, occupied and
unknown areas. Both planning and collision avoidance kernels
use OctoMap to make safe flight possible, via costly compute
cycles, by only allowing navigation through free space. Due
to its implementation efficiency, OctoMap is widely adopted
in the robotics community. Its broad adoption and impact in
two out of three stages (Perception and Planning) makes this
kernel highly general and important for optimization.

The size of the voxels in OctoMap, i.e. the map’s resolution,
introduces accuracy versus flight-time/energy trade-off. By
lowering the resolution, i.e. increasing voxel sizes, obstacle
boundaries get inflated, hence the drone’s perception of the
environment and the objects within it becomes inaccurate. We
illustrate the impact of OctoMap resolution on the drone’s
perception using Figure 17. Figure 17a shows the environment
and Figures 17b, 17c, 17d show the drone’s perception of the
environment as a function of OctoMap resolution. When the
resolution is lowered, the voxels size increases to the point
that the drone fails to recognize the openings as possible pas-
sageways to plan through (Figure 17d). This results in mission

Static: 0.8 (m)
Static: 0.15 (m)
Dynamic: 0.15 (m) , 0.8 (m)

Fa
il

Fa
il

Fa
il

Fa
il

Fa
il

Fa
ilFl
ig

ht
 T

im
e

(s
)

0

200

400

600

Ba
tte

ry
 (%

)

0

50

100

Mapping SAR Package
Delivery

Fig. 19: Switching between OctoMap resolutions dynamically leads
to successfully finishing the mission compared to 0.80 m. It also leads
to battery life improvement compared to 0.15 m. The y-axis in the
top graph is the battery left on the drone upon mission completion.

time inefficiency and failures depending on the environment.

To examine the accuracy versus performance trade off,
we measured OctoMap kernel’s processing time (running
in isolation) while varying its resolution knob. Figure 18
shows that as planning resolution increases (i.e., voxels are
larger so space is represented more coarsely and hence less
accurately), performance improves dramatically because less
compute is needed. Going from one extreme to another, when
planning resolution goes from less than 0.2 m to 1.0 m (x-
axis), OctoMap’s processing time (or update rate) goes from
more than 0.4 seconds to less than 0.1 seconds (y-axis). In
other words, a 6.5X reduction in accuracy results in a 4.5X
improvement in processing time.

Certain aspects like obstacle density in the environment
determine the “ideal” OctoMap resolution. In low-density
environments, where the drone has many obstacle-free paths to
take, a low resolution can suffice. In dense environments, low
resolutions can deprive the drone of viable obstacle-free paths
because the drone perceives the obstacles to be larger than they
are in the real world, and so plans to avoid them. Since the
drone’s environment constantly changes, a dynamic approach
where a runtime sets the resolution is ideally desirable.

We study two environments during the mission, namely
outdoors (low obstacle density) and indoors (high obstacle
density). Figure 19 shows the result of two static (predeter-
mined) resolutions, 0.15 m and 0.80 m, and our dynamic

approach that multiplexes between the two appropriately.1 The
dynamic approach allows improvement of battery consumption
by up to 1.8X. Intuitively, as compute reduces, OctoMap
bottleneck eases, and therefore the drone completes its mission
faster. The figure also highlights another interesting relation-
ship that statically choosing the 0.80 m resolution to optimize
for compute (only) causes the drone to fail its mission since
it is unable to plan paths through narrow openings in the
indoor environments. Instead, by switching between the two
resolutions according to the environment’s obstacle density,
the dynamic approach is able to balance OctoMap computation
with mission feasibility and energy, holistically. Therefore, in
all cases, the dynamic approach uses less energy and retains
more battery life at mission end time.

C. A Reliability Case Study

Reliability is an especially important topic in the context of
autonomous vehicles [46]–[49]. Traditionally, it is common to
study the susceptibility of execution to errors that manifest in
programs and the architecture. In autonomous vehicles, errors
or “noise” in the data can arise from sensor inputs.

We investigate the impact of sensor noise on the perfor-
mance of our package delivery application, specifically its
perception stage. The data is summarized in Table II. We inject
Gaussian noise with a range of standard deviations (0 to 1.5 m)
into the depth readings of the drone’s RGBD camera. The
sensory noise distorts the drone’s perception of the obstacles
in its environment, and we found such noise inflates obstacles,
making them appear larger than they are in reality. This causes
the drone to re-plan its trajectories more often, as it assumes
that its planned path will collide into objects that are actually
further away than they seem. The more the drone re-plans
its paths, the longer it takes to reach its destination, which
increases it mission time by up to 90%. It is also important to
note that when noise values reach greater than a certain value,
it causes the drone to fail in its mission altogether, e.g. noise
with the standard deviation of 1.5 m results the drone to fail
reaching its delivery destination in 10% of its total runs.

In addition to injecting noise in the sensor subsystem, we
can also inject errors directly into the compute subsystem to
“simulate” soft errors and transient bit flips in logic. Such a
capability can be used to conduct vulnerability analysis [50].

VII. RELATED WORK

There is prior work that focuses on building simulators
and benchmark suites to aid the development of autonomous
MAVs. We address some shortcomings of previous approaches
by providing a more integrated, end-to-end solution.

Simulators Simulators are essential to the study of aerial
and robotic agents. Our simulation platform is built upon
Microsoft’s AirSim [10], a UAV simulator that uses the Unreal
Game Engine to provide accurate physics models and photo-
realistic environments. MAVBench uses the AirSim core and
extends it with performance, power and battery models that
are suited for architectural research, as well as with a gimbal,

1Resolutions are based on the environment like the door width size. A
0.15 m resolution is chosen to ensure that the drone (diagonal width of 0.65 m)
considers an average door (width of 0.82 m) as an opening for planning.

Noise Std (m) Failure Rate (%) Number of Re-plans Mission Time (s)
0.0 0 2 72
0.5 0 3 82
1.0 0 4 95
1.5 10 8 137

TABLE II: Impact of introducing depth image noise into the RGBD
camera system on the drone’s performance. Introducing noise into
the drone’s visual subsystem results in more frequent (re-)planning,
which increases mission time and can also result in mission failures.

and dynamic and static obstacle creation capabilities that are
not inherently part of AirSim. Another very popular simulator
used in the robotics community for MAVs is Gazebo [51].
However, Gazebo simulations lack photo-realism, while our
work, with the help of AirSim and the Unreal Game Engine,
enables more accurate visual modeling.

There are also numerous simulators widely used in industry
and academia for studying autonomous agents such as [52]–
[56]. However, they either do not provide MAV models or
does not consider the architectural insights.

A recent work FlightGoggles [57], creates virtual reality
environments for drones using the images streamed from
the Unity3D game engine. However, for maximum realism,
FlightGoggles requires a fully functioning drone that must fly
during tests, with its sensory data being streamed in from
the game engine. MAVBench, on the other hand, does not
have this constraint. Our users may provide real processors
for hardware-in-the-loop simulation, but they are not required
to fly the MAVs physically in the real world.

Benchmarks Most robot benchmark suites target individual
computational kernels, such as odometry or motion-planning,
rather than characterizing end-to-end applications composed
of many different kernels. For example SLAMBench [58] and
CommonRoad [59] solely focus on the perception and the
planning stage respectively. However, our benchmarks allows
for holistic studies by providing end-to-end applications.

VIII. CONCLUSION

MAVBench is a tool including a closed-loop simulation
platform and a benchmark suite to probe and understand the
intra-system (application data flow) and inter-system (system
and environment) interactions of MAVs. This enables us to
pinpoint bottlenecks and identify opportunities for hardware
and software co-design and optimization. Using our setup and
benchmark suite, we uncover a hidden compute to total system
energy relationship where faster computers can allow drones to
finish missions quickly, and hence save energy. This is because
most of the drone’s energy is consumed by the rotors, hence,
faster compute can cut down on mission time (by increasing
the max velocity and reducing the hovering time) and energy
accordingly. Our insight allows us to improve MAV’s battery
consumption by up to 1.8X for our OctoMap case study.

ACKNOWLEDGEMENTS

This material is based upon work supported by the NSF
under Grant No. 1528045 and funding from Intel and Google.

REFERENCES

[1] Rachel Feltman, “The Future of Sports Photography:Drones.”
https://www.theatlantic.com/technology/archive/2014/02/
the-future-of-sports-photography-drones/283896/.

[2] Debra R. Cohen McCullough, “Unmanned Aircraft Systems(UAS)
Guidebook in Development.” https://cops.usdoj.gov/html/dispatch/
08-2014/UAS Guidebook in Development.asp.

[3] A. Qiantori, A. B. Sutiono, H. Hariyanto, H. Suwa, and T. Ohta, “An
emergency medical communications system by low altitude platform at
the early stages of a natural disaster in indonesia,” J. Med. Syst., vol. 36,
2012.

[4] James Rogers, “How drones are helping the Nepal earthquake
relief effort.” http://www.foxnews.com/tech/2015/04/30/
how-drones-are-helping-nepal-earthquake-relief-effort.html.

[5] “Amazon delivered its first customer package by drone.”
https://www.usatoday.com/story/tech/news/2016/12/14/
amazon-delivered-its-first-customer-package-drone/95401366/.

[6] Arthur Holland Michel, “Amazon’s Drone Patents.” http://dronecenter.
bard.edu/amazon-drone-patents/.

[7] BBC News, “Google Plans Drone Delivery Service for 2017.” http://
www.bbc.com/news/technology-34704868.

[8] The U.S. Federal Aviation Administration (FAA), “Fact Sheet – FAA
Forecast–Fiscals Years 2016-37.” https://www.faa.gov/news/fact sheets/
news story.cfm?newsId=21514.

[9] “Faa aerospace forecasts.” https://www.faa.gov/data research/aviation/
aerospace forecasts/.

[10] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” CoRR,
vol. abs/1705.05065, 2017.

[11] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016.

[12] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), 2005.

[13] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013. Software available at
http://octomap.github.com.

[14] “Ompl.” https://ompl.kavrakilab.org/.
[15] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM

system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[16] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular
visual-inertial state estimator,” arXiv preprint arXiv:1708.03852, 2017.

[17] “Matrice 100.” https://www.dji.com/matrice100/info/.
[18] “3dr robotics.” https://3dr.com/solo-drone/.
[19] A. Vega, P. Bose, and A. Buyuktosunoglu, “Reliable electrical sys-

tems for micro aerial vehicles and insect-scale robots: Challenges and
progress,” in Rugged Embedded Systems, Morgan Kaufmann, 2017.

[20] “Game engine technology by unreal.” https://www.unrealengine.com/
en-US/what-is-unreal-engine-4.

[21] “Physics simulation — unreal engine.” https://docs.unrealengine.com/
latest/INT/Engine/Physics/.

[22] “Microsoft/airsim: Open source simulator based on unreal engine for
autonomous vehicles from microsoft ai & research.” https://github.com/
Microsoft/AirSim.

[23] “Pixhawk flight controller.” https://pixhawk.org/.
[24] “Px4 architectural overview - px4 developer guide.” https://dev.px4.io/

en/concept/architecture.html.
[25] “Mavlink: Micro air vehicle protocol.” https://github.com/mavlink.
[26] “Embedded systems developer kits, modules, & sdks — nvidia

jetson.” https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems-dev-kits-modules/.

[27] “Iot.” https://software.intel.com/en-us/intel-joule-getting-started.
[28] “Ros.org — powering the world’s robots.” http://www.ros.org/.
[29] C. D. Franco and G. Buttazzo, “Energy-aware coverage path planning of

uavs,” in IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC), 2015.

[30] C. Tseng, C. Chau, K. M. Elbassioni, and M. Khonji, “Flight tour
planning with recharging optimization for battery-operated autonomous
drones,” CoRR, vol. abs/1703.10049, 2017.

[31] K. S. R. Kumar, V. V. Sastry, O. C. Sekhar, D. K. Mohanta, D. Rajesh,
and M. P. C. Varma, “Design and fabrication of coulomb counter for
estimation of soc of battery,” in IEEE International Conference on Power
Electronics, Drives and Energy Systems (PEDES), 2016.

[32] M. Chen and G. A. Rincon-Mora, “Accurate electrical battery model ca-
pable of predicting runtime and i-v performance,” in IEEE Transactions
on Energy Conversion, vol. 21, pp. 504–511, June 2006.

[33] W. Qiu and A. Yuille, “Unrealcv: Connecting computer vision to unreal
engine,” in Computer Vision–ECCV 2016 Workshops, Springer.

[34] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2007.

[35] M. Benallegue, J.-P. Laumond, and N. Mansard, Robot Motion Planning
and Control: Is It More than a Technological Problem? 05 2017.

[36] J. Faro, C. Bailer, and J. F. Henriques, “Project title.” https://github.com/
charlespwd/project-title, 2013.

[37] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, 2015.

[38] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[39] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[40] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[41] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon ”next-best-view” planner for 3d exploration,” in IEEE
International Conference on Robotics and Automation (ICRA), 2016.

[42] S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed navigation
for quadrotors with limited onboard sensing,” in IEEE International
Conference on Robotics and Automation (ICRA), 2016.

[43] “Eagle tree systems.” http://www.eagletreesystems.com/index.php?
route=product/product&product id=54.

[44] P. K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour,
“Design considerations for a 5g network architecture,” IEEE Communi-
cations Magazine, vol. 52, no. 11, pp. 65–75, 2014.

[45] A. Gupta and R. K. Jha, “A survey of 5g network: Architecture and
emerging technologies,” IEEE access, vol. 3, pp. 1206–1232, 2015.

[46] R. Remenyte-Prescott, J. D. Andrews, and P. W. H. Chung, “An efficient
phased mission reliability analysis for autonomous vehicles,” Reliability
Engineering & System Safety, vol. 95, no. 3, pp. 226–235, 2010.

[47] P. Fernandes and U. Nunes, “Platooning with dsrc-based ivc-enabled
autonomous vehicles: Adding infrared communications for ivc reliability
improvement,” in IEEE Intelligent Vehicles Symposium (IV), 2012.

[48] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?,”
Transportation Research Part A: Policy and Practice, vol. 94, 2016.

[49] M. Alam, M. Song, S. Hester, and T. Seliga, “Reliability analysis of
phased-mission systems: a practical approach,” in IEEE Reliability and
Maintainability Symposium (RAMS), 2006.

[50] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:
An architectural perspective,” in IEEE High-Performance Computer
Architecture (HPCA), 2005.

[51] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” IEEE International Conference on
Intelligent Robots and Systems (IROS), 2004.

[52] Urmson et al., “Autonomous driving in traffic: Boss and the urban
challenge,” AI magazine, vol. 30, no. 2, p. 17, 2009.

[53] J. Leonard, D. Barrett, J. How, S. Teller, M. Antone, S. Campbell,
A. Epstein, G. Fiore, L. Fletcher, E. Frazzoli, et al., “Team mit urban
challenge technical report,” 2007.

[54] Bacha et al., “Odin: Team victortango’s entry in the darpa urban
challenge,” Journal of field Robotics, vol. 25, no. 8, pp. 467–492, 2008.

[55] Xioji Chen, “Engineering Uber’s Self-Driving Car Visualization Plat-
form for Web.” https://eng.uber.com/atg-dataviz/.

[56] M. Mueller, N. Smith, and B. Ghanem, “A benchmark and simulator for
uav tracking,” in Proc. of the European Conference on Computer Vision
(ECCV), 2016.

[57] Sayre-McCord et al., “Visual-inertial navigation algorithm development
using photorealistic camera simulation in the loop,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2018.

[58] Nardi et al., “Introducing slambench, a performance and accuracy
benchmarking methodology for slam,” in IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2015.

[59] M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Composable
benchmarks for motion planning on roads,” in IEEE Intelligent Vehicles
Symposium (IV), 2017.

https://www.theatlantic.com/technology/archive/2014/02/the-future-of-sports-photography-drones/283896/
https://www.theatlantic.com/technology/archive/2014/02/the-future-of-sports-photography-drones/283896/
https://cops.usdoj.gov/html/dispatch/08-2014/UAS_Guidebook_in_Development.asp
https://cops.usdoj.gov/html/dispatch/08-2014/UAS_Guidebook_in_Development.asp
http://www.foxnews.com/tech/2015/04/30/how-drones-are-helping-nepal-earthquake-relief-effort.html
http://www.foxnews.com/tech/2015/04/30/how-drones-are-helping-nepal-earthquake-relief-effort.html
https://www.usatoday.com/story/tech/news/2016/12/14/amazon-delivered-its-first-customer-package-drone/95401366/
https://www.usatoday.com/story/tech/news/2016/12/14/amazon-delivered-its-first-customer-package-drone/95401366/
http://dronecenter.bard.edu/amazon-drone-patents/
http://dronecenter.bard.edu/amazon-drone-patents/
http://www.bbc.com/news/technology-34704868
http://www.bbc.com/news/technology-34704868
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21514
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=21514
https://www.faa.gov/data_research/aviation/aerospace_forecasts/
https://www.faa.gov/data_research/aviation/aerospace_forecasts/
http://octomap.github.com
https://ompl.kavrakilab.org/
https://www.dji.com/matrice100/info/
https://3dr.com/solo-drone/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://docs.unrealengine.com/latest/INT/Engine/Physics/
https://docs.unrealengine.com/latest/INT/Engine/Physics/
https://github.com/Microsoft/AirSim
https://github.com/Microsoft/AirSim
https://pixhawk.org/
https://dev.px4.io/en/concept/architecture.html
https://dev.px4.io/en/concept/architecture.html
https://github.com/mavlink
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://software.intel.com/en-us/intel-joule-getting-started
http://www.ros.org/
https://github.com/charlespwd/project-title
https://github.com/charlespwd/project-title
http://www.eagletreesystems.com/index.php?route=product/product&product_id=54
http://www.eagletreesystems.com/index.php?route=product/product&product_id=54
https://eng.uber.com/atg-dataviz/

