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Genome sequence analysis has enabled signi�cant advance-
ments in medical and scienti�c areas such as personalized
medicine, outbreak tracing, and the understanding of evolution.
To perform genome sequencing, devices extract small random
fragments of an organism’s DNA sequence (known as reads).
The �rst step of genome sequence analysis is a computational
process known as read mapping. In read mapping, each frag-
ment is matched to its potential location in the reference genome
with the goal of identifying the original location of each read
in the genome. Unfortunately, rapid genome sequencing is cur-
rently bottlenecked by the computational power and memory
bandwidth limitations of existing systems, as many of the steps
in genome sequence analysis must process a large amount of
data. A major contributor to this bottleneck is approximate

string matching (ASM), which is used at multiple points during
the mapping process. ASM enables read mapping to account
for sequencing errors and genetic variations in the reads.

We propose GenASM, the �rst ASM acceleration framework
for genome sequence analysis. GenASM performs bitvector-
based ASM, which can e�ciently accelerate multiple steps of
genome sequence analysis. We modify the underlying ASM
algorithm (Bitap) to signi�cantly increase its parallelism and
reduce its memory footprint. Using this modi�ed algorithm, we
design the �rst hardware accelerator for Bitap. Our hardware
accelerator consists of specialized systolic-array-based compute
units and on-chip SRAMs that are designed to match the rate of
computation with memory capacity and bandwidth, resulting
in an e�cient design whose performance scales linearly as we
increase the number of compute units working in parallel.
We demonstrate that GenASM provides signi�cant perfor-

mance and power bene�ts for three di�erent use cases in genome
sequence analysis. First, GenASM accelerates read alignment
for both long reads and short reads. For long reads, GenASM out-
performs state-of-the-art software and hardware accelerators
by 116× and 3.9×, respectively, while reducing power consump-
tion by 37× and 2.7×. For short reads, GenASM outperforms
state-of-the-art software and hardware accelerators by 111×
and 1.9×. Second, GenASM accelerates pre-alignment �ltering
for short reads, with 3.7× the performance of a state-of-the-
art pre-alignment �lter, while reducing power consumption by
1.7× and signi�cantly improving the �ltering accuracy. Third,
GenASM accelerates edit distance calculation, with 22–12501×
and 9.3–400× speedups over the state-of-the-art software li-
brary and FPGA-based accelerator, respectively, while reducing
power consumption by 548–582× and 67×. We conclude that
GenASM is a �exible, high-performance, and low-power frame-
work, and we brie�y discuss four other use cases that can bene�t
from GenASM.

1. Introduction
Genome sequencing, which determines the DNA sequence

of an organism, plays a pivotal role in enabling many medi-

cal and scienti�c advancements in personalized medicine

[6, 20, 34, 53, 59], evolutionary theory [46, 139, 140], and

forensics [17, 25, 179]. Modern genome sequencing ma-

chines [77–79, 132–135, 152] can rapidly generate massive

amounts of genomics data at low cost [8, 118, 153], but are

unable to extract an organism’s complete DNA in one piece.

Instead, these machines extract smaller random fragments

of the original DNA sequence, known as reads. These reads

then pass through a computational process known as read
mapping, which takes each read, aligns it to one or more

possible locations within the reference genome, and �nds the

matches and di�erences (i.e., distance) between the read and

the reference genome segment at that location [6, 177]. Read

mapping is the �rst key step in genome sequence analysis.

State-of-the-art sequencing machines produce broadly one

of two kinds of reads. Short reads (consisting of no more

than a few hundred DNA base pairs [30, 158]) are generated

using short-read sequencing (SRS) technologies [144, 164],

which have been on the market for more than a decade. Be-

cause each read fragment is so short compared to the entire

DNA (e.g., a human’s DNA consists of over 3 billion base

pairs [166]), short reads incur a number of reproducibility

(e.g., non-deterministic mapping) and computational chal-

lenges [7, 10, 12, 52, 118, 159, 176–178]. Long reads (consist-

ing of thousands to millions of DNA base pairs) are gener-

ated using long-read sequencing (LRS) technologies, of which

Oxford Nanopore Technologies’ (ONT) nanopore sequenc-

ing [26, 35, 40, 82, 83, 89, 97, 112, 113, 116, 143, 152] and Pa-

ci�c Biosciences’ (PacBio) single-molecule real-time (SMRT)

sequencing [18, 47, 114, 123, 145, 146, 165, 171] are the most

widely used ones. LRS technologies are relatively new, and

they avoid many of the challenges faced by short reads.

LRS technologies have three key advantages compared

to SRS technologies. First, LRS devices can generate very

long reads, which (1) reduces the non-deterministic mapping

problem faced by short reads, as long reads are signi�cantly

more likely to be unique and therefore have fewer potential

mapping locations in the reference genome; and (2) span

larger parts of the repeated or complex regions of a genome,

enabling detection of genetic variations that might exist in

these regions [165]. Second, LRS devices perform real-time

sequencing, and can enable concurrent sequencing and anal-

ysis [111, 142, 146]. Third, ONT’s pocket-sized device (Min-

ION [133]) provides portability, making sequencing possible

at remote places using laptops or mobile devices. This en-

ables a number of new applications, such as rapid infection

diagnosis and outbreak tracing (e.g., COVID-19, Ebola, Zika,

swine �u [37, 48, 64, 68, 85, 142, 167, 173]). Unfortunately, LRS

devices are much more error-prone in sequencing (with a

typical error rate of 10–15% [19, 83, 165, 170]) compared to

SRS devices (typically 0.1% [60, 61, 141]), which leads to new

computational challenges [152].

For both short and long reads, multiple steps of read map-

ping must account for the sequencing errors, and for the dif-

ferences caused by genetic mutations and variations. These

errors and di�erences take the form of base insertions, dele-

tions, and/or substitutions [121,125,154,163,169,174]. As a re-

sult, read mapping must perform approximate (or fuzzy) string
matching (ASM). Several algorithms exist for ASM, but state-

of-the-art read mapping tools typically make use of an expen-
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sive dynamic programming based algorithm [100, 126, 154]

that scales quadratically in both execution time and required

storage. This ASM algorithm has been shown to be the ma-

jor bottleneck in read mapping [8, 10, 55, 66, 75, 122, 162].

Unfortunately, as sequencing technologies advance, the

growth in the rate that sequencing devices generate reads

is far outpacing the corresponding growth in computational

power [8, 32], placing greater pressure on the ASM bottle-

neck. Beyond read mapping, ASM is a key technique for other

bioinformatics problems such as whole genome alignment

(WGA) [27,28,41,42,70,95,102,106,115,151,160] and multiple

sequence alignment (MSA) [29,45,69,98,107,127,128,136,150],

where two or more whole genomes, or regions of multiple

genomes (from the same or di�erent species), are compared

to determine their similarity for predicting evolutionary re-

lationships or �nding common regions (e.g., genes). Thus,

there is a pressing need to develop techniques for genome

sequence analysis that provide fast and e�cient ASM.

In this work, we propose GenASM, an ASM acceleration

framework for genome sequence analysis. Our goal is to de-

sign a fast, e�cient, and �exible framework for both short

and long reads, which can be used to accelerate multiple steps
of the genome sequence analysis pipeline. To avoid imple-

menting more complex hardware for the dynamic program-

ming based algorithm [22, 33, 49, 65, 87, 88, 147, 162], we base

GenASM upon the Bitap algorithm [21, 174]. Bitap uses only

fast and simple bitwise operations to perform approximate

string matching, making it amenable to e�cient hardware

acceleration. To our knowledge, GenASM is the �rst work

that enhances and accelerates Bitap.

To use Bitap for GenASM, we make two key algorithmic

modi�cations that allow us to overcome key limitations that

prevent the original Bitap algorithm from being e�cient for

genome sequence analysis (we discuss these limitations in

Section 2.3). First, to improve Bitap’s applicability to di�erent

sequencing technologies and its performance, we (1) modify

the algorithm to support long reads (in addition to already

supported short reads), and (2) eliminate loop-carried data

dependencies so that we can parallelize a single string match-

ing operation. Second, we develop a novel Bitap-compatible

algorithm for traceback, a method that utilizes information

collected during ASM about the di�erent types of errors to

identify the optimal alignment of reads. The original Bitap

algorithm is not capable of performing traceback.

In GenASM, we co-design our modi�ed Bitap algorithm and

our new Bitap-compatible traceback algorithm with an area-

and power-e�cient hardware accelerator, which consists of

two components: (1) GenASM-DC, which provides hardware

support to e�ciently execute our modi�ed Bitap algorithm to

generate bitvectors (each of which represents one of the four

possible cases: match, insertion, deletion, or substitution) and

perform distance calculation (DC) (which calculates the min-

imum number of errors between the read and the reference

segment); and (2) GenASM-TB, which provides hardware sup-

port to e�ciently execute our novel traceback (TB) algorithm

to �nd the optimal alignment of a read, using the bitvectors

generated by GenASM-DC. Our hardware accelerator (1) bal-

ances the compute resources with available memory capacity

and bandwidth per compute unit to avoid wasting resources,

(2) achieves high performance and power e�ciency by using

specialized compute units that we design to exploit data lo-

cality, and (3) scales linearly in performance with the number

of parallel compute units that we add to the system.

Use Cases. GenASM is an e�cient framework for accel-

erating genome sequence analysis that has multiple possible

use cases. In this paper, we describe and rigorously evaluate

three use cases of GenASM. First, we show that GenASM can

e�ectively accelerate the read alignment step of read map-

ping (Section 10.2). Second, we illustrate that GenASM can

be employed as the most e�cient (to date) pre-alignment

�lter [9, 10] for short reads (Section 10.3). Third, we demon-

strate how GenASM can e�ciently �nd the edit distance (i.e.,

Levenshtein distance [100]) between two sequences of ar-

bitrary lengths (Section 10.4). In addition, GenASM can be

utilized in several other parts of genome sequence analysis as

well as in text analysis, which we brie�y discuss in Section 11.

Results Summary. We evaluate GenASM for three dif-

ferent use cases of ASM in genome sequence analysis using

a combination of the synthesized SystemVerilog model of

our hardware accelerators and detailed simulation-based per-

formance modeling. (1) For read alignment, we compare

GenASM to state-of-the-art software (Minimap2 [102] and

BWA-MEM [101]) and hardware approaches (GACT in Dar-

win [162] and SillaX in GenAx [55]), and �nd that GenASM is

signi�cantly more e�cient in terms of both speed and power

consumption. For this use case, we compare GenASM only
with the read alignment steps of the baseline tools and accel-

erators. For long reads, GenASM achieves 116× and 648×
speedup over 12-thread runs of the alignment steps of Min-

imap2 and BWA-MEM, respectively, while reducing power

consumption by 37× and 34×. Compared to GACT, GenASM

provides 6.6× the throughput per unit area and 10.5× the

throughput per unit power for long reads. For short reads,

GenASM achieves 158× and 111× speedup over 12-thread

runs of the alignment steps of Minimap2 and BWA-MEM,

respectively, while reducing power consumption by 31× and

33×. Compared to SillaX, GenASM is 1.9× faster at a com-

parable area and power consumption. (2) For pre-alignment

�ltering of short reads, we compare GenASM with a state-of-

the-art FPGA-based �lter, Shouji [9]. GenASM provides 3.7×
speedup over Shouji, while reducing power consumption by

1.7×, and also signi�cantly improving the �ltering accuracy.

(3) For edit distance calculation, we compare GenASM with

a state-of-the-art software library, Edlib [155], and FPGA-

based accelerator, ASAP [22]. Compared to Edlib, GenASM

provides 22–12501× speedup, for varying sequence lengths

and similarity values, while reducing power consumption by

548–582×. Compared to ASAP, GenASM provides 9.3–400×
speedup, while reducing power consumption by 67×.

This paper makes the following contributions:

• To our knowledge, GenASM is the �rst work that enhances

and accelerates the Bitap algorithm for approximate string

matching. We modify Bitap to add e�cient support for

long reads and enable parallelism within each ASM opera-

tion. We also propose the �rst Bitap-compatible traceback

algorithm. We open source our software implementations

of the GenASM algorithms [148].

• We present GenASM, a novel approximate string match-

ing acceleration framework for genome sequence analysis.

GenASM is a power- and area-e�cient hardware imple-

mentation of our new Bitap-based algorithms.

• We show that GenASM can accelerate three use cases of

approximate string matching (ASM) in genome sequence

analysis (i.e., read alignment, pre-alignment �ltering, edit

distance calculation). We �nd that GenASM is greatly faster

and more power-e�cient for all three use cases than state-

of-the-art software and hardware baselines.

2. Background
2.1. Genome Sequence Analysis Pipeline

A common approach to the �rst step in genome sequence

analysis is to perform read mapping, where each read of an

organism’s sequenced genome is matched against the ref-
erence genome for the organism’s species to �nd the read’s



original location. As Figure 1 shows, typical read map-

ping [6, 96, 101, 102, 105, 177] is a four-step process. First,

read mapping starts with indexing 0 , which is an o�ine pre-

processing step performed on a known reference genome.

Second, once a sequencing machine generates reads from

a DNA sequence, the seeding process 1 queries the index

structure to determine the candidate (i.e., potential) map-

ping locations of each read in the reference genome using

substrings (i.e., seeds) from each read. Third, for each read,

pre-alignment �ltering 2 uses �ltering heuristics to examine

the similarity between a read and the portion of the reference

genome at each of the read’s candidate mapping locations.

These �ltering heuristics aim to eliminate most of the dissimi-

lar pairs of reads and candidate mapping locations to decrease

the number of required alignments in the next step. Fourth,

for all of the remaining candidate mapping locations, read
alignment 3 runs a dynamic programming based algorithm

to determine which of the candidate mapping locations in

the reference matches best with the input read. As part of

this step, traceback is performed between the reference and

the input read to �nd the optimal alignment, which is the

alignment with the highest likelihood of being correct (based

on a scoring function [62, 117, 168]). The optimal alignment

is de�ned using a CIGAR string [103], which shows the se-

quence and position of each match, substitution, insertion,

and deletion for the read with respect to the selected mapping

location of the reference.

Indexing

Seeding

Pre-Alignment Filtering

Read Alignment

Reference
genome

Hash-table 
based index

Potential mapping 
locations

Optimal alignment

Non-filtered candidate 
mapping locations

Reads

Reference
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Query read

Indexing
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Pre-Alignment Filtering

Read Alignment

Reference 
genome

Hash table based index (pre-processed)

Candidate mapping locations
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sequenced 

genome

0

1

2

3

Indexing Seeding

Pre-Alignment 
Filtering Read Alignment

Reference 
genome

Hash table based 
index (pre-processed)

Candidate mapping 
locations

Optimal alignment

Remaining candidate 
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genome
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Figure 1. Four steps of read mapping.

2.2. Approximate String Matching (ASM)
The goal of approximate string matching [125] is to de-

tect the di�erences and similarities between two sequences.

Given a query read sequence Q=[q1q2. . .qm], a reference text

sequence T=[t1t2. . . tn] (where m = |Q|, n = |T |, n ≥ m), and

an edit distance threshold E, the approximate string matching

problem is to identify a set of approximate matches of Q in T
(allowing for at most E di�erences). The di�erences between

two sequences of the same species can result from sequenc-

ing errors [18, 54] and/or genetic variations [5, 50]. Reads are

prone to sequencing errors, which account for about 0.1%

of the length of short reads [60, 61, 141] and 10–15% of the

length of long reads [19, 83, 165, 170].

The di�erences, known as edits, can be classi�ed as substi-
tutions, deletions, or insertions in one or both sequences [100].

Figure 2 shows each possible kind of edit. In ASM, to detect a

deleted character or an inserted character, we need to exam-

ine all possible pre�xes (i.e., substrings that include the �rst

character of the string) or su�xes (i.e., substrings that include

the last character of the string) of the two input sequences,

and keep track of the pairs of pre�xes or su�xes that provide

the minimum number of edits.

Approximate string matching is needed not only to deter-

mine the minimum number of edits between two genomic se-

quences, but also to provide the location and type of each edit.

As two sequences could have a large number of di�erent pos-

sible arrangements of the edit operations and matches (and

hence di�erent alignments), the approximate string matching

algorithm usually involves a traceback step. The alignment

AAAATGTTTAGTGCTACTTG

AAAATGTTTAGTGCTACTTG

Reference:

Read:
insertionsubstitutiondeletion

C

Figure 2. Three types of errors (i.e., edits).
score is the sum of all edit penalties and match scores along

the alignment, as de�ned by a user-speci�ed scoring function.

This step �nds the optimal alignment as the combination of

edit operations to build up the highest alignment score.

Approximate string matching is typically implemented as a

dynamic programming based algorithm. Existing implemen-

tations, such as Levenshtein distance [100], Smith-Waterman

[154], and Needleman-Wunsch [126], have quadratic time

and space complexity (i.e., O(m× n) between two sequences

with lengths m and n). Therefore, it is desirable to �nd lower-

complexity algorithms for ASM.

2.3. Bitap Algorithm
One candidate to replace dynamic programming based

algorithms for ASM is the Bitap algorithm [21, 174]. Bitap

tackles the problem of computing the minimum edit distance

between a reference text (e.g., reference genome) and a query

pattern (e.g., read) with a maximum of k many errors. When

k is 0, the algorithm �nds the exact matches.

Algorithm 1 shows the Bitap algorithm and Figure 3 shows

an example for the execution of the algorithm. The algorithm

starts with a pre-processing procedure (Line 4 in Algorithm 1;

0 in Figure 3) that converts the query pattern into m-sized

pattern bitmasks, PM. We generate one pattern bitmask for

each character in the alphabet. Since 0 means match in the

Bitap algorithm, we set PM[a][i] = 0 when pattern[i] = a,

where a is a character from the alphabet (e.g., A, C, G, T).

These pattern bitmasks help us to represent the query pattern

in a binary format. After the bitmasks are prepared for each

character, every bit of all status bitvectors (R[d], where d is

in range [0, k]) is initialized to 1 (Lines 5–6 in Algorithm 1; 0

in Figure 3). Each R[d] bitvector at text iteration i holds the

partial match information between text[i : (n–1)] (Line 8) and

the query with maximum of d errors. Since at the beginning

of the execution there are no matches, we initialize all status

bitvectors with 1s. The status bitvectors of the previous itera-

tion with edit distance d is kept in oldR[d] (Lines 10–11) to

take partial matches into consideration in the next iterations.

The algorithm examines each text character one by one,

one per iteration. At each text iteration ( 1 – 5 ), the pat-

tern bitmask of the current text character (PM) is retrieved

(Line 12). After the status bitvector for exact match is com-

puted (R[0]; Line 13), the status bitvectors for each distance

(R[d]; d = 1...k) are computed using the rules in Lines 15–19.

For a distance d, three intermediate bitvectors for the error

cases (one each for deletion, insertion, substitution; D/I/S in

Figure 3) are calculated by using oldR[d – 1] or R[d – 1], since

a new error is being added (i.e., the distance is increasing by

1), while the intermediate bitvector for the match case (M)

is calculated using oldR[d]. For a deletion (Line 15), we are

looking for a string match if the current pattern character

is missing, so we copy the partial match information of the

previous character (oldR[d – 1]; consuming a text character)

without any shifting (not consuming a pattern character) to

serve as the deletion bitvector (labeled as D of R1 bitvectors

in 1 – 5 ). For a substitution (Line 16), we are looking for a

string match if the current pattern character and the current

text character do not match, so we take the partial match

information of the previous character (oldR[d – 1]; consum-

ing a text character) and shift it left by one (consuming a

pattern character) before saving it as the substitution bitvec-

tor (labeled as S of R1 bitvectors in 1 – 5 ). For an insertion

(Line 17), we are looking for a string match if the current



Algorithm 1 Bitap Algorithm

Inputs: text (reference), pattern (query), k (edit distance threshold)

Outputs: startLoc (matching location), editDist (minimum edit distance)

1: n← length of reference text
2: m← length of query pattern
3: procedure Pre-Processing
4: PM←generatePatternBitmaskACGT(pattern) . pre-process the pattern

5: for d in 0:k do
6: R[d]← 111..111 . initialize R bitvectors to 1s

7: procedure Edit Distance Calculation

8: for i in (n-1):-1:0 do . iterate over each text character

9: curChar← text[i]
10: for d in 0:k do
11: oldR[d]← R[d] . copy previous iterations’ bitvectors as oldR

12: curPM← PM[curChar] . retrieve the pattern bitmask

13: R[0]← (oldR[0]<<1) | curPM . status bitvector for exact match

14: for d in 1:k do . iterate over each edit distance

15: deletion (D)← oldR[d-1]
16: substitution (S)← (oldR[d-1]<<1)
17: insertion (I)← (R[d-1]<<1)
18: match (M)← (oldR[d]<<1) | curPM
19: R[d]← D & S & I & M . status bitvector for d errors

20: if MSB of R[d] == 0, where 0 ≤ d ≤ k . check if MSB is 0

21: startLoc← i . matching location

22: editDist← d . found minimum edit distance

PREPROCESSING
Pattern Bitmasks:       

CTGA
PM(A) = 1110
PM(C) = 0111
PM(G) = 1101
PM(T) = 1011

State Vectors:

R0 = 1111  
R1 = 1111

Text[4]: CGTGA
oldR0 = 1111
oldR1 = 1111

R0 = (oldR0 << 1) | PM(A) 
= 1110

R1 =

= D & S & I & M = 1100

0 1

D : oldR0                = 1111  
S : oldR0 << 1           = 1110
I : R0 << 1              = 1100
M : (oldR1 << 1) | PM(A) = 1110 

Text[3]: CGTGA
oldR0 = 1110
oldR1 = 1100

R0 = (oldR0 << 1) | PM(G) 
= 1101

R1 =

= D & S & I & M = 1000

2

D : oldR0                = 1110  
S : oldR0 << 1           = 1100
I : R0 << 1              = 1010
M : (oldR1 << 1) | PM(G) = 1101 

Text[2]: CGTGA
oldR0 = 1101
oldR1 = 1000

R0 = (oldR0 << 1) | PM(T) 
= 1011

R1 =

= D & S & I & M = 0000

3

D : oldR0                = 1101  
S : oldR0 << 1           = 1010
I : R0 << 1              = 0110
M : (oldR1 << 1) | PM(T) = 1011 

Alignment Found @ Location=2

Text[1]: CGTGA
oldR0 = 1011
oldR1 = 0000

R0 = (oldR0 << 1) | PM(G) 
= 1111

R1 =

= D & S & I & M = 0000

4

D : oldR0                = 1011  
S : oldR0 << 1           = 0110
I : R0 << 1              = 1110
M : (oldR1 << 1) | PM(G) = 1101 

Alignment Found @ Location=1

Text[0]: CGTGA
oldR0 = 1111
oldR1 = 0000

R0 = (oldR0 << 1) | PM(C) 
= 1111

R1 =

= D & S & I & M = 0110

5

D : oldR0                = 1111  
S : oldR0 << 1           = 1110
I : R0 << 1              = 1110
M : (oldR1 << 1) | PM(C) = 0111 

Alignment Found @ Location=0

Text Region:
CGTGA

Query Pattern:
CTGA

Edit Distance 
Threshold (k): 

1

Figure 3. Example for the Bitap algorithm.
text character is missing, so we copy the partial match infor-

mation of the current character (R[d – 1]; not consuming a

text character) and shift it left by one (consuming a pattern

character) before saving it as the insertion bitvector (labeled

as I of R1 bitvectors in 1 – 5 ). For a match (Line 18), we

are looking for a string match only if the current pattern

character matches the current text character, so we take the

partial match information of the previous character (oldR[d];

consuming a text character but not increasing the edit dis-

tance), shift it left by one (consuming a pattern character),

and perform an OR operation with the pattern bitmask of

the current text character (curPM; comparing the text char-

acter and the pattern character) before saving the result as

the match bitvector (labeled as R0 bitvectors and M of R1

bitvectors in 1 – 5 ).

After computing all four intermediate bitvectors, in order

to take all possible partial matches into consideration, we per-

form an AND operation (Line 19) with these four bitvectors

to preserve all 0s that exist in any of them (i.e., all potential

locations for a string match with an edit distance of d up

to this point). We save the ANDed result as the R[d] status

bitvector for the current iteration. This process is repeated

for each potential edit distance value from 0 to k. If the most

signi�cant bit of the R[d] bitvector becomes 0 (Lines 20–22),

then there is a match starting at position i of the text with an

edit distance d (as shown in 3 – 5 ). The traversal of the text

then continues until all possible text positions are examined.

3. Motivation and Goals
Although the Bitap algorithm is highly suitable for hard-

ware acceleration due to the simple nature of its bitwise op-

erations, we �nd that it has �ve limitations that hinder its

applicability and e�cient hardware acceleration for genome

analysis. In this section, we discuss each of these limitations.

In order to overcome these limitations and design an e�ec-

tive and e�cient accelerator, we �nd that we need to both

(1) modify and extend the Bitap algorithm and (2) develop

specialized hardware that can exploit the new opportunities

that our algorithmic modi�cations provide.

3.1. Limitations of Bitap on Existing Systems
No Support for Long Reads. In state-of-the-art imple-

mentations of Bitap, the query length is limited by the word

size of the machine running the algorithm. This is due to

(1) the fact that the bitvector length must be equal to the query

length, and (2) the need to perform bitwise operations on the

bitvectors. By limiting the bitvector length to a word, each

bitwise operation can be done using a single CPU instruction.

Unfortunately, the lack of multi-word queries prevents these

implementations from working for long reads, whose lengths

are on the order of thousands to millions of base pairs (which

require thousands of bits to store).

Data Dependency Between Iterations. As we show in

Section 2.3, the computed bitvectors at each text iteration

(i.e., R[d]) of the Bitap algorithm depend on the bitvectors

computed in the previous text iteration (i.e., oldR[d-1] and

oldR[d]; Lines 11, 13, 15, 16, and 18 of Algorithm 1). Fur-

thermore, for each text character, there is an inner loop that

iterates for the maximum edit distance number of iterations

(Line 14). The bitvectors computed in each of these inner

iterations (i.e., R[d]) are also dependent on the previous inner

iteration’s computed bitvectors (i.e., R[d-1]; Line 17). This

two-level data dependency forces the consecutive iterations

to take place sequentially.

No Support for Traceback. Although the baseline Bitap

algorithm can �nd possible matching locations of each query

read within the reference text, this covers only the �rst step of

approximate string matching required for genome sequence

analysis. Since there could be multiple di�erent alignments

between the read and the reference, the traceback opera-

tion [14, 51, 62, 63, 117, 120, 154, 163, 168, 169] is needed to

�nd the optimal alignment, which is the alignment with the

minimum edit distance (or with the highest score based on

a user-de�ned scoring function). However, Bitap does not

include any such support for optimal alignment identi�cation.

Limited Compute Parallelism. Even after we solve the

algorithmic limitations of Bitap, we �nd that we cannot ex-

tract signi�cant performance bene�ts with just algorithmic

enhancements alone. For example, while Bitap iterates over

each character of the input text sequentially (Line 8), we

can enable text-level parallelism to improve its performance

(Section 5). However, the achievable level of parallelism is

limited by the number of compute units in existing systems.

For example, our studies show that Bitap is bottlenecked by

computation on CPUs, since the working set �ts within the

private caches but the limited number of cores prevents the

further speedup of the algorithm.

Limited Memory Bandwidth. We would expect that a

GPU, which has thousands of compute units, can overcome

the limited compute parallelism issues that CPUs experience.

However, we �nd that a GPU implementation of the Bitap

algorithm su�ers from the limited amount of memory band-

width available for each GPU thread. Even when we run a

CUDA implementation of the baseline Bitap algorithm [104],

whose bandwidth requirements are signi�cantly lower than

our modi�ed algorithm, the limited memory bandwidth bot-

tlenecks the algorithm’s performance. We �nd that the bot-

tleneck is exacerbated after the number of threads per block

reaches 32, as Bitap becomes shared cache-bound (i.e., on-

GPU L2 cache-bound). The small number of registers becomes

insu�cient to hold the intermediate data required for Bitap

execution. Furthermore, when the working set of a thread



does not �t within the private memory of the thread, destruc-

tive interference between threads while accessing the shared

memory creates bottlenecks in the algorithm on GPUs. We

expect these issues to worsen when we implement traceback,

which requires signi�cantly higher bandwidth than Bitap.

3.2. Our Goal
Our goal in this work is to overcome these limitations and

use Bitap in a fast, e�cient, and �exible ASM framework

for both short and long reads. We �nd that this goal cannot

be achieved by modifying only the algorithm or only the

hardware. We design GenASM, the �rst ASM acceleration

framework for genome sequence analysis. Through careful

modi�cation and co-design of the enhanced Bitap algorithm

and hardware, GenASM aims to successfully replace the ex-

pensive dynamic programming based algorithm used for ASM

in genomics with the e�cient bitwise-operation-based Bitap

algorithm, which can accelerate multiple steps of genome

sequence analysis.

4. GenASM: A High-Level Overview
In GenASM, we co-design our modi�ed Bitap algorithm

for distance calculation (DC) and our new Bitap-compatible

traceback (TB) algorithm with an area- and power-e�cient

hardware accelerator. GenASM consists of two components,

as shown in Figure 4: (1) GenASM-DC (Section 5), which for

each read generates the bitvectors and performs the minimum

edit distance calculation (DC); and (2) GenASM-TB (Section 6),

which uses the bitvectors to perform traceback (TB) and �nd

the optimal alignment. GenASM is a �exible framework that

can be used for di�erent use cases (Section 8).

GenASM execution starts when the host CPU issues a task

to GenASM with the reference and the query sequences’ loca-

tions ( 1 in Figure 4). GenASM-DC reads the corresponding

reference text region and the query pattern from the memory.

GenASM-DC then writes these to its dedicated SRAM, which

we call DC-SRAM ( 2 ). After that, GenASM-DC divides the

reference text (e.g., reference genome) and query pattern (e.g.,

read) into multiple overlapping windows ( 3 ), and for each

sub-text (i.e., the portion of the reference text in one win-

dow) and sub-pattern (i.e., the portion of the query pattern

in one window), GenASM-DC searches for the sub-pattern

within the sub-text and generates the bitvectors ( 4 ). Each

processing element (PE) of GenASM-DC writes the gener-

ated bitvectors to its own dedicated SRAM, which we call

TB-SRAM ( 5 ). Once GenASM-DC completes its search for

the current window, GenASM-TB starts reading the stored

bitvectors from TB-SRAMs ( 6 ) and generates the window’s

traceback output ( 7 ). Once GenASM-TB generates this out-

put, GenASM computes the next window and repeats Steps

3 – 7 until all windows are completed.

Our hardware accelerators are designed to maximize par-

allelism and minimize memory footprint. Our modi�ed

GenASM-DC algorithm is highly parallelizable, and performs

only simple and regular bitwise operations, so we implement

the GenASM-DC accelerator as a systolic array based accelera-

tor. GenASM-TB accelerator requires simple logic operations
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Figure 4. Overview of GenASM.

to perform the TB-SRAM accesses and the required control

�ow to complete the traceback operation. Both of our hard-

ware accelerators are highly e�cient in terms of area and

power. We discuss them in detail in Section 7.

5. GenASM-DC Algorithm
We modify the baseline Bitap algorithm (Section 2.3) to

(1) enable e�cient alignment of long reads, (2) remove the

data dependency between the iterations, and (3) provide par-

allelism for the large number of iterations.

Long Read Support. The GenASM-DC algorithm over-

comes the word-length limit of Bitap (Section 3.1) by storing

the bitvectors in multiple words when the query is longer

than the word size. Although this modi�cation leads to addi-

tional computation when performing shifts, it helps GenASM

to support both short and long reads. When shifting word i of

a multi-word bitvector, the bit shifted out (MSB) of word i – 1

needs to be stored separately before performing the shift on

word i – 1. Then, that saved bit needs to be loaded as the least

signi�cant bit (LSB) of word i when the shift occurs. This

causes the complexity of the algorithm to be dmw e × n × k,

where m is the query length, w is the word size, n is the text

length, and k is the edit distance.

Loop Dependency Removal. In order to solve the two-

level data dependency limitation of the baseline Bitap algo-

rithm (Section 3.1), GenASM-DC performs loop unrolling and

enables computing non-neighbor (i.e., independent) bitvec-

tors in parallel. Figure 5 shows an example for unrolling with

four threads for text characters T0–T3 and status bitvectors

R0–R7. For the iteration where R[d] represents T2–R2 (i.e.,

the target cell shaded in dark red), R[d – 1] refers to T2–R1,

oldR[d – 1] refers to T1–R1, and oldR[d] refers to T1–R2 (i.e.,

cells T2–R2 is dependent on, shaded in light red). Based on

this example, T2–R2 depends on T1–R2, T2–R1, and T1–R1,

but it does not depend on T3–R1, T1–R3, or T0–R4. Thus,

these independent bitvectors can be computed in parallel

without waiting for one another.

Cycle#
Thread1

R0/4
Thread2

R1/5
Thread3

R2/6
Thread4

R3/7

#1 T0-R0 − − −
#2 T1-R0 T0-R1 − −
#3 T2-R0 T1-R1 T0-R2 −
#4 T3-R0 T2-R1 T1-R2 T0-R3
#5 T0-R4 T3-R1 T2-R2 T1-R3
#6 T1-R4 T0-R5 T3-R2 T2-R3
#7 T2-R4 T1-R5 T0-R6 T3-R3
#8 T3-R4 T2-R5 T1-R6 T0-R7
#9 − T3-R5 T2-R6 T1-R7

#10 − − T3-R6 T2-R7
#11 − − − T3-R7

target cell (Rd)
cells target cell depends on (oldRd, Rd-1, oldRd-1) 

data written to memory
data read from memory

Cycle#
Thread1

R0/1/2/..

#1 T0-R0
… …

#8 T0-R7
#9 T1-R0
… …

#16 T1-R7
#17 T2-R0
… …

#24 T2-R7
#25 T3-R0

… …
#32 T3-R7

Figure 5. Loop unrolling in GenASM-DC.
Text-Level Parallelism. In addition to the parallelism

enabled by removing the loop dependencies, we enable

GenASM-DC algorithm to exploit text-level parallelism. This

parallelism is enabled by dividing the text into overlapping

sub-texts and searching the query in each of these sub-texts

in parallel. The overlap ensures that we do not miss any pos-

sible match that may fall around the edges of a sub-text. To

guarantee this, the overlap needs to be of length m+ k, where

m is the query length and k is the edit distance threshold.

6. GenASM-TB Algorithm
After �nding the matching location of the text and the edit

distance with GenASM-DC, our new traceback [14, 51, 62,

63, 117, 120, 154, 163, 168, 169] algorithm, GenASM-TB, �nds

the sequence of matches, substitutions, insertions and dele-

tions, along with their positions (i.e., CIGAR string) for the



matched region (i.e., the text region that starts from the loca-

tion reported by GenASM-DC and has a length of m + k), and

reports the optimal alignment. Traceback execution (1) starts

from the �rst character of the matched region between the

reference text and query pattern, (2) examines each char-

acter and decides which of the four operations should be

picked in each iteration, and (3) ends when we reach the

last character of the matched region. GenASM-TB uses the

intermediate bitvectors generated and saved in each itera-

tion of the GenASM-DC algorithm (i.e., match, substitution,

deletion and insertion bitvectors generated in Lines 15–18

in Algorithm 1). After a value 0 is found at the MSB of one

of the R[d] bitvectors (i.e., a string match is found with d
errors), GenASM-TB walks through the bitvectors back to

the LSB, following a chain of 0s (which indicate matches

at each location) and reverting the bitwise operations. At

each position, based on which of the four bitvectors holds

a value 0 in each iteration (starting with an MSB with a 0

and ending with an LSB with a 0), the sequence of matches,

substitutions, insertions and deletions (i.e., traceback output)

is found for each position of the corresponding alignment

found by GenASM-DC. Unlike GenASM-DC, GenASM-TB

has an irregular control �ow within the stored intermediate

bitvectors, which depends on the text and the pattern.

Algorithm 2 shows the GenASM-TB algorithm and Figure 6

shows an example for the execution of the algorithm for

each of the alignments found in 3 – 5 of Figure 3. In Fig-

ure 6, <x, y, z> stands for patternI, textI and curError,

respectively (Lines 6–8 in Algorithm 2). patternI repre-

sents the position of a 0 currently being processed within

a given bitvector (i.e., pattern index), textI represents the

outer loop iteration index (i.e., text index; i in Algorithm 1),

and curError represents the inner loop iteration index (i.e.,

number of remaining errors; d in Algorithm 1).

When we �nd a 0 at match[textI][curError][patternI]
(i.e., a match (M) is found for the current position; Line 17),

one character each from both text and query is consumed,

but the number of remaining errors stays the same. Thus, the

pointer moves to the next text character (as the text character

is consumed), and the 0 currently being processed (high-

lighted with orange color in Figure 6) is right-shifted by one

(as the query character is also consumed). In other words,

textI is incremented (Line 28), patternI is decremented

(Line 30), but curError remains the same. Thus, <x, y, z>

becomes <x – 1, y + 1, z> after we �nd a match. For example,

in Figure 6a, for Text[0], we have <3, 0, 1> for the indices, and

after the match is found, at the next position (Text[1]), we

have <2, 1, 1>.

When we �nd a 0 at subs[textI][curError][patternI]
(i.e., a substitution (S) is found for the current position;

Line 19), one character each from both text and query is con-

sumed, and the number of remaining errors is decremented

(Line 26). Thus, <x, y, z> becomes <x – 1, y + 1, z – 1> after

we �nd a substitution (e.g., Text[1] in Figure 6b).

When we �nd a 0 at ins[textI][curError][patternI] (i.e.,

an insertion (I) is found for the current position; Lines 13

and 21), the inserted character does not appear in the text,

and only a character from the pattern is consumed. The 0

currently being processed is right-shifted by one, but the

text pointer remains the same, and the number of remaining

errors is decremented. Thus, <x, y, z> becomes <x–1, y, z–1>

after we �nd an insertion (e.g., Text[–] in Figure 6c).

When we �nd a 0 at del[textI][curError][patternI] (i.e.,

a deletion (D) is found for the current position; Lines 15 and

23), the deleted character does not appear in the pattern, and

only a character from the text is consumed. The 0 currently

being processed is not right-shifted, but the pointer moves to

Algorithm 2 GenASM-TB Algorithm

Inputs: text (reference), n, pattern (query), m, W (window size), O (overlap size)

Output: CIGAR (complete traceback output)

1: <curPattern,curText>← <0,0> . start positions of sub-pattern and sub-text

2: while (curPattern < m) & (curText < n) do
3: sub-pattern← pattern[curPattern:(curPattern+W)]
4: sub-text← text[curText:(curText+W)]
5: intermediate bitvectors← GenASM-DC(sub-pattern,sub-text,W)
6: patternI← W-1 . pattern index (position of 0 being processed)

7: textI← 0 . text index

8: curError← editDist from GenASM-DC . number of remaining errors

9: <patternConsumed,textConsumed>← <0,0>
10: prev← "" . output of previous TB iteration

11: while textConsumed<(W-O) & patternConsumed<(W-O) do
12: status← 0
13: if ins[textI][curError][patternI]=0 & prev=’I’
14: status← 3; add "I" to CIGAR; . insertion-extend

15: else if del[textI][curError][patternI]=0 & prev=’D’
16: status← 4; add "D" to CIGAR; . deletion-extend

17: else if match[textI][curError][patternI]=0
18: status← 1; add "M" to CIGAR; prev← "M" . match

19: else if subs[textI][curError][patternI]=0
20: status← 2; add "S" to CIGAR; prev← "S" . substitution

21: else if ins[textI][curError][patternI]=0
22: status← 3; add "I" to CIGAR; prev← "I" . insertion-open

23: else if del[textI][curError][patternI]=0
24: status← 4; add "D" to CIGAR; prev← "D" . deletion-open

25: if (status > 1)
26: curError-- . S, D, or I

27: if (status > 0) && (status != 3)
28: textI++; textConsumed++ . M, S, or D

29: if (status > 0) && (status != 4)
30: patternI--; patternConsumed++ . M, S, or I

31: curPattern← curPattern+patternConsumed
32: curText← curText+textConsumed

Deletion Example (Text Location=0)

Text[0]: C Text[1]: G Text[2]: T Text[3]: G    Text[4]: A

Match(C)       Del(–)        Match(T)      Match(G) Match(A)
<3,0,1>       <2,1,1> <2,2,0>       <1,3,0> <0,4,0>

R0- : ....
R1-M : 0111

R0- : ....
R1-D : 1011

R0-M : 1011
R1- : ....

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Substitution Example (Text Location=1)

Text[1]: G Text[2]: T Text[3]: G    Text[4]: A

Subs(C)       Match(T)      Match(G)       Match(A)
<3,1,1>       <2,2,0> <1,3,0>       <0,4,0>

R0- : ....
R1-S : 0110

R0-M : 1011
R1- : .... 

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Insertion Example (Text Location=2)

Text[–]    Text[2]: T Text[3]: G    Text[4]: A

Ins(C)       Match(T)      Match(G)       Match(A)
<3,2,1>       <2,2,0> <1,3,0>       <0,4,0>

R0- : ....
R1-I : 0110

R0-M : 1011
R1- : .... 

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Figure 6. Traceback example with GenASM-TB algorithm.

the next text character, and the number of remaining errors

is also decremented. Thus, <x, y, z> becomes <x, y + 1, z – 1>

after we �nd an insertion (e.g., Text[1] in Figure 6a).

Divide-and-Conquer Approach. Since GenASM-DC

stores all of the intermediate bitvectors, in the worst case,

the length of the text region that the query pattern maps to

can be m + k, assuming all of the errors are deletions from

the pattern. Since we need to store all of the bitvectors for

m + k characters, and compute 4× k many bitvectors within

each text iteration (each m bits long), for long reads with high

error rates, the memory requirement becomes ~80GB, when

m is 10,000 and k is 1,500.

In order to decrease the memory footprint of the algorithm,

we follow two key ideas. First, we apply a divide-and-conquer

approach (similar to the tiling approach of Darwin’s align-

ment accelerator, GACT [162]). Instead of storing all of the

bitvectors for m+k text characters, we divide the text and pat-

tern into overlapping windows (i.e., sub-text and sub-pattern;

Lines 3–4 in Algorithm 2) and perform the traceback com-

putation for each window. After all of the windows’ partial

traceback outputs are generated, we merge them to �nd the



complete traceback output. This approach helps us to de-

crease the memory footprint from ((m + k) × 4 × k × m)

bits to (W × 4×W ×W ) bits, where W is the window size.

This divide-and-conquer approach also helps us to reduce

the complexity of the bitvector generation step (Section 5)

from dmw e × n × k to dWw e × W × W . Second, instead of

storing all 4 bitvectors (i.e., match, substitution, insertion,

deletion) separately, we only need to store bitvectors for

match, insertion, and deletion, as the substitution bitvector

can be obtained easily by left-shifting the deletion bitvector

by 1 (Line 16 in Algorithm 1). This modi�cation helps us

to decrease the required write bandwidth and the memory

footprint to (W × 3×W ×W ) bits.

GenASM-TB restricts the number of consumed characters

from the text or the pattern to W-O (Line 11 in Algorithm 2)

to ensure that consecutive windows share O characters (i.e.,

overlap size), and thus, the traceback output can be generated

accurately. The sub-text and the sub-pattern corresponding

to each window are found using the number of consumed text

characters (textConsumed) and the number of consumed pat-

tern characters (patternConsumed) in the previous window

(Lines 31–32 in Algorithm 2).

Partial Support for Complex Scoring Schemes. We

extend the GenASM-TB algorithm to provide partial sup-

port (Section 10.2) for non-unit costs for di�erent edits and

the a�ne gap penalty model [14, 62, 117, 168]. By changing

the order in which di�erent traceback cases are checked in

Lines 13–24 in Algorithm 2, we can support di�erent types

of scoring schemes. For example, in order to mimic the be-

havior of the a�ne gap penalty model, we check whether

the traceback output that has been chosen for the previous

position (i.e., prev) is an insertion or a deletion. If the pre-

vious edit is a gap (insertion or deletion), and there is a 0

at the current position of the insertion or deletion bitvector

(Lines 13 and 15 in Algorithm 2), then we prioritize extending

this previously opened gap, and choose insertion-extend or

deletion-extend as the current position’s traceback output, de-

pending on the type of the previous gap. As another example,

in order to mimic the behavior of non-unit costs for di�er-

ent edits, we can simply sort three error cases (substitution,

insertion-open, deletion-open) from the lowest penalty to the

highest penalty. If substitutions have a lower penalty than

gap openings, the order shown in Algorithm 2 should remain

the same. However, if substitutions have a greater penalty

than gap openings, we should check for the substitution case

after checking the insertion-open and deletion-open cases

(i.e., Lines 19–20 should come after Line 24 in Algorithm 2).

7. GenASM Hardware Design
GenASM-DC Hardware. We implement GenASM-DC as

a linear cyclic systolic array [93, 94] based accelerator. The

accelerator is optimized to reduce both the memory band-

width and the memory footprint. Feedback logic enabling

cyclic systolic behavior allows us to �x the required number

of memory ports [93] and to reduce memory footprint.

A GenASM-DC accelerator consists of a processing block

(PB; Figure 7a) along with a control and memory management

logic. A PB consists of multiple processing elements (PEs).

Each PE contains a single processing core (PC; Figure 7b) and

�ip-�op-based storage logic. The PC is the primary compute

unit, and implements Lines 15–19 of Algorithm 1 to perform

the approximate string matching for a w-bit query pattern.

The number of PEs in a PB is based on compute, area, memory

bandwidth and power requirements. This block also imple-

ments the logic to load data from outside of the array (i.e.,

DC-SRAM; Figure 7a) or internally for cyclic operations.

GenASM-DC uses two types of SRAM bu�ers (Figure 7a):

(1) DC-SRAM, which stores the reference text, the pattern

bitmasks for the query read, and the intermediate data gener-

ated from PEs (i.e., oldR values and MSBs required for shifts;

Section 5); and (2) TB-SRAM, which stores the intermediate

bitvectors from GenASM-DC for later use by GenASM-TB.

For a 64-PE con�guration with 64 bits of processing per PE,

and for the case where we have a long (10Kbp) read
1

with

a high error rate (15%) and a corresponding text region of

11.5Kbp, GenASM-DC requires a total of 8KB DC-SRAM stor-

age. For each PE, we have a dedicated TB-SRAM, which stores

the match, insertion and deletion bitvectors generated by the

corresponding PE. For the same con�guration of GenASM-

DC, each PE requires a total of 1.5KB TB-SRAM storage, with

a single R/W port. In each cycle, 192 bits of data (24B) is

written to each TB-SRAM by each PE.

When each thread (i.e., each column) in Figure 5 is mapped

to a PE, GenASM-DC coordinates the data dependencies

across DC iterations, with the help of two �ip-�ops in each

PE. For example, T2–R2 in Figure 5 is generated by PEx in

Cycley , and is mapped to R[d]. In order to generate T2–R2,

T2–R1 (which maps to R[d – 1]) needs to be generated by

PEx–1 in Cycley–1 ( 1 in Figure 7), T1–R1 (which maps to

oldR[d – 1]) needs to be generated by PEx–1 in Cycley–2 ( 2 ),

and T1–R2 (which maps to oldR[d]) needs to be generated

by PEx in Cycley–1 ( 3 ), where x is the PE index and y is the

cycle index. With this dependency-aware mapping, regard-

less of the number of instantiated PEs, we can successfully

limit DC-SRAM tra�c for a single PB to only one read and

one write per cycle.

GenASM-TB Hardware. After GenASM-DC �nishes

writing all of the intermediate bitvectors to TB-SRAMs,

GenASM-TB reads them by following an irregular control

�ow, which depends on the text and the pattern to �nd the

optimal alignment (by implementing Algorithm 2).

In our GenASM con�guration, where we have 64 PEs and

64 bits per PE in a GenASM-DC accelerator, and the win-

dow size (W ) is 64 (Section 6), we have one 1.5KB TB-SRAM

(which �ts our 24B/cycle × 64 cycles/window output storage

requirement) for each of the 64 PEs. As Figure 8 shows, a

single GenASM-TB accelerator is connected to all of these

64 TB-SRAMs (96KB, in total). In each GenASM-TB cycle,

we read from only one TB-SRAM. curError provides the

1
Although we use 10Kbp-long reads in our analysis (Section 9), GenASM

does not have any limitation on the length of reads as a result of our divide-

and-conquer approach (Section 6).

(a) Processing Block (PB), DC-SRAM and TB-SRAMs for each PE (b) Processing Core (PC)
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Figure 7. Hardware design of GenASM-DC.



index of the TB-SRAM that we read from; textI provides the

starting index within this TB-SRAM, which we read the next

set of bitvectors from; and patternI provides the position of

the 0 being processed (Algorithm 2).

We implement the GenASM-TB hardware using very sim-

ple logic (Figure 8), which 1 reads the bitvectors from one of

the TB-SRAMs using the computed address, 2 performs the

required bitwise comparisons to �nd the CIGAR character

for the current position, and 3 computes the next TB-SRAM

address to read the new set of bitvectors. After GenASM-TB

�nds the complete CIGAR string, it writes the output to main

memory and completes its execution.
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Figure 8. Hardware design of GenASM-TB.

Overall System. We design our system to take advantage

of modern 3D-stacked memory systems [58, 92], such as the

Hybrid Memory Cube (HMC) [76] or High-Bandwidth Mem-

ory (HBM) [86, 99]. Such memories are made up of multiple

layers of DRAM arrays that are stacked vertically in a single

package. These layers are connected via high-bandwidth links

called through-silicon vias (TSVs) that provide lower-latency

and more energy-e�cient data access to the layers than the

external DRAM I/O pins [39, 99]. Memories such as HMC

and HBM include a dedicated logic layer that connects to

the TSVs and allows processing elements to be implemented

in memory to exploit the e�cient data access. Due to ther-

mal and area constraints, only simple processing elements

that execute low-complexity operations (e.g., bitwise logic,

simple arithmetic, simple cores) can be included in the logic

layer [3, 4, 23, 24, 43, 56, 72, 73, 91, 119, 137].

We decide to implement GenASM in the logic layer of 3D-

stacked memory, for two reasons. First, we can exploit the

natural subdivision within 3D-stacked memory (e.g., vaults

in HMC [76], pseudo-channels in HBM [86]) to e�ciently en-

able parallelism across multiple GenASM accelerators. This

subdivision allows accelerators to work in parallel without

interfering with each other. Second, we can reduce the power

consumed for DRAM accesses by reducing o�-chip data move-

ment across the memory channel [119]. Both of our hardware

accelerators are highly e�cient in terms of area and power

(Section 10.1), and can �t within the logic layer’s constraints.

To illustrate how GenASM takes advantage of 3D-stacked

memory, we discuss an example implementation of GenASM

inside the logic layer of a 16GB HMC with 32 vaults [76].

Within each vault, the logic layer contains a GenASM-DC

accelerator, its associated DC-SRAM (8KB), a GenASM-TB

accelerator, and TB-SRAMs (64×1.5KB). Since we have small

SRAM bu�ers for both DC and TB to exploit locality, GenASM

accesses the memory and utilizes the memory bandwidth

only to read the reference and the query sequences. One

GenASM accelerator at each vault requires 105–142 MB/s

bandwidth, thus the total bandwidth requirement of all 32

GenASM accelerators is 3.3–4.4 GB/s (which is much less than

peak bandwidth provided by modern 3D-stacked memories).

8. GenASM Framework
We demonstrate the e�ciency and �exibility of the

GenASM acceleration framework by describing three use

cases of approximate string matching in genome sequence

analysis: (1) read alignment step of short and long read map-

ping, (2) pre-alignment �ltering for short reads, and (3) edit

distance calculation between any two sequences. We believe

the GenASM framework can be useful for many other use

cases, and we discuss some of them brie�y in Section 11.

Read Alignment of Short and Long Reads. As we ex-

plain in Section 2.1, read alignment is the last step of short

and long read mapping. In read alignment, all of the remain-

ing candidate mapping regions of the reference genome and

the query reads are aligned, in order to identify the mapping

that yields either the lowest total number of errors (if using

edit distance based scoring) or the highest score (if using

a user-de�ned scoring function). Thus, read alignment can

be a use case for approximate string matching, since errors

(i.e., substitutions, insertions, deletions) should be taken into

account when aligning the sequences. As part of read align-

ment, we also need to generate the traceback output for the

best alignment between the reference region and the read.

For read alignment, the whole GenASM pipeline, as ex-

plained in Section 4, should be executed, including the trace-

back step. In general, read alignment requires more complex

scoring schemes, where di�erent types of edits have non-unit

costs. Thus, GenASM-TB should be con�gured based on the

given cost of each type of edit (Section 6). As GenASM frame-

work can work with arbitrary length sequences, we can use

it to accelerate both short read and long read alignment.

Pre-Alignment Filtering for Short Reads. In the pre-

alignment �ltering step of short read mapping, the candidate

mapping locations, reported by the seeding step, are fur-

ther �ltered by using di�erent mechanisms. Although the

regions of the reference at these candidate mapping loca-

tions share common seeds with query reads, they are not

necessarily similar sequences. To avoid examining dissimi-

lar sequences at the downstream computationally-expensive

read alignment step, a pre-alignment �lter estimates the edit

distance between every read and the regions of the reference

at each read’s candidate mapping locations, and uses this

estimation to quickly decide whether or not read alignment

is needed. If the sequences are dissimilar enough, signi�cant

amount of time is saved by avoiding the expensive alignment

step [9, 10, 13, 176, 177].

In pre-alignment �ltering, since we only need to estimate

(approximately) the edit distance and check whether it is

above a user-de�ned threshold, GenASM-DC can be used as

a pre-alignment �lter. As GenASM-DC is very e�cient when

we have shorter sequences and a low error threshold (due to

the O(m × n × k) complexity of the underlying Bitap algo-

rithm, where m is the query length, n is the reference length,

and k is the number of allowed errors), GenASM framework

can e�ciently accelerate the pre-alignment �ltering step of

especially short read mapping.
2

Edit Distance Calculation. Edit distance, also called Lev-

enshtein distance [100], is the minimum number of edits (i.e.,

substitutions, insertions and deletions) required to convert

one sequence to another. Edit distance calculation is one of

the fundamental operations in genomics to measure the simi-

larity or distance between two sequences [155]. As we explain

in Section 2.3, the Bitap algorithm, which is the underlying

algorithm of GenASM-DC, is originally designed for edit dis-

tance calculation. Thus, GenASM framework can accelerate

2
Although we believe that GenASM can also be used as a pre-alignment

�lter for long reads, we leave the evaluation of this use case for future work.



edit distance calculation between any two arbitrary-length

genomic sequences.

Although GenASM-DC can �nd the edit distance by itself

and traceback is optional for this use case, DC-TB interaction

is required in our accelerator to exploit the e�cient divide-

and-conquer approach GenASM follows. Thus, GenASM-DC

and GenASM-TB work together to �nd the minimum edit

distance in a fast and memory-e�cient way, but the traceback

output is not generated or reported by default (though it can

optionally be enabled).

9. Evaluation Methodology
Area and Power Analysis. We synthesize and place &

route the GenASM-DC and GenASM-TB accelerator data-

paths using the Synopsys Design Compiler [156] with a typi-

cal 28nm low-power process, with memories generated using

an industry-grade SRAM compiler, to analyze the acceler-

ators’ area and power. Our synthesis targets post-routing

timing closure at 1GHz clock frequency. We then use an

in-house cycle-accurate simulator parameterized with the

synthesis and memory estimations to drive the performance

and power analysis.

We evaluate a 16GB HMC-like 3D-stacked DRAM archi-

tecture, with 32 vaults [76] and 256GB/s of internal band-

width [23, 76], and a clock frequency of 1.25GHz [76]. The

amount of available area in the logic layer for GenASM is

around 3.5–4.4 mm
2

per vault [23, 43]. The power budget of

our PIM logic per vault is 312mW [43].

Performance Model. We build a spreadsheet-based ana-

lytical model for GenASM-DC and GenASM-TB, which con-

siders reference genome (i.e., text) length, query read (i.e.,

pattern) length, maximum edit distance, window size, hard-

ware design parameters (number of PEs, bit width of each PE)

and number of vaults as input parameters and projects com-

pute cycles, DRAM read/write bandwidth, SRAM read/write

bandwidth, and memory footprint. We verify the analytically-

estimated cycle counts for various PE con�gurations with the

cycle counts collected from our RTL simulations.

Read Alignment Comparisons. For the read alignment

use case, we compare GenASM with the read alignment steps

of two commonly-used state-of-the-art read mappers: Min-

imap2 [102] and BWA-MEM [101], running on an Intel
®

Xeon
®

Gold 6126 CPU [80] operating at 2.60GHz, with 64GB

DDR4 memory. Software baselines are run with a single

thread and with 12 threads. We measure the execution time

and power consumption of the alignment steps in Minimap2

and BWA-MEM. We measure the individual power consumed

by each tool using Intel’s PCM power utility [81].

We also compare GenASM with a state-of-the-art GPU-

accelerated short read alignment tool, GASAL2 [2]. We run

GASAL2 on an Nvidia Titan V GPU [129] with 12GB HBM2

memory [86]. To fully utilize the GPU, we con�gure the

number of alignments per batch based on the GPU’s number

of multiprocessors and the maximum number of threads per

multiprocessor, as described in the GASAL2 paper [2]. To

better analyze the high parallelism that the GPU provides,

we replicate our datasets to obtain datasets with 100K, 1M

and 10M reference-read pairs for short reads. We run the

datasets with GASAL2, and collect kernel time and average

power consumption using nvprof [130].

We also compare GenASM with two state-of-the-art

hardware-based alignment accelerators, GACT of Darwin

[162] and SillaX of GenAx [55]. We synthesize and execute

the open-source RTL for GACT [161]. We estimate the perfor-

mance of SillaX using data reported by the original work [55].

We analyze the alignment accuracy of GenASM by compar-

ing the alignment outputs (i.e., alignment score, edit distance,

and CIGAR string) of GenASM with the alignment outputs

of BWA-MEM and Minimap2, for short reads and long reads,

respectively. We obtain the BWA-MEM and Minimap2 align-

ments by running the tools with their default settings.

Pre-Alignment Filtering Comparisons. We compare

GenASM with Shouji [9], which is the state-of-the-art FPGA-

based pre-alignment �lter for short reads. For execution time

and �ltering accuracy analyses, we use data reported by the

original work [9]. For power analysis, we report the total

power consumption of Shouji using the power analysis tool

in Xilinx Vivado [175], after synthesizing and implementing

the open-source FPGA design of Shouji [149].

Edit Distance Calculation Comparisons. We compare

GenASM with the state-of-the-art software-based read align-

ment library, Edlib [155], running on an Intel
®

Xeon
®

Gold

6126 CPU [80] operating at 2.60GHz, with 64GB DDR4 mem-

ory. Edlib uses the Myers’ bitvector algorithm [121] to �nd

the edit distance between two sequences. We use the default

global Needleman-Wunsch (NW) [126] mode of Edlib to per-

form our comparisons. We measure the power consumed by

Edlib using Intel’s PCM power utility [81].

We also compare GenASM with ASAP [22], which is the

state-of-the-art FPGA-based accelerator for computing the

edit distance between two short reads. We estimate the perfor-

mance of ASAP using data reported by the original work [22].

Datasets. For the read alignment use case, we evaluate

GenASM using the latest major release of the human genome

assembly, GRCh38 [124]. We use the 1–22, X, and Y chromo-

somes by �ltering the unmapped contigs, unlocalized contigs,

and mitochondrial genome. Genome characters are encoded

into 2-bit patterns (A = 00, C = 01, G = 10, T = 11). With this

encoding, the reference genome uses 715 MB of memory.

We generate four sets of long reads (i.e., PacBio and ONT

datasets) using PBSIM [131] and three sets of short reads (i.e.,

Illumina datasets) using Mason [71]. For the PacBio datasets,

we use the default error pro�le for the continuous long reads

(CLR) in PBSIM. For the ONT datasets, we modify the settings

to match the error pro�le of ONT reads sequenced using R9.0

chemistry [84]. Both datasets have 240,000 reads of length

10Kbp, each simulated with 10% and 15% error rates. The

Illumina datasets have 200,000 reads of length 100bp, 150bp,

and 250bp, each simulated with a 5% error rate.

For the pre-alignment �ltering use case, we use two

datasets that Shouji [9] provides as test cases: reference-read

pairs (1) of length 100bp with an edit distance threshold of 5,

and (2) of length 250bp with an edit distance threshold of 15.

For the edit distance calculation use case, we use the

publicly-available dataset that Edlib [155] provides. The

dataset includes two real DNA sequences, which are 100Kbp

and 1Mbp in length, and arti�cially-mutated versions of the

original DNA sequences with measures of similarity ranging

between 60%–99%. Evaluating this set of sequences with vary-

ing values of similarity and length enables us to demonstrate

how these parameters a�ect performance.

10. Results
10.1. Area and Power Analysis

Table 1 shows the area and power breakdown of each com-

ponent in GenASM, and the total area overhead and power

consumption of (1) a single GenASM accelerator (in 1 vault)

and (2) 32 GenASM accelerators (in 32 vaults). Both GenASM-

DC and GenASM-TB operate at 1GHz.

The area overhead of one GenASM accelerator is

0.334 mm
2
, and the power consumption of one GenASM accel-

erator, including the SRAM power, is 101 mW. When we com-

pare GenASM with a single core of a modern Intel
®

Xeon
®

Gold 6126 CPU [80] (which we conservatively estimate to

use 10.4 W [80] and 32.2 mm
2

[36] per core), we �nd that



GenASM is signi�cantly more e�cient in terms of both area

and power consumption. As we have one GenASM acceler-

ator per vault, the total area overhead of GenASM in all 32

vaults is 10.69 mm
2
. Similarly, the total power consumption

of 32 GenASM accelerators is 3.23 W.

Table 1. Area and power breakdown of GenASM.
Component Area (mm2) Power (W)

GenASM-DC (64 PEs) 0.049 0.033
GenASM-TB 0.016 0.004

DC-SRAM (8 KB) 0.013 0.009
TB-SRAMs (64 x 1.5 KB) 0.256 0.055

Total − 1 vault (32 vaults) 0.334 (10.69) 0.101 (3.23)

10.2. Use Case 1: Read Alignment
Software Baselines (CPU). Figure 9 shows the read align-

ment throughput (reads/sec) of GenASM and the alignment

steps of BWA-MEM and Minimap2, when aligning long noisy

PacBio and ONT reads against the human reference genome.

When comparing with BWA-MEM, we run GenASM with the

candidate locations reported by BWA-MEM’s �ltering step.

Similarly, when comparing with Minimap2, we run GenASM

with the candidate locations reported by Minimap2’s �ltering

step. GenASM’s throughput is determined by the through-

put of the execution of GenASM-DC and GenASM-TB with

window size (W ) of 64 and overlap size (O) of 24.

As Figure 9 shows, GenASM provides (1) 7173× and 648×
throughput improvement over the alignment step of BWA-

MEM for its single-thread and 12-thread execution, respec-

tively, and (2) 1126× and 116× throughput improvement

over the alignment step of Minimap2 for its single-thread and

12-thread execution, respectively.
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Figure 9. Throughput comparison of GenASM and the align-
ment steps of BWA-MEM and Minimap2 for long reads.

Based on our power analysis with long reads, we �nd that

power consumption of BWA-MEM’s alignment step is 58.6 W

and 109.5 W, and power consumption of Minimap2’s read

alignment step is 59.8 W and 118.9 W for their single-thread

and 12-thread executions, respectively. GenASM consumes

only 3.23W, and thus reduces the power consumption of the

alignment steps of BWA-MEM and Minimap2 by 18× and

19× for single-thread execution, and by 34× and 37× for

12-thread execution, respectively.

Figure 10 compares the read alignment throughput

(reads/sec) of GenASM with that of the alignment steps of

BWA-MEM and Minimap2, when aligning short Illumina

reads against the human reference genome. GenASM pro-

vides (1) 1390× and 111× throughput improvement over

the alignment step of BWA-MEM for its single-thread and

12-thread execution, respectively, and (2) 1839× and 158×
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Figure 10. Throughput comparison of GenASMand the align-
ment steps of BWA-MEM and Minimap2 for short reads.

throughput improvement over the alignment step of Min-

imap2 for its single-thread and 12-thread execution.

Based on our power analysis with short reads, we �nd

that GenASM reduces the power consumption over the align-

ment steps of BWA-MEM and Minimap2 by 16× and 18× for

single-thread execution, and by 33× and 31× for 12-thread

execution, respectively.

Figure 11 shows the total execution time of the entire BWA-

MEM and Minimap2 pipelines, along with the total execution

time when the alignment steps of each pipeline are replaced

by GenASM, for the three representative input datasets. As

Figure 11 shows, GenASM provides (1) 2.4× and 1.9× speedup

for Illumina reads (250bp); (2) 6.5× and 3.4× speedup for

PacBio reads (15%); and (3) 4.9× and 2.1× speedup for ONT

reads (15%), over the entire pipeline executions of BWA-MEM

and Minimap2, respectively.

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

Illumina-250bp PacBio - 15% ONT - 15%

Ex
ec

ut
io

n 
ti

m
e 
(s
ec

)

BWA-MEM GenASM (w/ BWA-MEM) Minimap2 GenASM (w/ Minimap2)

2.4 𝑥
1.9 𝑥

6.5 𝑥

3.4 𝑥

4.9 𝑥

2.1 𝑥

Figure 11. Total execution time of the entire BWA-MEM and
Minimap2 pipelines with and without GenASM.

Software Baselines (GPU). We compare GenASM with

the state-of-the-art GPU aligner, GASAL2 [2], using three

datasets of varying size (100K, 1M, and 10M reference-read

pairs). Based on our analysis, we make three �ndings. First,

for 100bp Illumina reads, GenASM provides 9.9×, 9.2×, and

8.5× speedup over GASAL2, while reducing the power con-

sumption by 15.6×, 17.3× and 17.6× for 100K, 1M, and 10M

datasets, respectively. Second, for 150bp Illumina reads,

GenASM provides 15.8×, 13.1×, and 13.4× speedup over

GASAL2, while reducing the power consumption by 15.4×,

18.0×, and 18.7× for 100K, 1M, and 10M datasets, respec-

tively. Third, for 250bp Illumina reads, GenASM provides

21.5×, 20.6×, and 21.1× speedup over GASAL2, while re-

ducing the power consumption by 16.8×, 20.2×, and 20.6×
for 100K, 1M, and 10M datasets, respectively. We conclude

that GenASM provides signi�cant performance bene�ts and

energy e�ciency over GPU aligners for short reads.

Hardware Baselines. We compare GenASM with two

state-of-the-art hardware accelerators for read alignment:

GACT (from Darwin [162]) and SillaX (from GenAx [55]).

Darwin is a hardware accelerator designed for long read

alignment [162]. Darwin contains components that acceler-

ate both the �ltering (D-SOFT) and alignment (GACT) steps

of read mapping. The open-source RTL code available for

the GACT accelerator of Darwin allows us to estimate the

throughput, area and power consumption of GACT and com-

pare it with GenASM for read alignment. In Darwin, GACT

logic and the associated 128KB SRAM are responsible for �ll-

ing the dynamic programming matrix, generating the trace-

back pointers and �nding the maximum score. Thus, we

believe that it is fair to compare the power consumption and

the area of the GACT logic and GenASM logic, along with

their associated SRAMs.

In order to have an iso-bandwidth comparison with Dar-

win’s GACT, we compare only a single array of GACT

and a single set of GenASM-DC and GenASM-TB, because

(1) GenASM utilizes the high memory bandwidth that PIM

provides only to parallelize many sets of GenASM-DC and

GenASM-TB, and a single set of GenASM-DC and GenASM-

TB does not require high bandwidth, and (2) all internal data

of both GenASM and Darwin is provided by local SRAMs. We

synthesize both designs (i.e., GenASM and GACT) at an iso-



PVT (process, voltage, temperature) corner, with the same

number of PEs, and with their optimum parameters.

As Figure 12 shows, for a single GACT array with 64 PEs at

1GHz, the throughput of GACT decreases from 55,556 to 6,289

alignments per second when the sequence length increases

from 1Kbp to 10Kbp, while consuming 277.7 mW of power. In

comparison, for a single GenASM accelerator at 1GHz (with a

64-PE con�guration), the throughput decreases from 236,686

to 23,669 alignments per second when the sequence length

increases from 1Kbp to 10Kbp, while consuming 101 mW of

power. This shows that, on average, GenASM provides 3.9×
better throughput than GACT, while consuming 2.7× less

power. Thus, GenASM provides 10.5× better throughput per

unit power for long reads when compared to GACT.
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Figure 12. Throughput comparison of GenASM and GACT
from Darwin for long reads.

As Figure 13 shows, we also compare the throughput of

GenASM and GACT for short read alignment (i.e., 100–300bp

reads). We �nd that GenASM performs 7.4× better than

GACT when aligning short reads, on average. Thus, GenASM

provides 20.0× better throughput per unit power for short

reads when compared to GACT.
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Figure 13. Throughput comparison of GenASM and GACT
from Darwin for short reads.

We compare the required area for the GACT logic with

128KB of SRAM and the required area for the GenASM logic

(GenASM-DC and GenASM-TB) with 8KB of DC-SRAM and

96KB of TB-SRAMs, at 28nm. We �nd that GenASM requires

1.7× less area than GACT. Thus, GenASM provides 6.6× and

12.6× better throughput per unit area for long reads and for

short reads, respectively, when compared to GACT.

The main di�erence between GenASM and GACT is the un-

derlying algorithms. GenASM uses our modi�ed Bitap algo-

rithm, which requires only simple and fast bitwise operations.

On the other hand, GACT uses the complex and computation-

ally more expensive dynamic programming based algorithm

for alignment. This is the main reason why GenASM is more

e�cient than GACT of Darwin.

GenAx is a hardware accelerator designed for short read

alignment [55]. Similar to Darwin, GenAx accelerates both

the �ltering and alignment steps of read mapping. Unlike

GenAx, whose design is optimized only for short reads,

GenASM is more robust and works with both short and

long reads. While we are unable to reimplement GenAx,

the throughput analysis of SillaX (the alignment accelerator

of GenAx) provided by the original work [55] allows us to

provide a performance comparison between GenASM and

SillaX for short read alignment.

We compare SillaX with GenASM at their optimal oper-

ating frequencies (2GHz for SillaX, 1GHz for GenASM), and

�nd that GenASM provides 1.9× higher throughput for short

reads (101bp) than SillaX (whose approximate throughput

is 50M alignments per second). Using the area and power

numbers reported for the computation logic of SillaX, we

�nd that GenASM requires 63% less logic area (2.08 mm
2

vs.

5.64 mm
2
) and 82% less logic power (1.18 W vs. 6.6 W).

In order to compare the total area of SillaX and GenASM,

we perform a CACTI-based analysis [172] for the SillaX SRAM

(2.02 MB). We �nd that the SillaX SRAM consumes an area

of 3.47 mm
2
, resulting in a total area of 9.11 mm

2
for Sil-

laX. Although GenASM (10.69 mm
2
) requires 17% more total

area than SillaX, we �nd that GenASM provides 1.6× better

throughput per unit area for short reads than SillaX.

AccuracyAnalysis. We compare the traceback outputs of

GenASM and (1) BWA-MEM for short reads, (2) Minimap2 for

long reads, to assess the accuracy and correctness of GenASM-

TB. We �nd that the optimum (W ,O) setting (i.e., window

size and overlap size) for the GenASM-TB algorithm in terms

of performance and accuracy is W = 64 and O = 24. With

this setting, GenASM completes the alignment of all reads in

each dataset, and increasing the window size does not change

the alignment output.

For short reads, we use the default scoring setting of BWA-

MEM (i.e., match=+1, substitution=-4, gap opening=-6, and

gap extension=-1). For 96.6% of the short reads, GenASM

�nds an alignment whose score is equal to the score of the

alignment reported by BWA-MEM. This fraction increases to

99.7% when we consider scores that are within ±4.5% of the

scores reported by BWA-MEM.

For long reads, we use the default scoring setting of Min-

imap2 (i.e., match=+2, substitution=-4, gap opening=-4, and

gap extension=-2). For 99.6% of the long reads with a 10%

error rate, GenASM �nds an alignment whose score is within

±0.4% of the score of the alignment reported by Minimap2.

For 99.7% of the long reads with a 15% error rate, GenASM

�nds an alignment whose score is within ±0.7% of the score

of the alignment reported by Minimap2.

There are two reasons for the di�erence between the align-

ment scores reported by GenASM and the scores reported

by the baseline tools. First, GenASM performs traceback for

the alignment with the minimum edit distance. However,

the baseline can report an alignment that has a higher num-

ber of edits but a lower score than the alignment reported

by GenASM, when more complex scoring schemes are used.

Second, during the TB stage, GenASM follows a �xed order

at each iteration when picking between substitutions, inser-

tions, or deletions (based on the penalty of each error type).

While we pick the error type with the lowest possible cost at

the current iteration, another error type with a higher initial

cost may lead to a better (i.e., lower-cost) alignment in later

iterations, which cannot be known beforehand.
3

Although GenASM is optimized for unit-cost based scoring

(i.e., edit distance) and currently provides only partial support

for more complex scoring schemes, we show that GenASM

framework can still serve as a fast, memory- and power-

e�cient, and quite accurate alternative for read alignment.

10.3. Use Case 2: Pre-Alignment Filtering
We compare GenASM with the state-of-the-art FPGA-

based pre-alignment �lter for short reads, Shouji [9], us-

ing two datasets provided in [9]. When we compare Shouji

(with maximum �ltering units) and GenASM for the dataset

with 100bp sequences, we �nd that GenASM provides 3.7×
speedup over Shouji, while reducing power consumption by

1.7×. When we perform the same analysis with 250bp se-

quences, we �nd that GenASM does not provide speedup

over Shouji, but reduces power consumption by 1.6×.

3
We can add support for di�erent orderings by adding more con�gura-

bility to the GenASM-TB accelerator, which we leave for future work.



In pre-alignment �ltering for short reads, only GenASM-

DC is executed (Section 8). The complexity of GenASM-DC

is O(n×m× k) whereas the complexity of Shouji is O(m× k),

where n is the text length, m is the read length, and k is the

edit distance threshold. Going from the 100bp dataset to the

250bp dataset, all these three parameters increase linearly.

Thus, the speedup of GenASM over Shouji for pre-alignment

�ltering decreases for datasets with longer reads.

To analyze �ltering accuracy, we use Edlib [155] to gener-

ate the ground truth edit distance value for each sequence

pair in the datasets (similar to Shouji). We evaluate the accu-

racy of GenASM as a pre-alignment �lter by computing its

false accept rate and false reject rate (as de�ned in [9]).

The false accept rate [9] is the ratio of the number of dis-

similar sequences that are falsely accepted by the �lter (as

similar) and the total number of dissimilar sequences that are

rejected by the ground truth. The goal is to minimize the false

accept rate to maximize the number of dissimilar sequences

that are eliminated by the �lter. For the 100bp dataset with

an edit distance threshold of 5, Shouji has a 4% false accept

rate, whereas GenASM has a false accept rate of only 0.02%.

For the 250bp dataset with an edit distance threshold of 15,

Shouji has a 17% false accept rate, whereas GenASM has a

false accept rate of only 0.002%. Thus, GenASM provides a

very low rate of falsely-accepted dissimilar sequences, and

signi�cantly improves the accuracy of pre-alignment �ltering

compared to Shouji.

While Shouji approximates the edit distance, GenASM cal-

culates the actual distance. Although calculation requires

more computation than approximation, a computed distance

results in a near-zero (0.002%) false accept rate.
4

Thus,

GenASM �lters more false-positive locations out, leaving

fewer candidate locations for the expensive alignment step

to process. This greatly reduces the combined execution time

of �ltering and alignment. Thus, even though GenASM does

not provide any speedup over Shouji when �ltering the 250bp

sequences, its lower false accept rate makes it a better option

for this step of the pipeline with greater overall bene�ts.

The false reject rate [9] is the ratio of the number of similar

sequences that are rejected by the �lter (as dissimilar) and

the total number of similar sequences that are accepted by

the ground truth. The false reject rate should always be equal

to 0%. We observe that GenASM always provides a 0% false

reject rate, and thus does not �lter out similar sequence pairs,

as does Shouji.

10.4. Use Case 3: Edit Distance Calculation
We compare GenASM with the state-of-the-art edit dis-

tance calculation library, Edlib [155]. Figure 14 compares the

execution time of Edlib (with and without �nding the trace-

back output) and GenASM when �nding the edit distance

between two sequences of length 100Kbp, and also two se-

quences of length 1Mbp, which have similarity ranging from

60% to 99% (Section 9). Since Edlib is a single-thread edit

distance calculation tool, for a fair comparison, we compare

the throughput of only one GenASM accelerator (i.e., in one

vault) with a single-thread execution of the Edlib tool.

As Figure 14 shows, when performing edit distance cal-

culation between two 100Kbp sequences, GenASM provides

22–716× and 146–1458× speedup over Edlib execution with-

out and with traceback, respectively. GenASM has the same

4
The reason for the non-zero false accept rate of GenASM is that when

there is a deletion in the �rst character of the query, GenASM does not count

this as an edit, and skips this extra character of the text when computing

the edit distance. Since GenASM reports an edit distance that is one lower

than the edit distance reported by the ground truth, if GenASM’s reported

edit distance is below the threshold but the ground truth’s is not, GenASM

leads to a false accept.

execution time for both of the cases. When the sequence

length increases from 100Kbp to 1Mbp, the execution time of

GenASM increases linearly (since W is constant, but m + k
increases linearly). However, due to its quadratic complexity,

Edlib cannot scale linearly. Thus, for the edit distance calcu-

lation of 1Mbp sequences, GenASM provides 262–5413× and

627–12501× speedup over Edlib execution without and with

traceback, respectively.

Although both the GenASM algorithm and Edlib’s under-

lying Myers’ algorithm [121] use bitwise operations only for

edit distance calculation and exploit bit-level parallelism, the

main advantages of the GenASM algorithm come from (1) the

divide-and-conquer approach we follow for e�cient support

for longer sequences, and (2) our e�cient co-design of the

GenASM algorithm with the GenASM hardware accelerator.

Figure 14. Execution time comparison of GenASM and Edlib
for edit distance calculation.

Based on our power analysis, we �nd that power con-

sumption of Edlib is 55.3 W and 58.8 W when �nding the

edit distance between two 100Kbp sequences and two 1Mbp

sequences, respectively. Thus, GenASM reduces power con-

sumption by 548× and 582× over Edlib, respectively.

We also compare GenASM with ASAP [22], the state-of-

the-art FPGA-based accelerator for edit distance calculation.

While we are unable to reimplement ASAP, the execution

time and power consumption analysis of ASAP provided

in [22] allows us to provide a comparison between GenASM

and ASAP. ASAP is optimized for shorter sequences and

reports execution time only for sequences of length 64bp–

320bp [22]. Based on [22], the execution time of one ASAP

accelerator increases from 6.8 µs to 18.8 µs when the sequence

length increases from 64bp to 320bp, while consuming 6.8 W

of power. In comparison, we report that the execution time of

one GenASM accelerator increases from 0.017 µs to 2.025 µs

when the sequence length increases from 64bp to 320bp, while

consuming 0.101 W of power. This shows that GenASM pro-

vides 9.3–400× speedup over ASAP, while consuming 67×
less power.

10.5. Sources of Improvement in GenASM
GenASM’s performance improvements come from our al-

gorithm/hardware co-design, i.e., both from our modi�ed

algorithm and our co-designed architecture for this algo-

rithm. The sources of the large improvements in GenASM are

(1) the very simple computations it performs; (2) the divide-

and-conquer approach we follow, which makes our design

e�cient for both short and long reads despite their di�erent

error pro�les; and (3) the very high degree of parallelism

obtained with the help of specialized compute units, dedi-

cated SRAMs for both GenASM-DC and GenASM-TB, and

the vault-level parallelism provided by processing in the logic

layer of 3D-stacked memory.

Algorithm-Level. Our divide-and-conquer approach al-

lows us to decrease the execution time of GenASM-DC

from (
m×(m+k)×k

P×w ) cycles to ((
W×W×min(W ,k)

P×w )× m+k
W–O ) cycles,

where m is the pattern size, k is the edit distance threshold,

P is the number of PEs that GenASM-DC has (i.e., 64), w
is the number of bits processed by each PE (i.e., 64), W is

the window size (i.e., 64), and O is the overlap size between

windows (i.e., 24). Although the total GenASM-TB execution



time does not change ((m + k) cycles vs. ((W – O) × m+k
W–O )

cycles), our divide-and-conquer approach helps us decrease

the GenASM-DC execution time by 3662× for long reads, and

by 1.6 – 3.9× for short reads.

Hardware-Level. GenASM-DC’s systolic-array-based de-

sign removes the data dependency limitation of the underly-

ing Bitap algorithm, and provides 64× parallelism by perform-

ing 64 iterations of the GenASM-DC algorithm in parallel.

Our hardware accelerator for GenASM-TB makes use of spe-

cialized per-PE TB-SRAMs, which eliminates the otherwise

very high memory bandwidth consumption of traceback and

enables e�cient execution.

Technology-Level. With the help of 3D-stacked mem-

ory’s vault-level parallelism, we can obtain 32× parallelism

by performing 32 alignments in parallel in di�erent vaults.

11. Other Use Cases of GenASM
We have quantitatively evaluated three use cases of ap-

proximate string matching for genome sequence analysis

(Section 10). We discuss four other potential use cases of

GenASM, whose evaluation we leave for future work.

Read-to-Read Overlap Finding Step of de Novo As-
sembly. De novo assembly [31] is an alternate genome se-

quencing approach that assembles an entire DNA sequence

without the use of a reference genome. The �rst step of de
novo assembly is to �nd read-to-read overlaps since the refer-

ence genome does not exist [152]. Pairwise read alignment

(i.e., read-to-read alignment) is the last step of read-to-read

overlap �nding [102, 138]. As sequencing devices can intro-

duce errors to the reads, read alignment in overlap �nding

also needs to take these errors into account. GenASM can be

used for the pairwise read alignment step of overlap �nding.

Hash-Table Based Indexing. In the indexing step of read

mapping, the reference genome is indexed and stored as a

hash table, whose keys are all possible �xed-length substrings

(i.e., seeds) and whose values are the locations of these seeds

in the reference genome. This index structure is queried in

the seeding step to �nd the candidate matching locations of

query reads. As we need to �nd the locations of each seed in

the reference text to form the index structure, GenASM can

be used to generate the hash-table based index.

Whole Genome Alignment. Whole genome alignment

[42, 136] is the method of aligning two genomes (from the

same or di�erent species) for predicting evolutionary or famil-

ial relationships between these genomes. In whole genome

alignment, we need to align two very long sequences. Since

GenASM can operate on arbitrary-length sequences as a re-

sult of our divide-and-conquer approach, whole genome align-

ment can be accelerated using the GenASM framework.

Generic Text Search. Although GenASM-DC is opti-

mized for genomic sequences (i.e., DNA sequences), which are

composed of only 4 characters (i.e., A, C, G and T), GenASM-

DC can be extended to support larger alphabets, thus enabling

generic text search. When generating the pattern bitmasks

during the pre-processing step, the only change that is re-

quired is to generate bitmasks for the entire alphabet, instead

of for only four characters. There is no change required to

the edit distance calculation step.

As special cases of general text search, the alphabet can be

de�ned as RNA bases (i.e., A, C, G, U) for RNA sequences or

as amino acids (i.e., A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P,

S, T, W, Y, V) for protein sequences. This enables GenASM

to be used for RNA sequence alignment or protein sequence

alignment [15, 16, 44, 67, 69, 90, 108, 126, 126, 128, 154, 157, 182].

12. Related Work
To our knowledge, this is the �rst approximate string

matching acceleration framework that enhances and acceler-

ates the Bitap algorithm, and demonstrates the e�ectiveness

of the framework for multiple use cases in genome sequence

analysis. Many previous works have attempted to improve (in

software or in hardware) the performance of a single step of

the genome sequence analysis pipeline. Recent acceleration

works tend to follow one of two key directions [8].

The �rst approach is to build pre-alignment �lters that

use heuristics to �rst check the di�erences between two ge-

nomic sequences before using the computationally-expensive

approximate string matching algorithms. Examples of such

�lters are the Adjacency Filter [177] that is implemented for

standard CPUs, SHD [176] that uses SIMD-capable CPUs, and

GRIM-Filter [91] that is built in 3D-stacked memory. Many

works also exploit the large amounts of parallelism o�ered by

FPGA architectures for pre-alignment �ltering, such as Gate-

Keeper [10], MAGNET [11], Shouji [9], and SneakySnake [13].

A recent work, GenCache [122], proposes an in-cache accel-

erator to improve the �ltering (i.e., seeding) mechanism of

GenAx (for short reads) by using in-cache operations [1] and

software modi�cations.

The second approach is to use hardware accelerators for

the computationally-expensive read alignment step. Ex-

amples of such hardware accelerators are RADAR [74],

FindeR [181], and AligneR [180], which make use of ReRAM

based designs for faster FM-index search, or RAPID [65] and

BioSEAL [88], which target dynamic programming accelera-

tion with processing-in-memory. Other read alignment ac-

celeration works include SIMD-capable CPUs [38], multicore

CPUs [57, 109], and specialized hardware accelerators such

as GPUs (e.g., GSWABE [109], CUDASW++ 3.0 [110]), FPGAs

(e.g., FPGASW [49], ASAP [22]), or ASICs (e.g., Darwin [162]

and GenAx [55]).

In contrast to GenASM, all of these prior works focus on ac-

celerating only a single use case in genome sequence analysis,

whereas GenASM is capable of accelerating at least three dif-

ferent use cases (i.e., read alignment, pre-alignment �ltering,

edit distance calculation) where approximate string matching

is required.

13. Conclusion
We propose GenASM, an approximate string matching

(ASM) acceleration framework for genome sequence analy-

sis built upon our modi�ed and enhanced Bitap algorithm.

GenASM performs bitvector-based ASM, which can acceler-

ate multiple steps of genome sequence analysis. We co-design

our highly-parallel, scalable and memory-e�cient algorithms

with low-power and area-e�cient hardware accelerators. We

evaluate GenASM for three di�erent use cases of ASM in

genome sequence analysis for both short and long reads:

read alignment, pre-alignment �ltering, and edit distance cal-

culation. We show that GenASM is signi�cantly faster and

more power- and area-e�cient than state-of-the-art software

and hardware tools for each of these use cases. We hope that

GenASM inspires future work in co-designing algorithms

and hardware together to create powerful frameworks that

accelerate other bioinformatics workloads and emerging ap-

plications.
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