
Revisiting Residue Codes for Modern Memories
The latest and authoritative version of the document is published here: https://ieeexplore.ieee.org/document/9923862

Evgeny Manzhosov, Adam Hastings, Meghna Pancholi, Ryan Piersma, Mohamed Tarek Ibn Ziad, and Simha Sethumadhavan
Department of Computer Science

Columbia University, New York, New York, USA
Email: {evgeny, hastings, meghna, ryan.piersma, mtarek, simha}@cs.columbia.edu

Abstract—Residue codes have been traditionally used for
compute error correction rather than storage error correction.
In this paper, we use these codes for storage error correction
with surprising results. We find that adapting residue codes
to modern memory systems offers a level of error correction
comparable to traditional schemes such as Reed-Solomon with
fewer bits of storage. For instance, our adaptation of residue
code – MUSE ECC – can offer ChipKill protection using
approximately 30% fewer bits. We show that the storage gains
can be used to hold metadata needed for emerging security
functionality such as memory tagging or to provide better detec-
tion capabilities against Rowhammer attacks. Our evaluation
shows that memory tagging in a MUSE-enabled system shows
a 12% reduction in memory bandwidth utilization while pro-
viding the same level of error correction as a traditional ECC
baseline without a noticeable loss of performance. Thus, our
work demonstrates a new, flexible primitive for co-designing
reliability with security and performance.

Keywords-error correcting codes; memory tagging; meta-
data; rowhammer

I. INTRODUCTION

Error Correcting Codes (ECCs) are a standard technique
for improving system reliability and are widely used today.
ECCs improve reliability by encoding data in a redundant
format that uses additional bits of information to identify
and correct data bits that change while in storage or transit.
To minimize storage and transmission overheads, codes that
use fewer redundancy bits for a desired level of reliability
and are easy to implement have gained widespread use.

Residue codes are a specific type of ECC used for detecting
and correcting errors that happen during computation [5],
[59] and were developed in the 1960-70s [16], [30], [71].
Unlike storage-oriented codes like Reed-Solomon codes
[65], residue codes have a nice property that the error
correction information can be computed in parallel with
computational operations: say e is the ECC function, and
f is the computational function, then for residue codes,
e(f (x,y)) = f (e(x),e(y)) for some common functions f .
In contrast, for storage-oriented codes, e(f (x,y)) can be
calculated only after f (x,y) is computed [59].

In this work, we present MUSE, our adaptation of the
residue codes that provides a level of protection similar to
storage-oriented codes but with fewer bits of storage. These

saved bits can be used for storing metadata in a manner that
also protects the metadata itself. As compute and memory are
merging [50], and security and reliability place more demands
on memory [3], [37], [68], codes, such as MUSE, not only
offer a path for better integration of both the compute and
memory components but also enable techniques that need
metadata to improve security or performance.

Residue codes are easy to explain. To protect the data,
we multiply it with a deliberately chosen multiplier before
storing it in memory. When the data is retrieved from memory,
we divide the value by the same chosen multiplier. If there
are no errors between the storage and retrieval, we should
get a remainder of zero. If some bits are flipped, we use the
remainder to locate the bits that need to be corrected [30].

To use the remainders to correct a flipped bit, we need each
remainder to have a one-to-one mapping with the error that
occurred in that bit. Hence, we enumerate all possible error
patterns, compute their values, and search for a multiplier that
leaves a unique remainder for each error. A good multiplier is
the smallest integer number that satisfies the unique remainder
property, as a smaller number requires fewer redundancy bits.

One challenge with adopting the above code to memory
is that memory has to accommodate failure models where
multiple bits can fail. In this case, the number of remainders
grows exponentially with the number of errors, and the
multiplier values become too large for practical use [8], [56].
To overcome this problem, we invent a new optimization
technique we call shuffling. As the name suggests, shuffling
changes the bit positions of the data before it is written to
memory, which changes the distribution of values represent-
ing the errors and their remainders. With shuffling, we can
evaluate the same multiplier multiple times, increasing the
chance of finding a multiplier that gives unique remainders.

Another challenge with using this code for memory
systems (or even compute systems) is that a naı̈ve imple-
mentation will be prohibitive in terms of performance as
it requires expensive multiplication and division operations
on the critical path delaying memory reads and writes. For
instance, using division can take up to 70 cycles [24]. We
show that we can avoid these costs using two optimizations:
First, the MUSE multiplier is fixed and known at design time
which allows us to avoid the cost of general multipliers and

ar
X

iv
:2

10
7.

09
24

5v
2

 [
cs

.A
R

]
 1

9
D

ec
 2

02
2

https://ieeexplore.ieee.org/document/9923862

dividers. We find that specialization of these circuits can
reduce the latencies to about three cycles. Second, we use a
systematic encoding of the codes that mitigates the critical
path latency of these workloads.

With these optimizations, we adopt residue codes to
modern memory systems and compare them to the ChipKill
scheme based on the Reed-Solomon codes with the redun-
dancy of commercial schemes [4], [31] and demonstrate the
following benefits:

• MUSE uses fewer bits of storage than comparable
ChipKill schemes. MUSE corrects multi-bit errors confined
to a single DRAM chip on a DIMM, allowing the system
to withstand a permanent memory chip failure with at
least four fewer redundancy bits than ChipKill codes
used in enterprise systems [4], [31]. We show how these
saved bits can be used to implement ARM Memory
Tagging Extensions [3], saving up to 3% of DRAM power
consumption, and how the bit savings can be used to
store cryptographic hashes that reduce the probability of
successful Rowhammer [23] attack to 2−40.

• MUSE is a single code that can guarantee the correct-
ness of both data in storage and during computation.
MUSE is a promising fit for Processing In-Memory – a
new emerging technology where computation happens
near the data in memory [50]. We show that in the
settings of PIM-enabled HBM2, MUSE could use 2.6×
fewer redundancy bits than the provisions specified in
the standard while protecting the data during both the
storage and the computation without the need for multiple
reliability schemes.

• MUSE ECC is more flexible. MUSE’s codewords division
between the redundancy and data is tunable at single-bit
granularity for any symbol size. This flexible division
allows to design a code with a specific target for the spare
storage. We show that for multiple configurations of the
codeword, data, and redundancy lengths, MUSE provides
ChipKill guarantees, while Reed-Solomon does not due to
its fixed two-symbol redundancy.

• MUSE offers customization of codes to fit error models.
We show how we can cover two classes of errors simultane-
ously: (1) single-bit errors and (2) asymmetrical multi-bit
errors (i.e., errors due to lack of refresh) confined to a
single DRAM chip on a DIMM. We showcase MUSE code
for this model, which uses 13 check bits leaving three bits
for other uses.

The rest of the paper is organized as follows: Section II
provides an overview of residue codes, Section III describes
the construction of MUSE, Section IV presents some practical
codes, Section V details the microarchitecture, Section VI
presents the uses cases, and in Section VII we evaluate the
overheads of MUSE and compare to Reed-Solomon codes.
We discuss related work in Section VIII and conclude with
Section IX.

II. BACKGROUND

In this section, we briefly cover the formulation of
the residue codes. We discuss residue code construction,
including its systematic formulation, and the mapping of
errors to remainders.
Code Construction The following equations describe how
data is encoded into a codeword, how a codeword is decoded
back into data, and how the errors are detected and corrected:

codeword = m×data (1)

remainder = codeword mod m (2)

data =

{
codeword/m remainder = 0
codeword− ferror(remainder)

m otherwise
(3)

The data is encoded to the codeword by multiplying data
by a whole number m (Eq. 1). Upon reading the codeword,
we compute the remainder of the codeword divided by m
(Eq. 2). If the remainder is zero, we can recover the original
data by simply dividing the codeword by m (error-free case);
otherwise we subtract the ferror derived from remainder r to
correct the codeword and then recover the data by dividing
by m (Eq. 3). For this scheme to work, we pick m so that
each remainder corresponds to one error only, allowing for
unambiguous error correction.

The construction above presents a serious problem—the
original data is available only after division. This can
introduce a steep penalty because of the latency of the
division. To avoid this steep penalty for the common case
of no errors, we can use a simple math trick developed by
Chien in 1964 [16]. Chien proposed to separate the data
from the redundancy r by shifting the data in the codeword
left by r bits such that the remaining r bits can be used to
store a special value X , which is chosen in such a way so
that the codeword mod m= 0 as shown in Eq. 4:

codeword = data << r+X

X = m− (data << r) mod m
(4)

This way, the data in the codeword are easily separated from
the redundancy, i.e., X , and no integer division is required
to recover the data. We will use this formulation as a basis
for MUSE so that the data and the error correction bits can
be stored separately (also known as “systematic” encoding).
Mapping Remainders to Bit Positions Next we will
describe how single-bit errors are handled. When an error
flips bits, it transforms the codeword into another codeword.
The difference between the original and erroneous codeword
is what we refer to as the error value. However, unlike in
traditional codes where single bit flip corresponds to a single
error value, in residue codes, each bit flip has two error
values: one for 0→1 bit flips and the other for 1→0 bit flips.

As an illustration, let us look into an example. Say, the
integer value 243 is the codeword. Its binary representation

is: 1111 00112. Now assume that bit b1 (in bold) is flipped
and codeword value becomes 1111 00012 or 241, leading to
the error value of −2. Now let us assume that the codeword
is 972 or 0011 1100 11002. If the same bit b1 was flipped
0→1, corrupting the codeword to be 0011110011102 = 974,
the error value would be +2. Hence, any single bit error may
have two distinct error values, and the value itself depends
on the direction of the bit flip. To identify the corrupted
bit and correct its value, every bit in the word requires two
distinct remainders. Note that both of those error values are
integers powers-of-two: −2=−1×21 and 2= 1×21. Hence,
in general, error at bit bi has error values of Ei =±2i, where
a positive value is for bit error 0→1, and a negative value is
for the error 1→0.

III. MUSE

The material presented in the previous section was devel-
oped back in the 1960s and 70s in the context of computers
that featured arithmetic units1. While the math works well
for memories too, directly applying the ideas to memories is
not straightforward. For instance, just being able to support
single-bit errors is not very useful for memory errors; we need
multi-bit error support as these errors are common enough
to warrant support for a large class of systems. However,
introducing multi-bit error support (naively) increases the
storage requirements of the code [8], [56], making it less
competitive with modern codes. In this section, we build
upon the construction from the previous section and extend
residue codes to fit modern memory systems.

A. Mapping Remainders to Symbol Errors

We start by extending the residue codes to protect against
multi-bit errors confined to a single s-bit-wide DRAM device.
We are interested in this class of errors because codewords
are striped across multiple DRAM chips on a DIMM, and
if one chip fails, the corresponding part of the codeword
will exhibit an s-bit error. Hereon, we define a symbol as a
group of s bits written to a single DRAM device. Each s-bit
symbol may have 2× (2s−1) possible errors— same as the
number of ways for one s-bit number to become a different
s-bit number. For example, for 4-bit symbols, a 4-bit value
can be corrupted via 30 different errors, i.e., to become a
value other than the original. Some of these error values are
positive while others are negative. If the initial data value
was 00002, it could have only 15 positive errors, while 11002
would have three positive and twelve negative error values.

B. Shuffling

However, with the symbol error model, the amount of
errors in the code increases significantly. This increase, in
turn, leads to a higher chance that multiple errors will result
in identical remainders, making it impossible to differentiate
between them for correction. To overcome this issue, we

1Caches were invented in 1965 [78] and DRAM in 1967 [22]

introduce shuffling—a new technique that reduces the chance
of different errors having the same remainder.

We explain shuffling and its benefits with a simple example.
The top portion of Figure 1(a) shows a toy example where the
memory controller writes the data in a shuffled manner into
a DIMM with x2 DRAM devices. In this example, codeword
bits b0 and b3 are written into DRAM device #1, bits b1 and
b2 are placed in device #2, etc. The bottom portion of the
figure shows how shuffling affects the numerical range of
the error values (for convenience, only the positive values
are shown): the error values of the first symbol are 1, 8, or
9, while the error values for the second are 2, 5, or 6. For
instance, for the first symbol, the error value of error pattern
01 changes from 2 to 8 (see the equations in the figure).
As a result, with shuffling, the numerical range of error
values changes from [1,12] to [1,9]. Thus, shuffling results
in a different set of error values, increasing our chances that
a given multiplier can be used to disambiguate the error
patterns.

Mapping Remainders to Shuffled Symbol Errors With
shuffling, an s-bit symbol error is transformed from a
sequential s-bit error into s single-bit errors. Continuing
with our example, failure of DRAM #1 in Figure 1(a) results
in corruption of bits b0 and b3 as opposed to b0 and b1 for
the un-shuffled case. Generalizing, the s-bit shuffled symbol
error may have one of the 3n−1 possible error values. For
example, the first symbol of a codeword from Figure 1(a),
with bits b0 and b1, has six possible error values: ±1,±2, and
±3. After shuffling, this symbol stores bits b0 and b3 and has
eight possible error values: ±1,±7,±8, and ±9. Despite the
increase in the number of error values per symbol, shuffling
enables codes that cannot be defined with the traditional
residue code construction (Section IV).

Figure 1(b) shows how shuffling affects the distribution
and the count of code error values of the MUSE(80,69)
code. The code error values are computed for the sequential
(orange bars) and shuffled (blue bars) bit assignments and
shown in the histogram. The error values for the sequential
bit assignment are fewer, and their frequency distribution
per bin is not uniform. On the other hand, with shuffling
there are more error values, and their frequency is more
uniformly distributed in each bin. However, as expected, the
total number of errors with shuffling is much higher than
without (the area under the blue bars vs. the area under the
orange bars).

Construction The hardware implementation for shuffling is
trivial as it requires only minor changes in signal routing
between the DRAM interface IO and the memory controller
IO. On writes, we encode the codeword, shuffle, and store it
to DRAM. When reading the codeword back from memory,
we first un-shuffle it and then decode.

Memory Controller IO
b0 ...

b0 b1 ...

b2

x2
DRAM

x2
DRAM
b2 b3

bN-1

x2
DRAM

bNbN-1

#2 #M#1

b3b1 bN

Memory Controller IO
b0 ...

b0 b3
...

b2

x2
DRAM

x2
DRAM
b2 b1

...bK

x2
DRAM

bNbK

#2 #M#1

b1 b3 bN

1

Symbol 1 Symbol 2

1

Shuffle

Error
Patterns

Error
Values

1

Symbol 1 Symbol 2

01 10 11 01 10 11 01 10 11 01 10 11

2 1 3 8 4 12 8 1 9 2 4 6

(a)

0 10 20 30 40 50 60 70 80
log2(error value)

0

5

10

15

20

25

Fr
eq

ue
nc

y

Shuffled
Sequential

(b)

Figure 1: (a) Top: implementation of the shuffling in hardware – routing the signals between the memory controller and
DRAM interface in a “shuffled” manner (on the right); bottom: reduction of error values’ numerical range from [1,12] to
[1,9] due to shuffling. After shuffling, DRAM #1 has bits (green color) b0 and b3 of the encoded codeword, resulting in error
value of 8 instead of 2 with sequential assignment (see equations). Here and thereafter, for convenience, only the positive
values are shown. (b) Redistribution of error values due to the shuffling for MUSE(80,69) code.

C. Asymmetrical Errors

Here we consider an asymmetrical error model where
only one type of erroneous transition is possible: 0→1 or
1→0, but not both [49], [60]. Where is this model useful?
Using this error correction model is often useful to protect
against data retention errors in DRAM to reduce the power
spent on refresh. Prior research has shown that the majority
of DRAM cells can hold the data longer than the refresh
period since DRAM refresh frequency is set to ensure the
reliability of the unreliable minority of memory cells [53],
[76]. This conservative approach to DRAM refresh increases
the power spent to refresh the data and, inadvertently, thwarts
performance because during the refresh the memory is
unavailable to serve CPU requests. If we had ECC schemes
with high reliability guarantees against those types of errors,
they might have saved power spent on data refresh and
improve power and performance.

To illustrate how MUSE can handle asymmetric errors,
without loss of generality, we assume 1→0 errors only. Thus,
the single-bit error value must be a negative integer. Similar
to symbol errors, the error values of asymmetrical symbol
errors are a combination of negative error values of individual
bit flips within the symbol. Using only the negative half of
error values cuts down the number of required remainders by
half, increasing the chances of finding a one-to-one mapping
between errors and remainders.

D. Multiplier Search Procedure

Algorithm 1 is a pseudocode implementation for finding
code multipliers2. The algorithm inputs are the code length
n, the symbol size s, and redundancy r. The output is the
list of multipliers (empty, if none are found) satisfying the

2See Appendix A to obtain the C++ implementation.

code constraints, i.e., codeword size, symbol size, etc. We
denote a satisfying code as MUSE(n,k).

The procedure starts (line 1) by assigning codeword bits
to symbols, initializing an empty set of valid multipliers
mults (line 2), and precomputing a required number of
remainders for the code R (line 3). For every multiplier
m (line 4), we compute remainders for error values in the
codeword. For each error pattern (line 7) in symbol Si (line
6), we compute its error values errVal (line 8) by calling
getErrVals() (lines 12- 17). An empty (line 5) remainder set
is filled with computed remainders (line 9) of each errVal.
We compare remainders’ set size to the required number of
remainders R (line 10); if they match, and all the remainders
are not zero, we put multiplier m into the list of valid code
multipliers (line 11). We repeat this procedure until we
exhaustively checked all multipliers in the redundancy bits r.

IV. PRACTICAL CODE EXAMPLES

In this section, we describe MUSE codes for different
error and system models to showcase the flexibility and
applicability of our code in practical modern contexts. Code
parameters, i.e., multipliers and shuffles, are summarized in
Table I. We denote by (n,k) a code that encodes k-bit of data
into n-bit codeword. While both Reed-Solomon and MUSE
can be designed to handle multiple errors, in this section, we
focus only on single-symbol correcting codes as those are
often used to guarantee ChipKill in commercial systems.

To help classify the codes, we propose the following
naming convention based on the error type covered by code:
PST , where P is the error constraint form, S is the size
of the error, and T is error type. We support two types of
errors: B—bidirectional, i.e., bit flips in both directions, and
A— asymmetrical, i.e., bit flips in one direction only, i.e.,
retention errors in DRAM. Both types of S-bit errors may be
either S-bit constrained—marked by C, or unconstrained, i.e.,

Algorithm 1: Code Multiplier Search
input : r redundancy bits, s byte size, n code length
output : List of multipliers mult

1 S← assignBitsToSymbols(s,n); // Section
III-B

2 mults← empty();
3 R← remaindersNeeded(s,n)
4 for oddm ∈ 2r +1 to 2r+1−1 do
5 remSet← empty();
6 for Si ∈ S do
7 for errPattern ∈ 1 to 2s−1 do
8 for errVal∈ getErrVals(errPattern,Si) do
9 remSet.insert(errVal modm);

10 if remSet.size() == R & 0 6∈ remSet then
11 mults.insert(m);
12 Function getErrVals(errPattern, Si):
13 locErrVals← empty();
14 binPattern← to bin(errPattern);
15 for vec∈ genAllVectors(binPattern) do
16 locErrVals.insert(vec ·Si);
17 return locErrVals;

Table I: Design parameters of MUSE codes.

Code multiplier m shufflename type
MUSE(144,132) C4B 4065 None
MUSE(80,69) C4B 2005 None
MUSE(80,67) C8A 5621 Eq.5
MUSE(80,70) C4A U1B 821 Eq.6

Legend:
C Constrained symbols A Asymmetrical errors
U Unconstrained symbols B Bidirectional errors

any consecutive S-bit pattern, marked by U . For example,
C4B code covers any 4-bit bidirectional error in the codeword,
where each 4-bit error may start at bit #0, bit #4, etc., while
U4B is a 4-bit errors that may start at any bit position.

This naming approach highlights the flexibility of MUSE
design. For instance, MUSE(80,70) covers constrained 4-bit
asymmetrical errors and any 1-bit bidirectional error. In this
case, we would name this code C4A U1B.
MUSE(144,132) Single Symbol Correct (SSC) Code
Server and enterprise machines often require a specific
capability known as “ChipKill”. Informally, ChipKill allows
operation even when one or more DRAM chips on a DIMM
completely fail. While the DDR5 standard has been finalized
[41] and devices are being sold, older DDR4 devices will
likely continue to be utilized for at least a few more years.
Hence, we show how MUSE can be used to provide ECC for
DDR4 DIMMs. Rather than designing for device failures,
we design for handling symbol failures, as symbols are at
least as large as DRAM devices and usually a multiple of
the device size. Thus, SSC code guarantees to correct errors

originating in a single device on a DIMM.
To correct single device failure with x4 devices, we use

the MUSE(144,132) code with multiplier m= 4065 and 4-bit
symbols. In our scheme, the data bits are striped across two
DIMMs with 18 x4 devices each, forming a 144-bit channel3.
Under these conditions, MUSE ECC uses only 12 check bits
for 132 bits of data4. In contrast, a traditional Reed-Solomon
code will use 16 check bits for 128 bits of data.
MUSE(80,69) SSC Code The recently published DDR5
standard [41] doubles the number of channels per DIMM,
requiring two 40-bit memory channels per DIMM (32-bit
data + 8-bit parity) [66]. As of this writing, there are no
commercially available DDR5 ECC DIMMs, and as such it
is not clear how exactly the DIMMs will be configured. It
is possible that they could be made of ten x4 devices per
channel, for a total of 20 devices per DIMM, or five x8
devices per channel, for a total of ten devices per DIMM.

Like in DDR4, we propose a 4-bit symbol (80,69) code
with data striped across two channels. MUSE(80,69) code
encodes 69-bit data into 80-bit codewords, using only 11
redundancy bits. With this code, by using only 64-bits for
data, we can correct failure of one device on a DIMM with
five bits to spare; or we can recover two consecutive device-
failures with one bit to spare. In contrast, a traditional Reed-
Solomon(80,64) code with x8 symbols has no spare bits.
MUSE(80,67) Single Device Correct Code Suppose that
we wish to correct a single device failure, and we do not
wish to draw data from two channels on a DDR5 DIMM.
Even in this case, we can design a MUSE code. Assuming
asymmetrical errors, we can design a code with 8-bit symbols
for DDR5 DIMMs. For this code, sequential assignment of
bits to symbols yields no multipliers of 16-bits or less. Thus,
we shuffle the bits between symbols. As a result we found a
multiplier m= 5621 for the following shuffle:

Si∈[0,9]
i = [bi,b10+i,b20+i,b30+i,b40+i,b50+i,b60+i,b70+i] (5)

This MUSE(80,67) code encodes 64 bits of data and three
bits of metadata into an 80-bit codeword while correcting a
single device failure. To use this code over a 40-bit channel
with 80-bit codewords, we split the codewords such that every
bus transaction carries half of the 8-bit symbol to memory
(for all symbols). A similar approach is used by AMD [4].
MUSE(80,70) Single Device Correct Hybrid Code To
showcase the flexibility of the construction approach, we
design a 4-bit symbol code that handles two classes of errors:
(1) asymmetrical symbol errors, and (2) bidirectional single-
bit errors. We call codes that correct more than one type
of error Hybrid codes. As a result, the code encodes 64-bit

3Those 144-bit channels are quite common in systems with IBM Power9
[31] and Intel Xeon [2] CPUs

4We use the term “data” to refer to amount of useful information in the
codeword, and not to the native data sizes.

encoder data
from LLC

codeword
to memory

write path

read path

=?=
error
flag

codeword
from memory

data
to LLC

remainder check bits

decoder

n-k n-k

n

k

corrected
data to LLC

k

kn

Memory
Controller

Error Lookup
Circuit

ADD/SUB

n

error value

error sign +/-

error correction unit

not found

overflow

Figure 2: Memory Controller with integrated MUSE.

data and 6-bit metadata into 80-bit codewords and corrects
two classes of errors. Code parameters are m = 821 with
the following shuffle:

S2×i = [bi,b10+i,b20+i,b30+i], i ∈ [0,9]
S2×i+1 = [b40+i,b50+i,b60+i,b70+i], i ∈ [0,9]

(6)

V. MUSE MICROARCHITECTURE

In this section, we discuss the microarchitectural imple-
mentation of MUSE codes. We start with the system-level
integration, discuss the design of the encoder and decoder, and
conclude with lower-level building blocks and optimizations
for fast multiplication and fast modulo operations that are
required to build efficient decoders and encoders.

A. System Overview

Figure 2 shows a high-level overview of MUSE integrated
into a system. On the read path, for every word read from the
main memory, the decoder computes the remainder, which
is passed to the Error Lookup Circuit (ELC) to determine
whether an error has occurred. If the ELC provides a value
to correct the data, then error correction is performed, and
the Last Level Cache (LLC) will read the corrected data. On
the write path, the data are read from the LLC, encoded, and
transmitted to the memory.
Decoder Figure 3(a) shows the microarchitecture of the
decoder. The decoder uses a fast modulo (described in
Section V-B) circuit to compute the remainder, which is used
for error detection and correction. The decoder is systematic,
i.e., utilizes the separability of the data and does not require
division like in non-systematic residue codes.
Encoder The encoder in Figure 3(b) is similar to the decoder
as it computes the residue using fast modulo. However,
unlike the decoder, encoders need to calculate the value of
X (see Eq. 4) to ensure that codeword mod m= 0.
Error Correction Figure 2 shows the implementation of
the error correction unit which consists of the Error Lookup
Circuit (ELC) and an adder. Each entry in the ELC contains
a remainder, error value, and the sign bit for the adder. The
remainder from the decoder’s output is compared against the

codeword

data remainder

(a)

FAST
MODULO m

k n-k

n

DATA CHK
BITS

n-k

check bits

data

codeword

(b)

FAST
MODULO m

k

n

n-k
n-k

m - X
x

DATA RES

DECODER ENCODER

Figure 3: (a) The systematic decoder has zero delay on the
critical path due to the separation of the data and redundancy
bits. (b) The systematic encoder first computes the value of
X (Eq. 4), and then attaches it to the data making a separable
codeword.

compute the
remainder

NO
remainder == 0

YES

remainder
lookup in ELC

remainder found
YES NO

YESNO symbol
over/underflow?

read codeword
from memory

no errors
detected

correctable error

uncorrectable
error

Figure 4: Error detection and error correction decision
diagram for the MUSE ECC.

remainder field in the ELC entry, and upon a match, the error
value is used to correct the error. The sign bit in the matched
entry directs the adder to subtract or add the error value to
the codeword. For example, for MUSE(144,132) code with
m= 4065, the error correction is built around ELC with 1080
entries and an adder. Each entry is 157 bits wide, where the
first 12 bits are the remainder value, the next 144 bits are
the error value, and the remaining bit is the adder sign bit.

Error Detection There are two ways to detect multi-symbol
errors with MUSE: (1) the computed remainder is not present
in the ELC, or (2) symbol-overflow/-underflow during error
correction (as shown in Figure 4). The first method utilizes
the fact that the code multiplier is greater than the number
of remainders it generates, leading to some remainder values
being unused. Hence, if the ELC does not find the matching
remainder entry, it declares an uncorrectable multi-symbol
error. We base the second detection method on the observation
that errors are symbol-confined by design. Thus, if some
miscorrected multi-symbol errors cause flipping bits beyond
the boundary of the corrected symbol, the multi-symbol
error is detected. This method works because the errors are
corrected with addition/subtraction, and in the case of a

Table II: Summary of arithmetic operations for codes.

Process Operations

decode d = c >> r
r = c mod m

encode r = c mod m
c = d << r− r

r are the redundancy bits, or r = dlog2me

multi-symbol error, it may cause a ripple of 1s or 0s beyond
the symbol boundary.

B. Fast Arithmetic Blocks

We build MUSE with three arithmetic operations: integer
division, multiplication, and modulo. Both encoding and the
decoding are done by computing the modulo (see Table II).
Division by Constant The decoder uses modulo for error
detection/correction and relies on a fast dividers and multipli-
ers. However, even the fastest processors take 13–95 cycles
for integer division [24]. Two insights help us to substantially
reduce decoder latencies: (1) a general divider is not required
since we always divide by a known multiplier of the code m.
(2) using multiplication by the inverse instead of the division—
a known optimization technique in compilers [7], [28], [51].
As a result, we reduce the problem of designing a fast divider
to a task of designing a fast multiplier by a constant.
Multiplication by Constant Generic integer multiplication
of 64-bit operands is typically done in 3–4 cycles in most
modern CPUs. However, because decoding is on a critical
path and the codewords are at least 80-bit long, we need
a much faster multiplier. We achieve this goal with a
custom Wallace Tree [75] multiplier based on Radix-4 Booth
Encoders [55]. Figure 5(a) outlines the multiplier with its
three components: (1) Multiplier encoder with Radix-4 Booth
Encoding (BE), which reduces the number of partial products
by half, and makes the tree shallower, (2) Wallace tree that
performs the summation of partial products, and (3) a final
adder that produces the result. We optimized the depth of
the Wallace Tree further by analyzing partial products and
removing those always equal to zero from the multiplier tree,
further reducing the latency, hardware, and energy costs of
the multiplier. For example, for the MUSE(144,132) code,
Booth Encoding of the multiplier’s inverse value has 73
partial products, of which 23 are equal to 0. By eliminating
these, we reduce the depth of the Wallace tree by one level,
thus reducing the latency by three XOR delays. Table III
summarizes the multipliers, their inverses and shift amounts
we used to implement the codes.
Modulo by Constant The naive approach to compute c
mod m is as follows:

r = c−m×bc/mc (7)

where the division may be a multiplication with the inverse.
As a result, the latency of the modulo operation is the latency

Wallace Tree

Partial Product
Generation

C
on

st
an

t
M

ul
tip

lie
r m

B
oo

th
En

co
de

r

Adder

Multiplicand

w
ho

le
fr

ac
tio

na
l

FA
ST

D

IV
IS

IO
N

 B
Y

C
O

N
ST

A
N

T
m

FA
ST

M

U
LT

IP
LI

ER
 B

Y
C

O
N

ST
A

N
T
m

w
ho

le
fr

ac
tio

na
l

Product

X

X
m

od
 mn n+L

L

rb+L

rb

(b)

(a)

Figure 5: (a) The outline of a multiplier with Booth Encoding.
Three main components are Booth Encoding, Wallace Tree,
and final adder stage. (b) Microarchitecture of a circuit for
direct remainder computation. Both multipliers are multipliers
from (a), implementing a scheme described by Lemire [51].

Table III: Multipliers and their inverses for MUSE codes.

m Inverse Value
4065 22470812382086453231913973442747278899998963∗
2005 77178306688614730355307�
5621 1761878725188230243585305α

821 753922070210341214920295β

shift right by: ∗ 156, � 87, α 93, and β 89 bits

of two multiplications and one subtraction, which can be
done in 7 cycles on a modern CPU [24]. However, the
technique developed by Lemire et al. [51] allows computing
the modulo even faster. The idea is based on using discarded
fractional bits from the division (within b·c in Eq.7). When
the value represented by these bits is multiplied by the code
multiplier m, the upper r bits of the product are equal to
the result of a modulo. Figure 5(b) shows a schematic of
a circuit implementing this scheme with two consecutive
multiplications. The second multiplier is much faster than
the first one because it multiplies by m – a much smaller
integer than the inverse of m. Therefore, the resulting latency
of a custom modulo circuit is much shorter than the latency
of serialized CPU operations.

VI. MUSE USE CASES

In this section, we discuss co-design opportunities
for MUSE codes.

A. Exploiting Unused States for Security

Let us start with an obvious case. Consider a MUSE(80,69)
code with an 11-bit multiplier m = 2005, thus giving us

five bits of space that one can use for metadata. In other
words, with an 80-bit codeword, we can store up to 69 bits
of data and still get ChipKill-like functionality, but since
the basic granule of protection is 64 bits (8 bytes) in most
existing schemes, we get to store five additional bits of
free storage. This storage can be put to several uses, for
example, the ARM Memory Tagging Extensions (MTE) [3]
or Rowhammer detection [48]. We discuss the integration
of MUSE with ARM MTE in Section VII-D, and in the next
section we discuss Rowhammer resiliency.
Rowhammer Detection In 2019, Cojocar et al. [18] showed
that it is possible to bypass the ECC and execute a successful
rowhammer-based attack on a system. Indeed, common ECC
schemes are not designed to withstand a high number of bit
flips within a codeword as their detection capabilities are
limited by available ECC storage. Because MUSE is more
storage-efficient, it can be used to mitigate Rowhammer-based
attacks (e.g., [80]). For example, we use the salvaged five
bits per word provided by MUSE(80,69)— which amounts
to 40 bits per cache line—to store a hash code of the cache
line’s worth of data. Hence, when the attacker rowhammers
the bits in memory, they must also predictably corrupt the
hash; otherwise, the attack will be detected due to the hash
mismatch. Thus, the attacker must profile the effectiveness
of Rowhammer on a cache line and not a word granularity,
as they have to be sure that the corrupted cache line and
hash match. If the attacker misses flipping one of the bits,
the attack will fail with the probability of 1−2−40 (i.e., the
chance of collision for a 40-bit hash). In addition, the attacker
should consider that presence of even a simple ECC scheme
increases the time to rowhammer from minutes to days [18];
with hashing, the time to carry out the attack may increase
to weeks, rendering this kind of exploitation impractical.

B. Reliable Processing In-Memory

The idea behind Processing In-Memory (PIM) is to
compute near the data—i.e., in the main memory. Recently,
PIM advanced from a theoretical research topic toward a prac-
tical hardware implementation of the multiply-accumulate
(MAC) units within a commercial-grade HBM2 device
[50]. While the parity-based ECC seems to be a natural
choice to protect the data of PIM modules, MUSE is more
advantageous because it can protect both the stored data
and the computation itself without the need to convert the
redundancy information between the codes. For example, let
us consider a setup used by Lee et al. [50]: an HBM2 device
with integrated MACs for the acceleration of neural-network
applications. In this device, the data are read in 256b words
and transferred to MACs for computation. To protect the data
and the compute, one can use MUSE(268, 256, m= 3621)
code with only 12 bits of redundancy. HBM provisions 64b
for ECC storage for each 64B of data, or 32b per 256b of
data – 2.6× more than needed for MUSE(268, 256, m= 3621)
code. The saved 20 bits from multiple 256b words provide

enough space to store cryptographic authentication codes
to guarantee the integrity of the data. Moreover, PIMs may
use error information to diagnose the arithmetical units at
runtime and guarantee reliable computation.

VII. RESULTS

In this section, we study the following research questions:
1) How do MUSE and Reed-Solomon code trade off storage

for higher reliability guarantees?
2) How do the VLSI overheads of MUSE compare to

traditional codes?
3) How does the performance overhead of MUSE compare

to Reed-Solomon codes?
4) What are the benefits of co-designing MUSE with

memory tagging?
5) How does the flexibility of MUSE compare to a Reed-

Solomon code?

A. Reliability Trade Off: Reed-Solomon vs. MUSE

To compare Reed-Solomon and MUSE codes, we evaluate
them across four parameters: (1) number of saved bits, (2)
practicality for DRAM, (3) single symbol error correction,
and (4) multi-symbol error detection rates.
Saved Bits, Practicality, and Error Correction Both Reed-
Solomon and MUSE ECC can be designed to offer space to
store the metadata. Reed-Solomon codes that offer saved
bits, however, are not practical in the context of DRAM
memories because they may store more than one symbol in a
single chip. For example, let us assume a DIMM made with
4-bit DRAM devices protected by Reed-Solomon code with
5-bit symbols. This code saves six bits of storage, permitting
134 bits of data to be encoded into a 144-bit codeword. In
this scenario, the last bit of the first symbol and the first
three bits of the second are written to the same x4 device. If
that device fails, the code will not correct the error because
there are two corrupted symbols instead of one. Thus, this
Reed-Solomon code cannot offer ChipKill error correcion.
Hence, we always need to evaluate bits savings in the context
of the resulting code.
Error Detection MUSE ECC allows repurposing saved
storage to gain higher multi-symbol error detection rates. This
can be done by choosing a larger multiplier value that can be
stored within the available redundancy bits. For example, we
can design two codes: MUSE(144,128) and MUSE(144,132).
While both codes offer single symbol correction, the first
code gives up four saved bits to store a larger multiplier
value (65519 vs. 4065) and gains higher multi-symbol error
detection: 99.17% vs. 86.71%. The Reed-Solomon code, on
the other hand, trades off both error correction and detection
guarantees to gain storage, effectively rendering those codes
impractical. However, while choosing zero saved bits, both
RS(144,128) and MUSE(144,128) offer similar multi-symbol
detection (MSED) rates of 99.36% and 99.17%. If the saved
bits are used store a hash, as they are used in Rowhammer

Table IV: Design points of MUSE and Reed-Solomon codes:
Bit savings and Multi-Symbol Error Detection rates.

Code Extra Bits
0 1 2 3 4 5 6

RS 99.36 Ø 95.55 Ø 86.79 Ø 53.96
MUSE 99.17 98.35 96.70 93.39 86.71 85.03 Ø
Legend:

Ø Code does not exist.
144b ChipKill protection. 80b ChipKill protection.
Not practical code – does not guarantee ChipKill protection.

MSED Error detection across multiple DRAMs at the same time.

protection, MUSE’s MSED rate increases even further to the
chance of detectable hash collisions, which is likely higher
than the MSED rate achievable by a Reed-Solomon code,
while achieving better security.

Table IV shows MSED rates and bit-savings for various
Reed-Solomon and MUSE codes constrained to 144-bit
codeword for x4 (5-bits savings shows MUSE(80,69) code).
We see that both code families provide spare bits at the
cost of reduced multi-symbol error detection rates. However,
Reed-Solomon codes also lose ChipKill guarantees due to
misalignment of symbols with device boundaries because of
the constant two-symbol redundancy. For instance, to gain
four spare bits with Reed-Solomon codes, one must use 6-bit
symbols (12-bit redundancy) to design RS(144,132) code.
This code is not practical because 6-bit-wide DRAMs do
not exist. On the other hand, with MUSE ECC, one simply
picks a multiplier that guarantees ChipKill correction and
the desired bit savings. Moreover, due to their construction
constraints, Reed-Solomon codes offer bit savings only in
multiples of two, while MUSE allows for more fine-grained
trade offs between the required storage and MSED rates.

To compute multi-symbol detection rates, we used a
Monte-Carlo-based simulator. In an n-symbol codeword, the
simulator randomly samples 10000 out of all

(n
k

)
possible

k-symbol error patterns. Each of the chosen k symbols is
randomly corrupted, constructing a multi-symbol error. For
each multi-symbol error, we computed a syndrome and
compared this syndrome to all the syndromes of single
symbol errors. If no match is found, then that specific multi-
symbol error is detectable. Additionally, MUSE also detects
multi-symbol errors caused by the ripple of 1s or 0s across
symbol boundaries. The fraction of detectable multi-symbol
errors, out of all sampled multi-symbol errors, is the multi-
symbol error detection rate.

B. VLSI Overheads

We implemented the basic arithmetic blocks, decoders,
encoders and error correctors in Verilog and synthesized
them with Synopsys Design Compiler Version: R-2020.09-
SP4 using NangateOpenCell 15nm open-source standard cell
library [57]. The synthesis ran with hierarchy ungrouping
and high effort for delay, power, area optimizations. Table V

summarizes the latency and silicon area for the components
of all discussed codes.

The encoder latency of the MUSE(144,132) code is 1.129ns,
while the error correction latency (including remainder com-
putation and ELC) is 1.048ns. Assuming a clock frequency
of 2400 MHz (or 417ps), the encoder delays the writes to the
main memory by three clock cycles, while error correction
delays the reads by three clock cycles. For the systematic
code, in the common case of no errors, reads have no delay.
Reed-Solomon Code Implementation We picked Reed-
Solomon codes because they are representative single-device
correct ECC schemes. The Reed-Solomon code is systematic;
thus, no decoding is required. We picked the PGZ algorithm
[77] to implement the encoders and error correction units for
Reed-Solomon codes. In addition, for simplicity, we picked
lookup tables to implement Galois Field arithmetic.

Reed-Solomon encoders are simple XOR trees imple-
menting binary multiplication of generator matrix and data,
resulting in low area overheads and single clock cycle latency.
However, error correction is more complicated as it requires
Galois Field arithmetic. Hence, the main factor differentiating
Reed-Solomon codes’ latency and silicon area of the error
correction circuitry is the symbol size, i.e., the number of
entries in the lookup tables for symbol arithmetic. The latency
for error correction is 0.38ns, area overheads are between
842 to 1053µm2, and power consumption ranges from 2 to
2.7mW (See Table V).
Comparison Because the Reed-Solomon codes can be
implemented with simple XOR trees of moderate depth,
they result in a smaller area and shorter latencies than
comparable MUSE codes. For example, MUSE(80,67) code
uses 12× more silicon area than RS(80,64), adding two
more clock cycles of latency. These high area overheads
are expected because Wallace Tree nodes are two serially
connected full adders, while XOR trees use a single XOR
gate. For the error correction, Reed-Solomon has a slightly
smaller delay of single a clock cycle vs. three cycles of MUSE.
The lead of Reed-Solomon codes is not surprising, as those
are natively suited for binary arithmetic.

C. Performance

Simulation Setup We evaluated the performance impact
of MUSE ECC with the gem5 simulator [9] and SPEC
2017 (v1.1.5) benchmarking suite [12]. We configured a
Haswell-like CPU with 3.4GHz frequency, 64kB L1 cache
equally split for instructions and data, L2 256kB/core, L3
of 8MB, and 32GB DDR4 memory. For the simulation,
we picked the TimingSimpleCPU model that provides a
detailed timing simulation of the memory subsystem while
executing instructions in a single clock cycle. We used gcc
4.8.5 to build dynamically-linked fprate and intrate
SPEC 2017 benchmarks with -O3 optimization level. We
executed the benchmarks with the reference inputs for 10

Table V: Implementation results of the encoders and error correctors for MUSE and Reed-Solomon ECC schemes.

Code Encoder Error Corr. & Det. GEM5 Latency
Latency, ns std cells Area, µm2 Power, mW Latency, ns std cells Area, µm2 Power, mW Enc Dec

MUSE(144,132) 1.129 33312 10999 5.11 1.048 45493 13648 8.56 3 0
MUSE(80,69) 1.177 11953 4166 5.22 1.179 18422 5593 5.64 3 0
MUSE(80,67) 1.154 14655 4896 4.14 1.018 24043 7092 6.22 3 0

MUSE(80,70) H 1.181 13775 4772 4.15 0.859 18937 5719 5.80 3 0
RS(144,128) 0.219 1158 737 2.67 0.376 2884 1053 2.70 1 0

RS(80,64) 0.124 542 359 1.31 0.381 2540 617 1.99 1 0

50
0.

pe
rl

be
nc

h_
r

50
2.

gc
c_

r

50
3.

bw
av

es
_r

50
5.

m
cf

_r

50
7.

ca
ct

uB
SS

N
_r

50
8.

na
m

d_
r

51
0.

pa
re

st
_r

51
1.

po
vr

ay
_r

51
9.

lb
m

_r

52
0.

om
ne

tp
p_

r

52
1.

w
rf

_r

52
3.

xa
la

nc
bm

k_
r

52
5.

x2
64

_r

52
6.

bl
en

de
r_

r

53
1.

de
ep

sj
en

g_
r

53
8.

im
ag

ic
k_

r

54
1.

le
el

a_
r

54
4.

na
b_

r

54
8.

ex
ch

an
ge

2_
r

54
9.

fo
to

ni
k3

d_
r

55
4.

ro
m

s_
r

55
7.

xz
_r

AV
ER

AG
E

G
M

EA
N

0.98

0.99

1.00

1.01

N
or

m
al

iz
ed

Sl
ow

do
w

n

MUSE RS MUSE Always Correction RS Always Correction

Figure 6: Normalized slowdown of a system due to the addition of ECC encoding/decoding on a memory interface. Modeled
in gem5 using latencies from decoders/encoders synthesized with NangateOpenCell 15nm open-source process [57].

billion instructions, which is long enough to warm up the
caches and put the system in a steady state.

To emulate encoding latency, we delay each write transac-
tion on the memory interface by the latency of the encoder.
There is no decoding penalty because all the evaluated codes
are systematic. To estimate performance penalty due to the
delay of error correction, we delay memory reads by the
latency of the error-correcting circuit. To achieve this goal,
we modified the memory controller of the gem5 simulator.
For convenience, the extra latencies are summarized in the
last two columns of Table V.

Results and Discussion Figure 6 summarizes the slowdown
of SPEC 2017 due to two evaluated scenarios: (1) error-free
operation, and (2) error correction on every read operation.
We see from the figure that MUSE (blue bars) and Reed-
Solomon (orange bars) have similar performance to the
baseline, despite MUSE taking two more cycles for encoding
than Reed-Solomon. This is likely as write operations are
rarely on a critical path of the system, and delaying them by
one or three cycles is unlikely to be critical for performance.
In the worst-case scenario where every memory read results
in corrupted data, Reed-Solomon (red bars) would have
a slightly better performance than MUSE (green bars)—a
slowdown of 0.09% vs. 0.2% on average. As we see from
those results, performance overheads of MUSE are minimal
and comparable to those of the Reed-Solomon code.

D. Case Study: Memory Tagging

In this section, we analyze how the use of MUSE with ARM
MTE [3]-like memory tagging security scheme improves
the power consumption of a system without impact on
performance. As a baseline, we assume a system with ECC
and a memory tagging scheme where every sixteen bytes of
memory have a four-bit tag (similar to ARM MTE), i.e., 16
bits of metadata for 512 bits of data.
Overview There are two approaches to implementing this
scheme in hardware. In the first approach, the metadata is
stored in a disjoint manner in a special region of the main
memory. Thus, when the metadata is needed, an additional
memory request would bring it to the CPU from the main
memory. To mitigate the penalty of additional memory reads
on performance, metadata caches may be used to cache
the metadata for later use, effectively reducing the number
of memory reads. The downsides of this approach are (1)
more complicated design (integration of metadata caches,
additional state machines to track the metadata state, etc.), and
(2) increased power consumption due to metadata memory
traffic and metadata caches. The second approach is to
store the metadata in the ECC portion of the main memory,
forgoing all ECC guarantees of a system. The benefits of this
approach are clear: (1) in-lined metadata, (2) no need for more
complex hardware, and (3) no increased power consumption
as only the relevant metadata is fetched from DRAM. The
downside is that the system has no ECC. MUSE allows the
system designer to enjoy the benefits of both approaches by

50
0.

pe
rl

be
nc

h_
r

50
2.

gc
c_

r

50
3.

bw
av

es
_r

50
5.

m
cf

_r

50
7.

ca
ct

uB
SS

N
_r

50
8.

na
m

d_
r

51
0.

pa
re

st
_r

51
1.

po
vr

ay
_r

51
9.

lb
m

_r

52
0.

om
ne

tp
p_

r

52
1.

w
rf

_r

52
3.

xa
la

nc
bm

k_
r

52
5.

x2
64

_r

52
6.

bl
en

de
r_

r

53
1.

de
ep

sj
en

g_
r

53
8.

im
ag

ic
k_

r

54
1.

le
el

a_
r

54
4.

na
b_

r

54
8.

ex
ch

an
ge

2_
r

54
9.

fo
to

ni
k3

d_
r

55
4.

ro
m

s_
r

55
7.

xz
_r

AV
ER

AG
E

G
EO

M
EA

N

(a)

0.99

1.00

1.01

1.02

1.03

1.04

N
or

m
al

iz
ed

Sl
ow

do
w

n

50
0

50
2

50
3

50
5

50
7

50
8

51
0

51
1

51
9

52
0

52
1

52
3

52
5

52
6

53
1

53
8

54
1

54
4

54
8

54
9

55
4

55
7

AV
G

G
EO

(b)

1.00

1.02

1.04

1.06

N
or

m
al

iz
ed

D
RA

M
 P

ow
er

50
0

50
2

50
3

50
5

50
7

50
8

51
0

51
9

52
0

52
1

52
3

52
5

52
6

53
1

53
8

54
1

54
4

54
9

55
4

55
7

51
1

54
8

AV
G

G
EO

(c)

0.80

1.00

1.20

1.40

1.60

1.80

2.00

N
or

m
al

iz
ed

 c
ou

nt
 o

f
D

RA
M

 r
d+

w
r

op
er

at
io

ns

MUSE MT Base MT 32-entry Cache

Figure 7: Integration of Memory Tagging (MT) and MUSE.
All the results normalized to MUSE: (a) Normalized slow-
down, (b) normalized DRAM power consumption, and (c)
normalized number of read/write operations.

storing the in-lined metadata in the unused bits of the code
to gain performance, lower power consumption, simplify the
design, and keep ChipKill-level ECC protection.
Evaluation Setup We evaluate the following aspects of
the system: (1) performance, (2) memory bus traffic, and
(3) power consumption. To do so, we modified the gem5
simulator to issue an additional memory read for each
cache miss to read a cache line worth of metadata from
reserved memory space. In addition, for the system with
metadata caching, we introduced a 32-entry 16kB metadata
cache for memory tags. We conservatively assume that
metadata caches consume no power. We used the same gem5
configuration as in Section VII-C and evaluated the following
three configurations: (1) memory tagging with MUSE, (2)
Reed-Solomon ECC with, and (3) without metadata caches.
The SPEC-2017 benchmarks were run for 10B instructions
on each of those configurations to measure execution latency,
DRAM power consumption, and the number of read/write
transactions on the memory bus.
Results and discussion We summarize the simulation results
in Figure 7. Figure 7(a) shows that only the introduction of
the metadata caches can eliminate the overheads of memory
tagging and equalize its performance with that of MUSE—
an improvement of about 1% compared to metadata-less

Table VI: Power consumption summary.

Scheme Components, [mW]
DRAM ECC Total [mW] diff, [mW]

MT w/ MUSE 6468 2×14 6496 0
MT w/ 16kB cache 6517 2×5 6527 +31
MT w/o cache 6601 2×5 6611 +115

memory tagging. Moreover, while the metadata caching
reduces DRAM power consumption from 1.7% to 0.72%
(peaking at 2.8% for 519.lbm), MUSE still saves on average
0.72% of DRAM power (Figure 7(b)). Finally, Figure 7(c)
shows that while the metadata memory requests improved
with caching (67% vs. 12% on average), memory tagging
with caches still requires, on average, 12% more metadata
accesses than MUSE, which requires zero additional memory
requests due to its storage efficiency. These metadata requests
will result in the increased power consumption of the CPU’s
memory controllers.

Table VI summarizes the total power consumption of the
evaluated schemes. As we see from the summary, despite
requiring more silicon area and power for MUSE, the overall
system with memory tagging and MUSE saves at least 115 mW
and 12% of memory bandwidth while offering ChipKill
guarantees and a simpler system design.

E. Flexibility: Reed-Solomon vs. MUSE

Here we evaluate the flexibility of Reed-Solomon
and MUSE codes by comparing how the code length, symbol
size, and redundancy are interlinked and their effect on
the properties of a resulting code. We define the code as
flexible if its codeword and data length can be adjusted with
fine resolution (e.g., single-bit), the code can accommodate
different symbol sizes multiple error models efficiently.

For the Reed-Solomon code, redundancy, code, and data
lengths are all functions of the symbol size. For example,
for a single-symbol error correcting Reed-Solomon code,
the redundancy is always two symbols long. Hence, there
is only one Reed-Solomon code for a given symbol size
and codeword length. Moreover, the Reed-Solomon code
by design does not differentiate between bit flip directions,
making it a poor fit for the model of asymmetrical errors,
as the Reed-Solomon code will require the same number of
redundancy bits for asymmetrical and bidirectional errors.

For MUSE ECC, symbol size and code length define the set
of valid code multipliers—basically determining the number
of redundancy and data bits in the codeword. If the number
of available data bits is more than needed, i.e., the code
works with fewer redundancy bits, these saved bits can store
the metadata, be used for larger multiplier values improving
error detection, or can be discarded to create a shorter code
(saving system resources). In addition, MUSE ECC allows
the combination of multiple physical error models into one
code as long as a suitable multiplier is found.

VIII. RELATED WORK

MUSE builds upon an interesting 60-year history of prior
work on error correction (a brief historical overview is shown
in Figure 8).

Around the same time when BCH and Reed-Solomon
codes were developed [10], [32], [65], in 1960 Brown
published what is now referred to as an “AN” code [11]. The
work was developed in the context of robust error correction
for arithmetic circuits. To generate a codeword for a data,
a word N it is multiplied by an integer A. To retrieve the
data word (and/or check for errors), the code word is divided
by A. In AN codes, if the sum of two codewords, say, A · x
and A · y, is also a code word, A · (x+ y), then any error in
addition or subtraction can be identified by dividing the result
by A and checking the error remainder. A variation of AN
codes called residue codes [16], [30] were also developed
in the context of fault-tolerant arithmetic units. Instead of
creating a code word as A ·N, residue codes are created as
N×P+A−B, where P is a power of 2 and B is the remainder
when N is divided by a multiplier A. The nice thing about this
construction is that it makes the code systematic, i.e., the data
bits are separated from the check bits. This work and other
works [8], [56] were published in the pre-Moore’s-Law era,
when there was a significant paucity of transistors and when
multiplications and divisions were too expensive to check
addition [34], [54]. These ideas appear to have remained
of theoretical interest till the early 70s [6]. In 1970, The
STAR Computer [5]—a research project funded by NASA
to develop a reliable computer for space probes [20]—used
residue codes. Since then, residue codes continue to be used
to guarantee the reliability of arithmetic units in the CPU
(e.g., [63]). In 2010, Sullivan [72] systematically evaluated
the overheads of residue checking for various error models
in the context of modern ALUs.

In 1967, Dennard invented DRAM [22], and soon after
there was a flurry of work on improving the reliability of
these new “high-speed” memories [13]. While technology
scaling in the 1970s permitted the creation of single-chip
microprocessors in this era, latency was still a significant
concern, and it was believed that high-speed memories would
need error correction techniques that can “encode and decode”
in parallel [64]. Alas, the arithmetic and residue error codes
cannot be parallelized unless significant restrictions are placed
on the multiplier. In 1970, Hsiao published his seminal work
on Odd-parity weight codes [33] that balanced the delay of
the syndrome calculation for a SEC-DED code using only
seven levels of fast XOR gates. Thus, the idea of AN and
residue codes was put aside again.

In the 1990s, with companies like Rambus, DRAM became
even faster due to innovative signaling techniques, which
cemented the place for lightweight Hsiao-like codes; since
then, these constructions have remained the de facto standard
for many systems. Effectively by this time, the value of

AN and residue codes appear to have disappeared from the
collective memory of the research community as evidenced
by the lack of papers on this topic. At the same time, in a
completely different community, a technique that is key to
unlocking the potential of these codes was being developed.

In 1994, Granlund and Montgomery published a paper
“Division by invariant integers using multiplication” [28] at
the PLDI Conference. They observed that computers were
multiplying much faster than dividing—around one order of
magnitude—so they asked the question: would it be possible
to perform a division as a multiplication? For division by
constants, this is clearly possible, especially if the constants
can be pre-computed at the compile time of the program.
For instance, to divide a number by 5, we can multiply it
by 0.2. To avoid the floating-point multiplication, we first
multiply the inverse of 5 by a large integer power-of-two and
then divide the result by the same integer power-of-two. We
replace the last division with a very cheap shift operation.
We leverage this advance to make MUSE hardware very fast.

In the early 90s, most server systems still employed
parity for error detection. The race for more reliability and
availability features increased with the rise of e-commerce
websites in the late 90s. IBM introduced “ChipKill” memory
[21], [39], a commercial name for a system that continues
operation even if an entire DRAM device fails. Basically, in
the late 90s, the error model moved from single errors to
supporting burst errors. These availability features were also
used in space missions, such as NASA’s pathfinder MARS
probe [39]. In contrast to these popular burst codes, MUSE
provides the same reliability with fewer check bits.

In 2000, JEDEC standardized the DDR interface to
memory [40]. Standardization meant interoperability, but it
also introduced several constraints on how memory would be
integrated, and, pertinently, how error correction could/should
be performed. DDR4 memory ECC DIMMs are 72-bit
wide: 64-bit data and 8-bit check bits. This architecture
can be used to implement a (72,64) code, or a (144,128)
code [4]. Typically, the (72,64) code supports SEC-DED
using Hsiao or Hamming codes, and (144,128) is used
for single and burst error correction. With the continuing
technology and voltage scaling trends, DRAM has suffered
more and more reliability problems, especially Low-Power
DDR memories (used in mobile phones and embedded
devices). As mitigation, vendors started to implement on-die
ECC [38], [62], typically as simple single error correcting
codes without the ability to correct burst-errors. The idea of
using on-die error correction has now been standardized in
the latest generation of JEDEC’s DDR5 standards [41].

For the modern servers and mainframes, the reliability
requirements are more demanding. For example, AMD [4],
[25], IBM [31], and Intel [1], [2] systems offer ChipKill-
level guarantees for DIMMs with x4 and x8 devices. Due to
ECC construction constraints, standard x8 DIMMs do not
have enough DRAM chips to offer ChipKill over a single

1948

Shannon:
Mathematical

Theory of
Communication

1950

Hamming codes

1955

AN codes

1960

BCH

Reed Solomon

MOSFET

Wallace Tree

1964

1994

Division by
multiplication
Granlund-Mongomery

1967

DRAM
cell

JEDEC DDR
specification

2000

1957

IBM 7302

1969

The STAR Computer

1974

72,64 ECC

IBM Chpikill

Intel
8080 1989

Vita
l C

oded

Proce
ss

or

AN+B
x C

od
es

19971981

IBM
5150

$1565

1970

Hsiao:
Odd-Weighted Codes

Figure 8: Historical timeline of significant developments with respect to residue codes.

72b channel. To mitigate this, IBM manufactures custom
DIMMs with x8 DRAMs, uses 144-bit busses between
the memory controller and the DIMMs, and makes cache
lines 128-byte long in the POWER9 series CPUs [31], [36].
With these techniques in place, IBM systems support at
least a single device failure. For x4-based DIMMs and
custom x8 DIMMs, some IBM systems may tolerate two
consecutive device failures on a pair of DIMMs [31]. Similar
guarantees are provided by Intel for x4-based DIMMs with
its Double Device Data Correction (DDDC) scheme [1], [2].
However, because Intel systems are mostly based on off-
the-shelf components, DDDC does not support x8 DIMMs.
While MUSE’s support for x8 DIMMs is to be developed,
we offer protection against two consecutive device failures
for x4 DIMMs, and, unlike commercial solutions, our code
has the ability to be tuned for a specific error model.

Academic ECC schemes tend to be more diverse than cur-
rent commercial solutions. These proposals range from a new
codeword organizations (e.g., [43], [45]), ECC enablement in
systems without ECC (e.g., hashing and checkpointing [15],
virtualization of ECC [82], memory compression for ECC
[46]), extension of ECC to both DRAM data and control
signals [47], use of small caches within the DRAM [14],
[70] to multi-tier and/or concatenated codes (e.g., [27], [74],
[81]). More recent academic ECCs design considering the
on-die ECC of modern DRAMs. For example, XED [61] and
PAIR [42] work in conjunction with on-die ECC, while DUO
[26] repurposes on-die ECC’s storage to increase the number
of bits for redundancy of the memory controller’s ECC,
thus increasing the strength of the resulting scheme. Those,
and many other solutions, consider ECC only for its main
purpose—to achieve reliable, error-free system operation.
MUSE, on the other hand, optimizes for two objectives at the
same time: ChipKill-level error correction and availability
of in-lined metadata. Nonetheless, on-die ECC is an integral
part of the new DDR5 DRAM [41], and, thus, we believe
that the investigation of MUSE co-design with on-die ECC
is an interesting topic for future work.

However, ECC may improve not only the reliability but

also the power consumption of a system. For instance, [17],
[58] use strong ECC schemes to enable reliable operation
of caches in near-threshold regime, saving 34 to 71% of
system power. However, these power savings come at the
cost of trading off a significant portion of the cache to
store ECC bits (up to 50%), which may be an acceptable
trade-off for a system in a low-power mode. In contrast,
we designed MUSE to minimize the memory footprint of
the ECC to improve system performance, power efficiency,
and memory bandwidth utilization. Due to MUSE’s storage
efficiency, it may be a perfect candidate for caches operating
in near-threshold regimes, but a detailed cost-benefit analysis
requires a detailed study which we leave for future work.

Along with the growth in reliability problems, the last
decade also witnessed an increase in security problems. Sev-
eral recent security solutions increase the demand for memory,
including memory encryption [44], adding authentication
code [19], [52], or requiring additional storage to support
software security (e.g., [3], [37], [68], [79]). We developed
MUSE to support both error correction and security. Prior
works in the area of co-designing security and reliability
assume standard ChipKill or SEC-DED codes [29], [35],
[67], [69], [73], and those codes do not provide a way to
extract more states for security or performance features or
reduce the amount of storage for reliability which are key
contributions of MUSE.

IX. CONCLUSION

In this paper, we present MUSE—a novel ECC construction
that provides a ChipKill-level of error correction but crucially
also allows spare ECC space to be harvested and used for
additional purposes. To make MUSE work in modern settings,
we revisit old formulations of residue codes and extend them
with two novel optimizations—symbol errors and shuffling
of bits. With these optimizations, we show that MUSE can
act as a “drop-in” replacement for commonly used ChipKill
ECC schemes while using fewer bits for storage. Moreover,
when we evaluated MUSE ECC in ensemble with security
technique of Memory Tagging, we found out that the system

is more power efficient than system with conventional Reed-
Solomon codes. The benefits of MUSE codes also go beyond
space savings and holding metadata. For instance, MUSE
codes integrate much more easily into Processing In-Memory
devices, making MUSE a very exciting ECC option for the
next decade and beyond.

ACKNOWLEDGMENT

This work was partially supported by Qualcomm Inno-
vation Fellowship. Any opinions, findings, conclusions and
recommendations expressed in this material are those of the
authors. Simha Sethumadhavan has a significant financial
interest in Chip Scan Inc.

APPENDIX

A. Abstract

This artifact contains the following three components
1) Multiplier Search: the implementation of the code

search procedure outlined in Algorithm 1 in the paper.
2) gem5 simulator: modified gem5 simulator for perfor-

mance analysis reported in Figures 6 and 7).
3) VLSI implementation: Verilog implementation

of MUSE and Reed-Solomon codes used in the paper.
Artifacts (1) and (2) are provided in the form of the Docker
container, so they are easy to set up and run. Artifact (3),
however, has only the Verilog code as we used proprietary
tools we cannot share. However, (3) is easy to reproduce once
you have access to the tools as we used a default Synopsys
RM-Flow (see Section H). Each of the provided artifacts has
a detailed README.md file with instructions.

B. Artifact check-list (meta-information)
• Algorithm: Code search procedure (Algorithm 1 in the paper)
• Compilation: performed automatically within the docker

container.
• Run-time environment: Docker container.
• Hardware: x86 64-based system.
• Execution: No requirements.
• Metrics: Valid code multipliers are reported if found, figure

pdf files.
• Output: A text file per experiment with search configuration

supplied via command line, i.e., codeword and symbol lengths
in bits, redundancy budget in bits, etc., and a list of found
multipliers. Both figures as pdf files.

• Experiments: Four experiments are required to reproduce
the codes reported in Table 1. In addition, the user may
change command line arguments to see how those affect code
feasibility, i.e., the configuration of MUSE(80,67) code without
shuffling finds no multipliers. 280 gem5 simulations.

• How much disk space is required (approximately)?: about
30 GB.

• How much time is needed to prepare workflow (approxi-
mately)?: 10-20 minutes to build the containers (depending
on the internet connection).

• How much time is needed to complete experiments (ap-
proximately)?: Code Search: less than 20 minutes to build the
container and run all the experiments (automated via docker

image). gem5 simulations require 36 hours on M5zn AWS
instance (48 cores).

• Publicly available?: Yes.
• Code licenses (if publicly available)?: APACHE 2.0
• Workflow framework used?: Docker containers.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

7019209

C. Description

1) How to access: The artifact is licensed with Apache
2.0 license and can be downloaded from https://doi.org/10.
5281/zenodo.7019209. The artifact contains the source code,
installation instructions, and steps to run the experiments.

2) Hardware dependencies: The artifact was developed
and tested on x86 64-based system with Intel Core i7-8700
CPU.

3) Software dependencies: For the code search, the artifact
requires boost C++ library v1.74 and g++ (v10 or v11)
compiler. For the gem5 simulations, SPEC 2017 benchmark-
ing suite is required. For Verilog synthesis, Synopsys Design
Compiler, PrimeTime PX tools, and NangateOpenCell 15nm
open-source standard cell library are required (those are not
included in the artifact, the library can be obtained for free
via https://si2.org/open-cell-library).

D. Installation

Multiplier Search. The code search supports two ways of
installation: (1) automated via docker container or (2) manual
compilation.
• The preferred way to evaluate the artifact is to use

provided docker container: download and install docker
daemon via https://docs.docker.com/get-docker/. Build
the container in the root folder of the artifact with
docker build -t muse:muse .. The docker image
both builds the source code and performs the multiplier
search.

• Alternatively, install boost library via sudo apt
install libboost-all-dev and compile the
source code with g++ --std=c++17 -pthread
code_search.cpp.

For convenience, the artifact comes with README.md file
explaining both of these options.
Simulations with gem5. gem5 simulations are performed
in the provided docker container which includes a modified
version of the gem5 simulator, which can be built with
docker build -t muse-gem5:muse-gem5 . User is
required to have their copy of the SPEC 2017 benchmarking
suite installed at /all_data/spec2017. Note, that SPEC
2017 installation location is customizable, see included
README.md for more details.

E. Experiment workflow

Multiplier Search. The experiments are performed automat-
ically during the container build process. Multiplier search

https://doi.org/10.5281/zenodo.7019209
https://doi.org/10.5281/zenodo.7019209
https://doi.org/10.5281/zenodo.7019209
https://doi.org/10.5281/zenodo.7019209
https://si2.org/open-cell-library
https://docs.docker.com/get-docker/

results can be examined by opening the container interac-
tively: docker run -i -t muse:muse bash.Once the
shell is available, four text files with the .result extension
contain the set of found code multipliers for each executed
search configuration.

To execute the experiments manually, run the compiled
binary with configuration matching desired code constraints.
For example, to run the search for 144-bit codewords with a
12-bit redundancy budget (i.e., MUSE(144,132) code), use
the following command line parameters:
• 12-bit multipliers -p 12
• 144-bit codewords -b 144
• 4-bit symbols -m 4
• (optional) multithreading -t 8

Please refer to the --help output for the remaining
command line options of the compiled binary or see the
examples in README.md.
Simulations with gem5. The simulations should be launched
via make sim. When the simulations are finished, the
figures are plotted with make figures. As a result,
Figure6.pdf and Figure7.pdf will appear. Please refer to
included README.md for more details about the manual
line-by-line process.

F. Evaluation and expected results

Multiplier Search. Four experiments are performed auto-
matically during the installation steps of the artifact for each
reported MUSE code in Table 1 in the paper. Each search
configuration will result in at least one found multiplier
(highlighted values are used for the codes reported
in the paper):
• For 144b codewords with 12-bit redundancy, and 4-bit

symbols: 2397, 2883, 2967, 3009, 3259, 3295, 3371,
3417, 3431, 3459, 3469, 3505, 3523, 3531, 3551, 3555,
3621, 3679, 3739, 3857, 3909, 3995, 4017, 4043, 4065.

• For 80b codewords with 11-bit redundancy, and 4-bit
symbols: 1491, 1721, 1763, 1833, 1875, 1899, 1955,
2005.

• For 80b codewords with 13-bit redundancy, asymmetri-
cal symbol errors, shuffling, and 8-bit symbols: 5621.

• For 80b codewords with 10-bit redundancy, asymmet-
rical symbol errors and all single-bit errors, shuffling,
and 4-bit symbols: 821.

These results are summarized in README.md as well.
Simulations with gem5. At the end of the simulations,
Figure 6 and Figure 7 will be generated, and should match
those from the paper.

G. Experiment customization

To see the impact of shuffling on the code search, one may
perform the search for MUSE(80,70) code without shuffling,
i.e., by specifying -s 0. In this case, no code multiplier
would be found.

H. Verilog Synthesis and Analysis
Here we outline a brief guide to synthesize and analyze

the designs.
1) Request OpenCell NanGate 15nm standard cell library

here (free): https://si2.org/open-cell-library/.
2) Download synthesis RM-Flow for the Design Compiler

from https://solvnet.synopsys.com/rmgen/ by selecting
“Design Compiler” in the dropdown menu (free with
Synopsys license).

3) Modify your synthesis script to include those lines
instead of generic compile command:
• ungroup -flatten -all, and
• compile -boundary_optimization -
map_effort high -area_effort high
-power_effort high -auto_ungroup
delay

For the power analysis with Synopsys PrimeTime PX use
the VCD-driven RM-Flow from https://solvnet.synopsys.com/
rmgen/ (pick “PrimeTime” in the dropdown menu).

I. Notes

Multiplier Search. We use the boost library for its long
integers (i.e., 256-b, etc.). Since this feature is not unique to
v1.74, we suppose older versions may work too.
Simulations with gem5. Provided docker container may
be slightly different from the environment we used on the
university cluster; thus, minor differences with the paper
results may be observed.
Verilog. We cannot share proprietary tools we used for the
synthesis and power analysis. Please refer to the included
README.md for directions to reproduce the results with
your own Synopsys tools.

J. Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] “Intel Xeon Processor E7 Family: Reliability, Availability, and
Serviceability,” Tech. Rep., 2011.

[2] “Memory RAS Configuration, Rev 1.0,” Tech. Rep., 2017.

[3] “Armv8.5-a: Memory Tagging Extension,” Tech. Rep., 2018.

[4] Bios and kernel developer’s guide (BKDG) for AMD family
15h models 00h–0Fh processors, Advanced Micro Devices,
Inc., January 2013.

[5] A. Avizienis, G. Gilley, F. Mathur, D. Rennels, J. Rohr, and
D. Rubin, “The STAR (Self-Testing And Repairing) Computer:
An Investigation of the Theory and Practice of Fault-Tolerant
Computer Design,” IEEE Transactions on Computers, vol.
C-20, no. 11, pp. 1312–1321, Nov. 1971.

https://solvnet.synopsys.com/rmgen/
https://solvnet.synopsys.com/rmgen/
https://solvnet.synopsys.com/rmgen/
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

[6] A. Avizienis, “Arithmetic error codes: Cost and effectiveness
studies for application in digital system design,” IEEE Trans-
actions on Computers, vol. 100, no. 11, pp. 1322–1331, 1971.

[7] P. Barrett, “Implementing the rivest shamir and adleman public
key encryption algorithm on a standard digital signal processor,”
in Advances in Cryptology — CRYPTO’ 86, 1987, pp. 311–
323.

[8] J. T. Barrows Jr, “A New Method for Constructing Multiple
Error Correcting Linear Residue Codes,” Ph.D. dissertation,
University of Illinois at Urbana-Champaign, 1966.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti
et al., “The gem5 simulator,” ACM SIGARCH computer
architecture news, vol. 39, no. 2, pp. 1–7, 2011.

[10] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error
correcting binary group codes,” Information and control, vol. 3,
no. 1, pp. 68–79, 1960.

[11] D. T. Brown, “Error Detecting and Correcting Binary Codes
for Arithmetic Operations,” IEEE Transactions on Electronic
Computers, vol. EC-9, no. 3, pp. 333–337, Sep. 1960.

[12] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017:
Next-generation compute benchmark,” in Companion of the
2018 ACM/SPEC International Conference on Performance
Engineering, Berlin, Germany, 2018, pp. 41–42.

[13] C. L. Chen and M. Y. Hsiao, “Error-Correcting Codes for
Semiconductor Memory Applications: A State-of-the-Art
Review,” IBM Journal of Research and Development, vol. 28,
no. 2, pp. 124–134, 1984.

[14] J. Chen, X. Jiang, Y. Zhang, L. Liu, H. Xu, and Q. Liu,
“CARE: Coordinated Augmentation for Elastic Resilience on
DRAM Errors in Data Centers,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), Virtual Event, 2021, pp. 533–544.

[15] L. Chen and Z. Zhang, “MemGuard: A low cost and energy
efficient design to support and enhance memory system
reliability,” in 2014 ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA), Minneapolis, Minnesota,
USA, 2014, pp. 49–60.

[16] R. Chien, “On linear residue codes for burst-error correction,”
IEEE Transactions on Information Theory, vol. 10, no. 2, pp.
127–133, Apr. 1964.

[17] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S.-L.
Lu, “Improving cache lifetime reliability at ultra-low voltages,”
in 2009 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), New York, New York, USA,
2009, pp. 89–99.

[18] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting
Correcting Codes: On the Effectiveness of ECC Memory
Against Rowhammer Attacks,” in 2019 IEEE Symposium on
Security and Privacy (SP), San Francisco, California, USA,
2019, pp. 55–71.

[19] V. Costan and S. Devadas, “Intel SGX Explained.” IACR
Cryptol. ePrint Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[20] R. Dawe and J. Arnett, “Thermoelectric Outer Planets Space-
craft (TOPS) electronic packaging and cabling development
summary report,” Tech. Rep., 1974.

[21] T. J. Dell, “A white paper on the benefits of ChipKill-correct
ECC for PC server main memory,” Tech. Rep., 11 1997.

[22] R. H. Dennard, “Field-effect transistor memory,” July
1967, uS Patent 3,387,286. [Online]. Available: https:
//patents.google.com/patent/US3387286A/en

[23] A. Fakhrzadehgan, Y. N. Patt, P. J. Nair, and M. K. Qureshi,
“Safeguard: Reducing the security risk from row-hammer via
low-cost integrity protection,” in 2022 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), 2022, pp. 373–386.

[24] A. Fog, “Lists of instruction latencies, throughputs and
microoperation breakdowns for Intel, AMD and VIA cpus.”
Technical University of Denmark, 10 2020.

[25] J. Fruehe, “AMD EPYC brings new RAS capability,” Moor
Insights and Strategy, Tech. Rep., June 2017, white paper.

[26] S. Gong, J. Kim, S. Lym, M. Sullivan, H. David, and M. Erez,
“DUO: Exposing On-Chip Redundancy to Rank-Level ECC
for High Reliability,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), Vienna,
Austria, 2018, pp. 683–695.

[27] S.-L. Gong, M. Rhu, J. Kim, J. Chung, and M. Erez, “CLEAN-
ECC: High reliability ECC for adaptive granularity memory
system,” in 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Waikiki, Hawaii,
USA, 2015, pp. 611–622.

[28] T. Granlund and P. L. Montgomery, “Division by Invariant
Integers Using Multiplication,” in Proceedings of the ACM
SIGPLAN 1994 Conference on Programming Language Design
and Implementation, ser. PLDI ’94, Orlando, Florida, USA,
1994, p. 61–72.

[29] R. H. Gumpertz, “Combining Tags with Error Codes,” in
Proceedings of the 10th Annual International Symposium on
Computer Architecture, ser. ISCA ’83, Stockholm, Sweden,
1983, p. 160–165.

[30] D. S. Henderson, “Residue class error checking codes,” in
Proceedings of the 1961 16th ACM national meeting, 1961,
pp. 132.101–132.104.

[31] D. Henderson, “POWER Processor-Based Systems RAS,”
IBM, September 2020.

[32] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres,
vol. 2, no. 2, pp. 147–56, 1959.

[33] M.-Y. Hsiao, “A Class of Optimal Minimum Odd-weight-
column SEC-DED Codes,” IBM Journal of Research and
Development, vol. 14, no. 4, pp. 395–401, 1970.

[34] M.-Y. Hsiao and J. T. Tou, “Application of Error-Correcting
Codes in Computer Reliability Studies,” IEEE Transactions
on Reliability, vol. R-18, no. 3, pp. 108–118, 1969.

https://patents.google.com/patent/US3387286A/en
https://patents.google.com/patent/US3387286A/en

[35] R. Huang and G. E. Suh, “Ivec: off-chip memory integrity
protection for both security and reliability,” ACM SIGARCH
Computer Architecture News, vol. 38, no. 3, pp. 395–406,
2010.

[36] POWER9 Processor User’s Manual., IBM Systems and
Technology Group, October 2019.

[37] M. T. Ibn Ziad, M. A. Arroyo, E. Manzhosov, and S. Sethu-
madhavan, “ZeRØ: Zero-Overhead Resilient Operation Under
Pointer Integrity Attacks,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA),
Virtual Event, 2021, pp. 999–1012.

[38] “2Gb (x16 x 1 channel) Mobile LPDDR4/LPDDR4X with
ECC,” Integrated Silicon Solution, Inc., 2020.

[39] “Enhancing IBM Netfinity Server Reliability,” International
Business Machines Corporation, pp. 1–6, 1999.

[40] JEDEC, JESD79, Double Data Rate (DDR Specification),
Revision 1.0, JEDEC Solid State Technology Association,
2000.

[41] JEDEC, JESD79-5, DDR5 SDRAM, JEDEC Solid State
Technology Association, July 2020.

[42] S. Jeong, S. Kang, and J.-S. Yang, “PAIR: Pin-aligned
In-DRAM ECC architecture using expandability of Reed-
Solomon code,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), Virtual Event, 2020, pp. 1–6.

[43] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar, “Low-
Power, Low-Storage-Overhead Chipkill Correct via Multi-
Line Error Correction,” in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’13, Denver, Colorado, 2013.

[44] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryp-
tion,” Tech. Rep., 2016.

[45] J. Kim, M. Sullivan, and M. Erez, “Bamboo ECC: Strong, safe,
and flexible codes for reliable computer memory,” in 2015
IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), Burlingame, California, USA,
Feb. 2015, pp. 101–112.

[46] J. Kim, M. Sullivan, S.-L. Gong, and M. Erez, “Frugal
ECC: Efficient and versatile memory error protection through
fine-grained compression,” in SC’15: Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, St. Louis, Missouri, USA,
2015, pp. 1–12.

[47] J. Kim, M. Sullivan, S. Lym, and M. Erez, “All-inclusive ECC:
thorough end-to-end protection for reliable computer memory,”
in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), Seoul, South Korea, 2016, pp.
622–633.

[48] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits in memory
without accessing them: An experimental study of DRAM
disturbance errors,” in 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), Minneapolis,
Minnesota, USA, 2014, pp. 361–372.

[49] K. Kraft, C. Sudarshan, D. M. Mathew, C. Weis, N. Wehn, and
M. Jung, “Improving the error behavior of dram by exploiting
its z-channel property,” in 2018 Design, Automation Test in
Europe Conference Exhibition (DATE), Dresden, Germany,
2018, pp. 1492–1495.

[50] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon,
S. Lee, K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer,
D. Wang, K. Sohn, and N. S. Kim, “Hardware Architecture
and Software Stack for PIM Based on Commercial DRAM
Technology: Industrial Product,” in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture
(ISCA), Virtual Event, 2021, pp. 43–56.

[51] D. Lemire, O. Kaser, and N. Kurz, “Faster remainder by direct
computation: Applications to compilers and software libraries,”
Software: Practice and Experience, vol. 49, no. 6, pp. 953–970,
2019.

[52] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E.
Ekberg, and N. Asokan, “PAC it up: Towards pointer integrity
using ARM pointer authentication,” in 28th USENIX Security
Symposium (USENIX Security 19), Santa Clara, California,
USA, 2019, pp. 177–194.

[53] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-
aware intelligent dram refresh,” in Proceedings of the 39th
Annual International Symposium on Computer Architecture,
ser. ISCA ’12, 2012, p. 1–12.

[54] Y.-C. Liu, “Byte Error Correction in Memory and Arithmetic
Units,” Ph.D. dissertation, Northwestern University, 1970.

[55] O. L. Macsorley, “High-Speed Arithmetic in Binary Com-
puters,” Proceedings of the IRE, vol. 49, no. 1, pp. 67–91,
1961.

[56] D. Mandelbaum, “Arithmetic codes with large distance,” IEEE
Transactions on Information Theory, vol. 13, no. 2, pp. 237–
242, Apr. 1967.

[57] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker,
L. Rech, and J. Michelsen, “Open Cell Library in 15nm
FreePDK Technology,” in Proceedings of the 2015 Symposium
on International Symposium on Physical Design, ser. ISPD
’15, Monterey, California, USA, 2015, p. 171–178.

[58] T. N. Miller, R. Thomas, J. Dinan, B. Adcock, and R. Teodor-
escu, “Parichute: Generalized turbocode-based error correction
for near-threshold caches,” in 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO),
Washington, DC, USA, 2010, pp. 351–362.

[59] S. Mukherjee, Architecture Design for Soft Errors. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[60] N. Mădălin, L. Miclea, and J. Figueras, “Unidirectional error
detection, localization and correction for drams: Application
to on-line dram repair strategies,” in 2011 IEEE 17th Interna-
tional On-Line Testing Symposium, 2011, pp. 264–269.

[61] P. J. Nair, V. Sridharan, and M. K. Qureshi, “XED: Exposing
On-Die Error Detection Information for Strong Memory
Reliability,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), Seoul, South
Korea, 2016, pp. 341–353.

[62] T.-Y. Oh, H. Chung, J.-Y. Park, K.-W. Lee, S. Oh, S.-Y.
Doo, H.-J. Kim, C. Lee, H.-R. Kim, J.-H. Lee et al., “A
3.2 GBPS/pin 8 Gbit 1.0 v LPDDR4 SDRAM with integrated
ECC engine for sub-1V DRAM core operation,” IEEE Journal
of Solid-State Circuits, vol. 50, no. 1, pp. 178–190, 2014.

[63] S. Payer, C. Lichtenau, M. Klein, K. Schelm, P. Leber,
N. Hofmann, and T. Babinsky, “Simd multi format floating-
point unit on the ibm z15(tm),” in 2020 IEEE 27th Symposium
on Computer Arithmetic (ARITH), 2020, pp. 125–128.

[64] T. R. Rao and E. Fujiwara, Error-control coding for computer
systems. Prentice-Hall, Inc., 1989.

[65] I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the society for industrial and applied
mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[66] R. Rooney and N. Koyle, “Micron DDR5 SDRAM: New
Features,” Micron Technology, Inc, Tech. Rep., 2019.

[67] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and
M. K. Qureshi, “Synergy: Rethinking secure-memory design
for error-correcting memories,” in 2018 IEEE International
Symposium on High Performance Computer Architecture
(HPCA), Vienna, Austria, 2018, pp. 454–465.

[68] H. Sasaki, M. A. Arroyo, M. T. I. Ziad, K. Bhat, K. Sinha, and
S. Sethumadhavan, “Practical Byte-Granular Memory Black-
listing Using Califorms,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), ser. MICRO ’52, Columbus, Ohio, USA, 2019, p.
558–571.

[69] Y. Sazeides, E. Özer, D. Kershaw, P. Nikolaou, M. Kleanthous,
and J. Abella, “Implicit-storing and redundant-encoding-of-
attribute information in error-correction-codes,” in 2013 46th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Davis, California, USA, 2013, pp. 160–171.

[70] Y. H. Son, S. Lee, O. Seongil, S. Kwon, N. S. Kim, and J. H.
Ahn, “CiDRA: A cache-inspired DRAM resilience architec-
ture,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), Burlingame,
California, USA, 2015, pp. 502–513.

[71] J. Stein, “Prime-residue error correcting codes (Corresp.),”
IEEE Transactions on Information Theory, vol. 10, no. 2, pp.
170–170, Apr. 1964.

[74] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis,
and N. P. Jouppi, “LOT-ECC: Localized and tiered reliability
mechanisms for commodity memory systems,” in 2012 39th
Annual International Symposium on Computer Architecture
(ISCA), Portland, Oregon, USA, 2012, pp. 285–296.

[72] M. Sullivan, “Application of residue codes for error detection
in modern computers,” Master’s thesis, University of Texas at
Austin, Dec. 2010.

[73] M. Taassori, R. Balasubramonian, S. Chhabra, A. R.
Alameldeen, M. Peddireddy, R. Agarwal, and R. Stutsman,
“Compact Leakage-Free Support for Integrity and Reliability,”
in Proceedings of the ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), ser. ISCA ’20,
Virtual Event, 2020, p. 735–748.

[75] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE
Transactions on Electronic Computers, vol. EC-13, no. 1, pp.
14–17, 1964.

[76] S. Wang, M. N. Bojnordi, X. Guo, and E. Ipek, “Content
aware refresh: Exploiting the asymmetry of dram retention
errors to reduce the refresh frequency of less vulnerable data,”
IEEE Transactions on Computers, vol. 68, no. 3, pp. 362–374,
2019.

[77] S. B. Wicker, Error control systems for digital communication
and storage. Prentice-Hall Englewood Cliffs, 1995, vol. 1.

[78] M. V. Wilkes, “Slave memories and dynamic storage alloca-
tion,” IEEE Transactions on Electronic Computers, no. 2, pp.
270–271, 1965.

[79] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore,
J. Anderson, B. Davis, B. Laurie, P. G. Neumann, R. Norton,
and M. Roe, “The cheri capability model: Revisiting risc in an
age of risk,” in 2014 ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA), Minneapolis, Minnesota,
USA, 2014, pp. 457–468.

[80] K. S. Yim, “The rowhammer attack injection methodology,” in
2016 IEEE 35th Symposium on Reliable Distributed Systems
(SRDS), Budapest, Hungary, 2016, pp. 1–10.

[81] D. H. Yoon and M. Erez, “Memory mapped ECC: low-
cost error protection for last level caches,” ACM SIGARCH
Computer Architecture News, vol. 37, no. 3, pp. 116–127, Jun.
2009.

[82] D. H. Yoon and M. Erez, “Virtualized and flexible ECC for
main memory,” in Proceedings of the Fifteenth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Pittsburgh, Pennsylvania, USA,
2010, pp. 397–408.

	I Introduction
	II Background
	III MUSE
	III-A Mapping Remainders to Symbol Errors
	III-B Shuffling
	III-C Asymmetrical Errors
	III-D Multiplier Search Procedure

	IV Practical Code Examples
	V MUSE Microarchitecture
	V-A System Overview
	V-B Fast Arithmetic Blocks

	VI MUSE Use Cases
	VI-A Exploiting Unused States for Security
	VI-B Reliable Processing In-Memory

	VII Results
	VII-A Reliability Trade Off: Reed-Solomon vs. MUSE
	VII-B VLSI Overheads
	VII-C Performance
	VII-D Case Study: Memory Tagging
	VII-E Flexibility: Reed-Solomon vs. MUSE

	VIII Related Work
	IX Conclusion
	Appendix
	A Abstract
	B Artifact check-list (meta-information)
	C Description
	C1 How to access
	C2 Hardware dependencies
	C3 Software dependencies

	D Installation
	E Experiment workflow
	F Evaluation and expected results
	G Experiment customization
	H Verilog Synthesis and Analysis
	I Notes
	J Methodology

	References

