
Morpheus: Extending the Last Level Cache Capacity
in GPU Systems Using Idle GPU Core Resources

*Sina Darabi
†

*Mohammad Sadrosadati
§

Joël Lindegger
§

Negar Akbarzadeh
†

Mohammad Hosseini
‡

Jisung Park
§∇

Juan Gómez-Luna
§

Hamid Sarbazi-Azad
†‡

Onur Mutlu
§

†Sharif University of Technology §ETH Zürich
‡Institute for Research in Fundamental Sciences (IPM) ∇POSTECH ∗

Graphics Processing Units (GPUs) are widely-used accelerators
for data-parallel applications. In many GPU applications, GPU
memory bandwidth bottlenecks performance, causing underuti-
lization of GPU cores. Hence, disabling many cores does not af-
fect the performance of memory-bound workloads. While simply
power-gating unused GPU cores would save energy, prior works
attempt to better utilize GPU cores for other applications (ideally
compute-bound), which increases the GPU’s total throughput.
In this paper, we introduce Morpheus, a new hard-

ware/software co-designed technique to boost the performance
of memory-bound applications. The key idea of Morpheus is to
exploit unused core resources to extend the GPU last level cache
(LLC) capacity. In Morpheus, each GPU core has two execution
modes: compute mode and cache mode. Cores in compute mode

operate conventionally and run application threads. However,
for the cores in cache mode, Morpheus invokes a software helper
kernel that uses the cores’ on-chip memories (i.e., register �le,
shared memory, and L1) in a way that extends the LLC capacity
for a running memory-bound workload. Morpheus adds a con-
troller to the GPU hardware to forward LLC requests to either
the conventional LLC (managed by hardware) or the extended
LLC (managed by the helper kernel). Our experimental results
show that Morpheus improves the performance and energy ef-
�ciency of a baseline GPU architecture by an average of 39%
and 58%, respectively, across several memory-bound workloads.
Morpheus’ performance is within 3% of a GPU design that has a
quadruple-sized conventional LLC. Morpheus can thus contribute
to reducing the hardware dedicated to a conventional LLC by
exploiting idle cores’ on-chip memory resources as additional
cache capacity.

1. Introduction
Graphics Processing Units (GPUs) are widely-used accelerators,

especially for data-parallel applications with high arithmetic in-

tensity (i.e., arithmetic instructions executed per byte accessed

from memory). GPUs rely on managing execution resources

for a large number of Single-Program-Multiple-Data (SPMD)

threads to exploit this arithmetic intensity and overlap the long

memory access latencies with computation [1-3].

Unfortunately, the maximum performance of a GPU is often

limited by the available memory bandwidth [4], causing con-

∗
Sina Darabi and Mohammad Sadrosadati are co-primary authors.

siderable underutilization of GPU cores, i.e., GPU cores are fre-

quently idle (waiting for memory accesses) during application

execution time. This is the case for many important general-

purpose GPU applications, such as kmeans [5], mri-gri [6],

and cfd [5], which are memory-bound in nature due to their

low arithmetic intensity [5, 6]. As a result, we do not need

to use all available GPU cores to saturate the performance of

these applications. To demonstrate this, we experimentally

study (using an NVIDIA RTX 3080 GPU [7] and Accel-Sim [8])

the performance of 14 memory-bound applications as we scale

the number of GPU cores. Our experiments reveal that, on

average across the 14 applications, only 56% of the GPU cores

are enough to saturate performance (see §3 for more details).

Hence, the remaining 44% of the GPU cores, on average, can

remain unused (i.e., no threads scheduled onto them) without

hurting performance of memory-bound applications.

Several prior works (e.g., [9-18]) make similar observations

and propose to have only a subset of the available GPU cores

execute memory-bound application threads, and leverage the

remaining GPU cores in one of three ways: (1) power-gating
these cores to save energy [9], (2) using them for redundant
execution of the already running memory-bound application

for better reliability [10, 11], and (3) co-scheduling additional

compute-bound applications to these cores to increase GPU’s

total throughput [12-18]. In contrast, our goal is to boost the

performance of a memory-bound application using a number

of GPU cores that are not useful for executing application

threads.

To this end, we propose Morpheus.1 The key idea ofMor-
pheus is to reserve a number of GPU cores to use their on-chip

memory (i.e., register �les, shared memory, and L1 cache) as an

extension of the shared last level cache (LLC, e.g., the shared

L2 cache in NVIDIA GPUs). Doing so can improve the perfor-

mance of memory-bound applications due to two main reasons.

First, a larger LLC reduces the number of o�-chip memory ac-

cesses, thereby enabling more threads to run e�ectively since

the system is not memory bandwidth bottlenecked any more.

Second, a larger LLC reduces memory access latency, which

can improve performance.

Morpheus introduces two execution modes (compute and

1“Morpheus” because we dynamically morph, parts of GPU hardware (in a

logical sense) to meet memory-bound applications’ needs.

1

ar
X

iv
:2

20
9.

10
91

4v
2

 [
cs

.A
R

]
 6

 A
pr

 2
02

3

cache) for every GPU core. A core in compute mode behaves

like a regular core in conventional GPUs, i.e., it executes appli-

cation threads. A core in cache mode lends its on-chip mem-

ory space to extend the e�ective shared LLC size via a hard-

ware/software co-designed technique. A GPU core in cache

mode runs a software helper kernel, called the extended LLC
kernel, that stores the extended LLC tag/data arrays inside the

GPU core’s local register �le, shared memory, and L1 cache.

We add a hardware controller, called the Morpheus controller, to

support access to the extended LLC. The Morpheus controller

performs three main tasks: it (1) forwards each LLC request

to either the conventional LLC or the extended LLC, depend-

ing on the requested memory address (i.e., LLC set number),

(2) tracks outstanding extended LLC requests, and (3) predicts

the outcome of an extended LLC lookup (hit/miss), so that it

forwards only the requests that are predicted to be hit in the

extended LLC to GPU cores in cache mode, which mitigates the

overhead of extended LLC misses. The Morpheus controller

uses Bloom �lters [19] for hit/miss prediction, providing zero
false-negative and negligible false-positive rates.

To improve the e�ectiveness of Morpheus, we employ two

optimization techniques on top of our basic design. First, we

increase the e�ective capacity of the extended LLC by em-

ploying a cache compression technique in the extended LLC

kernel. Second, we accelerate the data array access in the ex-

tended LLC by adding a new specialized instruction to the

GPU instruction set architecture. This new instruction enables

indirectly addressing a register, i.e., reading from a register

whose index is determined by accessing the value in another

register.

To evaluate the e�ectiveness of Morpheus, we �rst mea-

sure the bandwidth, access latency, and energy consumption

of the extended LLC via real-system experiments using an

NVIDIA RTX 3080 GPU (§5). We then use the measured per-

formance and energy numbers for the extended LLC in the

AccelSim simulator [8] to estimate the e�ect of Morpheus on

overall GPU performance and energy consumption. Our ex-

perimental results show that Morpheus improves overall GPU

performance and energy e�ciency by an average of 39% and

58%, respectively, compared to the baseline NVIDIA RTX 3080

GPU architecture, across 14 memory-bound applications. Mor-

pheus performs within 3% of a conventional GPU design that

has a quadruple-sized conventional LLC (assuming no latency

overhead for the larger conventional LLC).

We make the following contributions:

• We propose Morpheus, the �rst technique that leverages

some GPU cores’ on-chip memories to extend the total GPU

last-level cache capacity.

• We introduce two new mechanisms that Morpheus employs:

(1) a software helper kernel to extend the LLC using the

on-chip memory resources of GPU cores that are in cache

mode, and (2) a hardware controller that enables accesses to

both the conventional LLC and the extended LLC.

• We evaluate Morpheus and show that it signi�cantly im-

proves performance and energy. It also enables a 4× larger

cache without requiring new hardware resources for it.

2. Background
A GPU program is composed of a number of kernels that

are executed using Single-Program-Multiple-Data (SPMD)

threads [20]. These threads are partitioned into multiple

blocks, or Cooperative Thread Arrays (CTAs) [20]. CTAs

are then assigned to Single-Instruction-Multiple-Data (SIMD)

cores for execution, called Streaming Multiprocessors (SMs)
on NVIDIA GPUs. Each SM contains multiple CUDA cores,

special-function units (e.g., cos, sin and tan), shared mem-

ory, L1 cache and thousands of registers. SMs are connected

to several memory partitions using an on-chip interconnec-

tion network. Each memory partition includes one or mul-

tiple LLC banks, a memory controller, and a main memory

(GDDRx/HBMx). Threads inside each CTA are grouped into

warps. Threads within a warp execute the same instruction on

di�erent data items in a lock-step manner. The warp scheduler
time-multiplexes warps, and assigns warps to the execution

units.

3. Motivation
Memory-bound applications cannot fully utilize the compute

throughput of GPUs as they are bottlenecked by the limited

memory bandwidth. This causes long memory access laten-

cies, which cannot be hidden via thread-level parallelism, caus-

ing core idleness and performance saturation [4, 21-29]. To

illustrate this observation, we experimentally study the perfor-

mance of 17 applications (14 memory-bound and 3 compute-

bound) as we scale the number of GPU cores using AccelSim [8]

(see §6 for our methodology). Figure 1 illustrates the results

for a baseline GPU architecture that resembles an NVIDIA

RTX 3080 [7]. The x-axes correspond to the number of GPU

cores (SMs), ranging from 10 (chosen empirically) to 68 (the

total SM count in an RTX 3080). The y-axes correspond to the

normalized performance for each application. We normalize

the performance of each application to its performance when

using 10 SMs for readability.

We make two key observations. First, performance grad-
ually saturates (i.e., stops increasing) as the number of SMs

increases for 9 of the memory-bound applications (p-bfs, cfd,

dwt2d, stencil, r-bfs, bprob, sgem, nw, page-r). In contrast,

the performance of the compute-bound applications continues

to increase with more SMs. Second, performance decreases
sharply after a certain number of SMs for 5 of the memory-

bound applications (kmeans, histo, mri-gri, spmv, lbm). For

example, after more than 20 SMs are used for the kmeans ap-

plication, performance drops greatly and the performance of

the application with 68 SMs is almost the same as it is with 10

SMs, which is 50% lower than with 20 SMs. We conclude that

limiting the number of SMs running a memory-bound applica-

tion (after some SM count) not only does not signi�cantly hurt

performance but can even improve performance in some cases.

Leveraging our key observations, we aim to reserve a num-

ber of SMs and use their on-chip memory (i.e., register �le,

shared memory, and L1 cache) to extend the overall LLC capac-

ity and, thus, improve GPU performance for memory-bound

2

10 30 50 68
1.01.0

1.1 p-bfs

10 30 50 68
1.01.0

1.1 stencil

10 30 50 68
1.0

3.1

5.2 sgem

10 30 50 68
1.0

1.3

1.6 kmeans

10 30 50 68
1.0

2.0

3.1 spmv

10 30 50 68
1.0

1.7

2.5 lib

10 30 50 68
1.0

1.6

2.3 cfd

10 30 50 68
1.0

2.2

3.5 r-bfs

10 30 50 68
1.0

1.2

1.4 nw

10 30 50 68
1.0

1.4

1.8 histo

10 30 50 68
1.0

1.3

1.6 lbm

10 30 50 68
1.0

3.1

5.3 hotsp

10 30 50 68
1.0

1.7

2.5 dwt2d

10 30 50 68
1.0

2.9

4.8 bprob

10 30 50 68
1.0

1.8

2.6 page-r

10 30 50 68
1.0

1.5

2.0 mri-gri

10 30 50 68
1.0

1.5

2.1 gmean

10 30 50 68
1.0

3.2

5.5 mri-q

Memory-bound Compute-bound

Number of SMs

N
o

rm
a

liz
ed

IP
C

Figure 1: Normalized GPU performance (IPC) of 14 memory-bound and 3 compute-bound applications

applications. To quantify the bene�ts of potentially having

a larger LLC for memory-bound applications, we repeat our

previous experiment with 2× and 4× LLC sizes, compared

to the baseline 5-MiB LLC of an NVIDIA RTX 3080. We vary

the number of GPU cores in these two evaluated GPU designs

(2× and 4× larger LLCs) and measure overall performance

for each case. Figure 2 shows the maximum performance that

we observe while varying the number of GPU cores for 14

representative memory-bound applications. We normalize

the performance results of each application to the case of a

baseline 5-MiB LLC. We observe that both 2× and 4× LLC

sizes improve the performance of all evaluated memory-bound

applications. In particular, a 4× larger LLC improves perfor-

mance by as much as 2.34× (kmeans), and by 1.57× on average

(geometric mean). We conclude that a larger LLC e�ectively

and consistently improves the performance of memory-bound

applications.

p-b
fs cf

d

dw
t2

d

st
en

ci
l

r-
bfs

bpr
ob

sg
em nw

pag
e-

r

km
ea

ns
hist

o

m
ri-

gr
i

sp
m

v
lb

m

gm
ea

n

1

2

N
o

rm
a

liz
ed

IP
C

1X-LLC 2X-LLC 4X-LLC

Figure 2: E�ect of larger LLC sizes (2× and 4× the size of the
baseline LLC) on performance (normalized IPC relative to the
baseline LLC) of 14 memory-bound applications

Our goal in this work is to design a mechanism that can

leverage the on-chip memory units of a number of GPU cores

(that are otherwise not bene�cial), to e�ectively extend the

overall LLC capacity for memory-bound GPU applications, so

as to increase performance.

4. Morpheus
We introduce Morpheus, a hardware/software co-designed

technique to alleviate the memory bottleneck on GPUs. The

key idea of Morpheus is to reserve a number of GPU cores

and use their on-chip memory units (i.e., register �le, shared

memory, and L1 cache) as an extension of the GPU’s LLC. In

Morpheus, each GPU core has two working modes, compute
mode and cache mode. Cores in compute mode behave exactly

like the cores in existing GPUs and execute application threads.

In contrast, cores in cache mode execute a software helper

kernel (called the extended LLC kernel) to extend the LLC ca-

pacity by exploiting the storage capacity of their local on-chip

memory units. This additional LLC capacity provided by the

cores in cache mode is called the extended LLC.

Figure 3 gives a conceptual overview of the LLC lookup pro-

cedure in Morpheus. An LLC request in a Morpheus-enabled

GPU �rst arrives at the Morpheus controller (1 in Figure 3).

The Morpheus controller forwards the LLC request to either the

conventional LLC (which works exactly as in existing GPUs) or

the extended LLC (which we propose). The forwarding decision

is based on a static address mapping scheme, called address
separation 2 . An access to the extended LLC is served by the

extended LLC controller 3 using the on-chip memory units

of cores in cache mode. The extended LLC controller either

forwards a given request to the core’s L1 cache 4 , or directly
queries the register �le 5 or shared memory 6 . The forward-

ing or querying decision is based on the same static address

separation principle as in the Morpheus controller.

Morpheus implements the Morpheus controller as a new

hardware unit per LLC partition and the extended LLC con-

troller as software (i.e., the extended LLC kernel) running on

cores in cache mode. Figure 4 shows a pictorial example of

a Morpheus-enabled GPU with these new components. An

LLC request originates from a core in compute mode (1 in

Figure 4) and moves through the interconnection network

to an LLC partition 2 based on a static address mapping

scheme, similar to the one used in a conventional GPU. In

3

Figure 3: Conceptual overview of Morpheus

a Morpheus-enabled GPU, a hardware implementation of the

Morpheus controller local to the LLC partition 3 then either

forwards the request to the local conventional LLC, or through

the interconnection network to the responsible GPU core run-

ning in cache mode 4 based on a static address separation

scheme (§4.1.1). The responsible cache mode GPU core is de-

termined by the address separation scheme. The extended LLC

controller is implemented as multiple instances of a software

helper kernel (the extended LLC kernel) running on cores in

cache mode 5 . This kernel queries one of the local memory

units 6 for each incoming request, based on a static address

separation scheme (§4.1.1), and sends the response over the

interconnection network back to the Morpheus controller 3 .

If the request is a hit in the extended LLC, the cache block is

sent over the interconnection network to the GPU core that

initially issued the LLC request 1 . If the request is a miss in

the extended LLC, it is treated exactly like an LLC miss in a

conventional GPU by the LLC partition.

Figure 4: GPU structure with Morpheus

The rest of this section explains Morpheus’ key mechanisms

in detail. §4.1 describes our hardware implementation of the

Morpheus controller. §4.2 describes our software implementa-

tion of the extended LLC controller using the extended LLC

kernel. §4.3 introduces two optimization techniques on top of

our basic design to improve the e�ectiveness of Morpheus.

4.1. Morpheus Controller
This unit has three main tasks: (1) separating LLC requests

between the conventional LLC and the extended LLC, (2) han-

dling communication between the extended LLC and the LLC

partition, and (3) predicting the outcome of the extended LLC

lookup (hit/miss), so that the Morpheus controller forwards

only the requests that are predicted to be hits in the extended

LLC to GPU cores in cache mode, which mitigates the overhead

of extended LLC misses. Figure 7 shows the main components

in the Morpheus controller. In this section, we describe each

component in detail.

4.1.1. Address Separation. Since a Morpheus-enabled GPU

employs two distinct LLCs (i.e., the conventional LLC and the

extended LLC), there should be a mechanism to map each

cache block to one of these LLCs. To this end, Morpheus

divides the memory address space statically into two partitions

proportional in size to the conventional and extended LLC

capacity. The conventional LLC is responsible for caching

the �rst partition, while the extended LLC is responsible for

caching the second. When the Morpheus controller receives an

LLC request, a unit called address separator checks whether or

not the set number is in the range of memory addresses served

by the extended LLC. If so, the unit forwards the LLC request to

the next unit in the Morpheus controller, the hit/miss predictor.
Otherwise, the conventional LLC handles the request exactly

the same way as done in the conventional GPU architectures.

4.1.2. Hit/Miss Prediction. Misses in the extended LLC are

more expensive in terms of latency compared to misses in

the conventional LLC. Figure 5 breaks down the latencies of

hits and misses in both the conventional and extended LLC

(see §6 for our methodology). We observe that misses in the

conventional LLC take 608ns to be served, while misses in the

extended LLC take 773ns (i.e., 27% longer). This is due to two

main reasons. First, an extended LLC miss adds a round trip

interconnection network latency (two grey boxes in Figure 5)

compared to a conventional LLC miss, to move the request and

response between the Morpheus controller and a GPU core in

cache mode. Second, the latency for accessing the extended

LLC is longer than for the conventional LLC, because in the

extended LLC, tag lookups and data array accesses have to be

managed by the extended LLC kernel (i.e., in software).

Figure 5: Timelines for LLC hits, misses, and predicted misses
on a Morpheus-enabled GPU

We mitigate the overhead of extended LLC misses using a

hit/miss predictor. After the address separation mechanism in

the Morpheus controller determines that a given request falls

into the extended LLC’s address space, the hit/miss predictor

decides if the request is likely to be a hit in the extended LLC.

If the request is predicted to be a hit, the Morpheus controller

forwards the request to the extended LLC. Otherwise, the

Morpheus controller directly accesses the o�-chip DRAM to

serve the memory request.

Figure 5 shows the timeline for a correctly-predicted ex-

tended LLC miss. If a miss is predicted correctly, it avoids

the unnecessary latency of (1) an interconnection network

roundtrip, and (2) querying the tag array with the extended

4

LLC kernel. Thus, correctly-predicted extended LLC misses

can be serviced as fast as conventional LLC misses.

To maintain correctness in the presence of the hit/miss pre-

dictor, we must understand if and which types of mispredic-

tions are acceptable. We observe that it is acceptable to falsely

predict a request as an LLC hit when in reality the request is

a miss. This is because the predicted LLC hit causes a lookup

in the extended LLC, at which point the misprediction will be

discovered. Nevertheless, such false positives are undesirable,

because they increase the latency of extended LLC misses to

the same latency as if there were no hit/miss prediction. In con-

trast, falsely predicting a request as an LLC miss even though

the requested address is in the LLC can violate both coherence

and consistency guarantees. For example, if a request to a dirty

cache block is falsely predicted as an LLC miss, the request-

ing core will receive an out-of-date value from main memory,

which violates basic cache correctness. Thus, for correctness,

the hit/miss predictor must not produce such false negatives,
or otherwise it should recover from its mispredictions such

that no correctness problems appear.

We design our hit/miss predictor using Bloom �lters [19].

Bloom �lters are a good �t for our requirements because they

provide fast and low-cost set membership queries without false

negatives. In our hit/miss predictor, a Bloom �lter represents

the LLC blocks which are currently in a given extended LLC

set. To avoid increasingly frequent false positives, the Bloom

�lters must be cleared regularly,
2

after which there is a risk

for false negatives. We next describe an algorithm using two

Bloom �lters, which are cleared alternately, thus avoiding false

negatives.

The key idea of our extended LLC hit/miss prediction algo-

rithm is to track the blocks currently in the LLC set using two

Bloom �lters per extended LLC set, BF1 and BF2. BF1 and BF2

are updated upon every access to the extended LLC set, such

that at any given time, (1) BF1 contains at least all the cache

blocks currently in the extended LLC set, and (2) BF2 contains

the n most recently used cache blocks in the extended LLC set.

Invariant (1) guarantees the absence of false negatives when

querying BF1 with requested extended LLC addresses, i.e., BF1

can be used to safely predict if a request will hit in the extended

LLC set. Invariant (2) enables eventually replacing BF1 with

BF2, when BF2 contains all cache blocks in the extended LLC

set (n≥associativity). The bene�t of eventually replacing BF1

with BF2 is that BF2 does not (yet) contain any evicted cache

blocks, thus producing fewer false positives than the old BF1.

In contrast, BF1 may contain multiple evicted cache blocks.

We explain in detail how the hit/miss predictor queries BF1,

and how BF1 and BF2 are updated upon every access to the

extended LLC set to maintain invariants (1) and (2).

Figure 6(a) shows a �ow diagram of how the Morpheus

controller with the hit/miss predictor serves an extended LLC

request. To make a hit/miss prediction for some LLC request,

the hit/miss predictor queries BF1 with the LLC request’s ad-

2
Counting Bloom �lters [30] would support individual element removal

instead, but require more bits compared to standard Bloom �lters.

Figure 6: Flowchart of the extended LLC hit/miss predictor

dress (1 in Figure 6). It predicts a hit when the address is

found in BF1, and a miss otherwise. This cannot produce false

negatives, since invariant (1) guarantees that BF1 contains all

blocks currently in the extended LLC set, and Bloom �lters do

not produce false negatives. Upon a predicted extended LLC

hit, the algorithm queries the address in the extended LLC 2 .

Upon a (predicted or actual) extended LLC miss, the Morpheus

controller accesses the requested block in DRAM instead 3 .

Finally, the response is sent from the Morpheus controller to

the core that issued the request 4 .

Figure 6(b) shows a �ow diagram of how the hit/miss pre-

dictor updates BF1 and BF2 for a given extended LLC access

to maintain invariants (1) and (2). Upon an access (i.e., when

a cache block is inserted into the set (5 in Figure 6), or a

cache block in the set is re-used 6), the accessed cache block

is inserted into both Bloom �lters 7 . This trivially maintains

invariant (1), because any inserted extended LLC block will

also be in BF1. Invariant (2) is maintained because before the

insertion, BF2 contained the nod most recently used blocks,

and after the insertion BF2 contains either the n=nod+1 most

recently used blocks (if the used block was not in BF2 before)

or the n=nod most recently used blocks (if the used block was

already in BF2). After n becomes as large as the set’s asso-

ciativity 8 , all future predictions can be made by querying

BF2 instead of BF1, without risking false negatives. This is

because the extended LLC uses the LRU (least recently used)

replacement policy and BF2 contains the n most recently used

blocks, thus if n is as large as the set’s associativity, BF2 is

guaranteed to contain all blocks that are in the LLC set. Thus,

the contents of BF1 are cleared, BF1 and BF2 are swapped, and

the scheme repeats 9 .

Cost. Assuming each Bloom �lter is 32 bytes in size, and up to

256 extended LLC sets per LLC partition, the hit/miss predictor

requires 32B×2×256=16KiB of Bloom �lter storage in each

LLC partition.

4.1.3. Extended LLC Query Logic Unit. The Morpheus con-

troller includes a hardware unit called the extended LLC query
logic unit to track and manage outstanding extended LLC re-

quests. Figure 7 shows the four main components in the ex-

tended LLC query logic unit, namely the request queue, the

warp status table, the read data bu�er, and the write data bu�er.
We explain each component in this section.

Request Queue. For simplicity, each extended LLC kernel

warp serves only a single extended LLC request at a time in

Morpheus. To avoid clogging the interconnection network

5

Figure 7: Extended LLC Query Logic Unit

with backlogged request bursts, we introduce a request queue,

which bu�ers any requests to the extended LLC. A given re-

quest is de-queued as soon as the warp assigned to the request’s

extended LLC set is ready to serve a new request. When de-

queued, the request’s metadata is written to the corresponding

row in the warp status table. If the request is a write, the pay-

load data is written to the write data bu�er.

Warp Status Table. The warp status table has one row per

set in the current LLC partition, tracking the status of the ex-

tended LLC kernel warp that is assigned to each set. Each

row has �elds for the current request’s tag, the origin of the

request, a busy bit (indicating if the warp is currently serving

a request), an op �eld (indicating if the request is a read or

write), a result �eld (indicating if the request is a hit or a miss

in the extended LLC), and a pointer to either the read or write

data bu�er entry for the payload data. The warp status table

is memory-mapped, thus the extended LLC kernel warps can

read from and write to it with regular load/store instructions.

We size the warp status table based on the maximum number

of sets in the extended LLC. We assume an NVIDIA RTX 3080

GPU as the baseline, which has 10 LLC partitions, 68 SMs, and

48 warps per SM (and thus, up to 48 extended LLC sets per SM

in cache mode). We assume that up to 75% of all SMs can be in

cache mode, based on Figure 1, where GPU performance starts

to saturate after using at least 25% of the SMs for computation.

Under these assumptions, Morpheus can provide up to 2448

extended LLC sets, i.e., about 256 sets per LLC partition. As a

result, the warp status table has 256 rows in each Morpheus

controller of a Morpheus-enabled NVIDIA RTX 3080 GPU.

Read and Write Data Bu�ers. The read and write data

bu�ers hold payload data from requests to the extended LLC.

For example, when a write request arrives at the extended LLC

query logic unit, it includes a dirty cache block (e.g., 128 bytes)

to write to the extended LLC. These 128 bytes are written to

an entry in the write data bu�er, and the data pointer in the

warp status table is updated to point to that entry. Read re-

quests work analogously, with the di�erence that the extended

LLC kernel writes the requested cache block to the read data

bu�er entry instead. Like the warp status table, the read and

write data bu�ers are memory-mapped, and thus extended

LLC kernel warps can read from and write to them with simple

load/store instructions.

4.2. Extended LLC Controller
Morpheus implements the extended LLC controller as a soft-

ware helper kernel, called the extended LLC kernel, that per-

forms three main tasks: (1) storing and updating the extended

LLC tags and data in the local memory units of a GPU core

operating in cache mode (§4.2.1-4.2.2), (2) executing simple op-

erations (e.g., increment) on the extended LLC blocks needed

for atomic instructions (§4.2.3), and (3) identifying the correct

memory unit to perform these operations on, based on a static

address separation mechanism.

Morpheus schedules one copy of the extended LLC kernel

on each GPU core that is operating in cache mode. The ex-

tended LLC kernel uses the maximum number of warps in each

GPU core, and each warp handles exactly one extended LLC

set. The extended LLC kernel e�ectively uses all of the local

memory units of GPU cores operating in cache mode to store

the extended LLC data and metadata (e.g., tags, valid bits, dirty

bits), except for a number of registers that the extended LLC

kernel reserves as auxiliary registers for its own operation. In

this section, we explain only the �rst and second tasks of the

extended LLC kernel since the third task, i.e., address separa-

tion, is analogous to the address separation in the Morpheus

controller (§4.1.1), with the only di�erence being that the ad-

dress space is divided proportionally to the respective memory
units’ capacities instead.

4.2.1. Extended LLC via Register File. In this section, we

describe how the extended LLC kernel (1) lays out the extended

LLC blocks’ tags and data in the register �le, and (2) accesses

and updates them.

Extended LLC Layout in the Register File. Figure 8 shows

how the extended LLC kernel lays out 48 sets of a 32-way

set-associative extended LLC in the register �le of a GPU core

operating in cache mode. This example assumes a baseline

NVIDIA RTX 3080 [7] GPU, with up to 48 active warps per SM,

and 42 registers per warp.

The extended LLC kernel uses the register �le to store a

number of extended LLC sets (e.g., 48) 1 , for each set a num-

ber of cache blocks (e.g., 32 blocks of 128 bytes each) 2 , and

for each block a metadata block 3 containing the block’s LRU

counter, dirty bit, valid bit, and tag 4 . Each extended LLC

set 1 is stored in the registers of exactly one warp 5 . Each

data block of a set 2 is stored in exactly one warp register,

called a data-array register 6 . The metadata blocks 3 are

coalesced into a single warp register, called the metadata regis-
ter 7 , such that thread i holds block i’s metadata block. The

remaining auxiliary registers are used for extended LLC kernel

execution 8 .

In this con�guration of 48 extended LLC sets per GPU

core operating in cache mode, 32 blocks per set, and 128

bytes per block, each GPU core operating in cache mode adds

48×32×128B=192KiB capacity to the extended LLC by using

the space in the GPU core’s register �le.

Extended LLC Tag Lookup. When a warp executing the

extended LLC kernel receives an extended LLC request for its

set, the warp executes a tag lookup procedure to determine if

6

Figure 8: Each out of the 48 warps in an SM in cache mode im-
plements one fully associate cache set (e.g., set 0) with several
cache blocks (e.g., 32).

the request is a hit in the set, and if so, which cache block in

the set was hit. To this end, the warp compares the tag of the

request address to the tags of extended LLC blocks stored in

its metadata register RM (e.g., R32 in Figure 8).

Algorithm 1 shows the pseudo code for the tag lookup pro-

cedure in the extended LLC kernel. The procedure receives the

tag of the extended LLC request as the input and returns the

outcome of the lookup (“HIT=True” and the “BLOCK_INDEX”

of the corresponding cache block, or “HIT=False”) as the output.

Algorithm 1 assumes that the request’s tag is in the auxiliary

register R0 (e.g., R33 in Figure 8) for all threads, i.e., there

are 32 copies of the tag.

Each thread of the warp is assigned to a cache block (Block

0-31 in Figure 8) and corresponding metadata block (M0-M31

in Figure 8), such that all following operations run in parallel

for all cache blocks. First, each thread ensures that its assigned

metadata block in RM (e.g., R32 in Figure 8) is valid by check-

ing the valid bit (line 2). Second, each thread compares the tag

in its assigned metadata block to the request’s tag in R0 ,

and stores the result in an auxiliary register (e.g., R1) (line

3). Third, the comparison result of each thread is shared among

all threads as a 32-bit bitvector and written into R2 using

the ballot_sync instruction [20] (line 4). If R2 is non-zero,

one of the tags in the metadata blocks must have matched the

request’s tag, i.e., the request is a hit (lines 5-6). In this case,

the 0-based index of the �rst 1-bit in R2 is obtained using

the �s instruction [20] (line 7). This index is the index of the

cache block whose metadata matched the request’s tag. Finally,

the LRU counters are updated (lines 8-12).

Handling Extended LLC Hits. After detecting an extended

LLC hit, the corresponding warp in the extended LLC kernel

should move the cache block from the register �le to the read
data bu�er in the Morpheus controller (§4.1.3). In this section,

we explain how the warp in the extended LLC kernel reads the

register that contains the requested cache block.

After the tag lookup procedure, the corresponding extended

LLC kernel warp has the index of the matching cache block

available (e.g., in R3). To retrieve the matching cache

block’s data, the extended LLC kernel warp should access the

register whose index equals the value of R3 . For example,

if R3 is equal to 5, R5 should be accessed. This register �le

access is indirect, i.e., it requires reading from a register whose

Algorithm 1 Extended LLC Tag Lookup – Register File

Input: Extended LLC Request’s Tag (R0)
Output: HIT:bool, and if HIT=True, BLOCK_INDEX:int (R3)

1: procedure Tag Lookup//executed by an extended LLC kernel warp of 32 threads

2: R1 ← Vd(RM) //ensure the block is valid

3: R1 ← R1 &&
�

R0 == Tg(RM)
�

//match request tag to metadata

4: R2 ← __bot_sync(0ƒ ƒ ƒ ƒ ƒ ƒ ƒ ƒ , R1) //share R1 between all

threads as a 32-bit vector

5: if (R2) then //one of the bits is non-zero because there was a hit

6: R3 ← __ƒ ƒ s(R2) − 1 //get the 0-based index of the non-zero bit

7: HIT← True

8: BLOCK_INDEX← R3
9: if (thred_d == R3) then //reset the LRU counter of the hit block

10: LRU_Conter(RM)← 0ƒ ƒ ƒ
11: else//decrement the LRU counters of all other blocks

12: LRU_Conter(RM)← LRU_Conter(RM) − 1
13: end if
14: else
15: HIT← False

16: end if
17: end procedure

index is determined by accessing the value in another register.

An indirect register �le access is not straightforward, because

many existing GPU ISAs (e.g., [20]) only provide instructions

for accessing the register �le with an immediate (constant)

index.

To enable indirect register accesses, we de�ne a procedure

called Indirect-MOV. The key mechanism is to implement a

switch-case structure in the procedure. The procedure 1) al-

locates each case to access a speci�c register index, and 2)

selects the corresponding case using the target register index

(e.g., the value of R3). Algorithm 2 illustrates how we im-

plement the Indirect-MOV procedure using the instructions

already present in an existing GPU ISA [20].
3

The procedure

uses the brx.idx instruction [20]. This instruction is a branch

instruction that gets a list of branch targets (i.e., TLst) and an

index as input. The control �ow jumps to the branch targets at

the speci�ed index. The Indirect-MOV procedure uses the the

target LLC block index (e.g., the value of R3) as the input

to the brx.idx instruction. The procedure de�nes 32 branch

targets (L0-L31), each is allocated to access the corresponding

data-array register. For example, the branch targets L0 and

L31 are to access the cache blocks in registers R0 and R31,

respectively.

Handling Extended LLC Misses. The warp in the extended

LLC kernel that services the extended LLC request handles

an extended LLC miss in four steps. First, the warp accesses

main memory to bring the requested cache block. Note that

main memory accesses from the extended LLC kernel bypass

the conventional LLC. Second, to free space in the extended

LLC for the to-be-inserted block, the warp selects the victim

extended LLC block based on the LRU replacement policy. To

this end, the warp determines which extended LLC block has

the lowest LRU counter. Third, the warp checks the dirty bit

of the victim extended LLC block and writes it back to the

main memory if it is dirty. Fourth, the warp writes the new

extended LLC block into the register �le using the Indirect-
MOV procedure (Algorithm 2).

3
We optimize Indirect-MOV by adding a new instruction to the ISA in §4.3.

7

Algorithm 2 Indirect-MOV Algorithm

Input: BLOCK_INDEX:int (R3)
Output: Requested Extended LLC Block (R0)

1: procedure Indirect-MOV //The goal is to implement register indirect access, read-

ing from a register whose index is determined by accessing the value in another

register. This procedure is critical for accessing data-array registers in the extended

LLC kernel.

2: Tst : .Brnch Trgets L0, L1, L2, . . . , L31; //De�ne 32 branch targets,

each is allocated to access a speci�c register index.

3: @p br.d R3 , Tst ; //Branch to label L speci�ed by the target LLC

block index =R3
4: L0 :
5: MOV R0, R0 //Access data-array register R0 if target LLC block index is

0

6: retrn

7: L1 :
8: MOV R1, R0 //Access data-array register R1 if target LLC block index is

1

9: retrn

10: ...

11: L31 :
12: MOV R31, R0//Access data-array registerR31 if target LLC

block index is 31

13: retrn

14: end procedure

4.2.2. Extended LLC via Uni�ed L1/Shared-memory. We

explain how the extended LLC kernel uses the L1 cache and

shared memory as the extended LLC.

L1 cache. Morpheus assigns a portion of the extended LLC to

the L1 cache of each GPU core that is in cache mode. When

a warp executing the extended LLC kernel receives a request

that should be serviced in the L1 cache, the warp simply for-

wards the request to the L1 cache by executing GPU load and

store instructions. If the request hits in the L1 cache, the re-

sponsible warp in the extended LLC kernel responds to the

Morpheus controller through the extended LLC query logic

unit. Otherwise, the L1 cache accesses the main memory to

service the miss request. Note that the Morpheus controller

ensures that an L1 cache miss from a GPU core that is in cache

mode bypasses the conventional LLC and directly accesses

main memory.

SharedMemory. Morpheus assigns a portion of the extended

LLC to the shared memory. Since shared memory does not

have a hardware unit for storing the tags (unlike the L1 cache),

the extended LLC kernel stores the tags of the extended LLC

blocks assigned to the shared memory inside the register �le

instead. The advantage of this approach is that a register �le

access is faster than shared memory access, which accelerates

the tag lookup procedure. The tag lookup procedure is similar

to the procedure shown in Algorithm 1. To access an extended

LLC block, the extended LLC kernel calculates the address of

the block’s data in shared memory based on the extended LLC

set number and the cache block index from the tag lookup

procedure.

4.2.3. Supporting Atomic Instructions in the Extended
LLC. Modern GPUs execute global memory atomic operations

via single SASS instructions that run on atomic units in the

conventional LLCs [31, 32], which is critical for performance of

GPU applications with inter-CTA synchronization. Morpheus

supports global memory atomic operations in the extended

LLC, as we explain next. First, the warp handling an extended

LLC request performs atomic operations using the functional

units inside the SMs in cache mode, no matter which on-chip

memory inside an SM in cache mode has the corresponding

block. Second, the Morpheus controller guarantees the atomic-

ity in the extended LLC since several threads cannot access the

same extended LLC block at the same time. This is because: (1)

each cache block in the extended LLC is assigned to exactly one

warp in the extended LLC kernel, and (2) each warp completes

one extended LLC request before starting to service another

request.

4.3. Optimizing Morpheus
We describe two optimization techniques on top of the basic

Morpheus design we introduced in §4-4.2. First, the �exibility

of the extended LLC kernel enables low-cost implementation

of cache optimization techniques, such as cache compression,

resizing cache blocks, and online modi�cation of the replace-

ment policy. As a case study, we discuss how to use cache

compression in Morpheus (§4.3.1). Second, the extended LLC

needs the Indirect-MOV procedure that we implement using

the brx.idx instruction in basic Morpheus (see Algorithm 2).

However, having architectural support for this operation can

accelerate the data array access. We provide new architectural

support for the Indirect-MOV instruction in §4.3.2.

4.3.1. Cache Compression. Queries to, insertions to, and

evictions from the register �le and shared memory partitions

of the extended LLC always go through the extended LLC

kernel
4
. Hence, the extended LLC kernel can manipulate them

in a way that is transparent to the rest of the system. Our

goal is to leverage this opportunity for increased extended LLC

capacity. To this end, we propose a cache compression scheme

on top of Morpheus. The key idea is to use the extended LLC

kernel to store compressed (where possible) versions of the

extended LLC blocks, thereby increasing the number of blocks

in each extended LLC set, and thus the e�ective capacity of

the extended LLC. The extended LLC kernel compresses any

inserted extended LLC block, stores the compressed version

in the register �le or shared memory, and serves requests

by decompressing the blocks upon a hit. In this section, we

describe our mechanism in detail.

An inserted or updated (i.e., written-to) 128-byte extended

LLC block is grouped into one of three compression levels that

we de�ne as follows: (1) the high compression level includes

extended LLC blocks that can be compressed 4-fold into 32

bytes, (2) the low compression level includes extended LLC

blocks that can be compressed 2-fold into 64 bytes, and (3) the

uncompressed level includes extended LLC blocks that could

not be compressed. Figure 9 shows how logical 128-byte ex-

tended LLC blocks 1 are laid out in the register �le, depending

on their respective compression level 2 3 4 . Blocks in the

high 2 and low 3 compression levels are laid out across reg-

4
Note that insertions to and evictions from the L1 partition of the extended

LLC do not go through the extended LLC kernel, because the L1 cache handles

them in hardware.

8

isters in a strided and interleaved manner with strides 4 and

2, respectively. Blocks in the uncompressed level are laid out

exactly like they were without our compression scheme 4 .

For example, for the high compression level, four extended

LLC blocks 1 are stored in a single warp register of 32×4

bytes 2 , such that they occupy the �rst, second, third and

fourth bytes of each thread, respectively.

Since the compression levels of cache blocks cannot be

known ahead of time, the number of warp registers allocated

to each compression level should be adapted dynamically. Our

mechanism initially assigns all registers to the uncompressed
level. Then, over epochs of n cycles (we empirically choose

n=10,000), the number of cache blocks in the high, low and

uncompressed levels are counted. At the end of each epoch,

the number of registers assigned to each compression level is

updated based on the counter values.

We employ the Base-Delta-Immediate (BDI) compression

algorithm [33] due to its simplicity and good cache compres-

sion ratios. The BDI algorithm works as follows: First, the

input cache block is divided into segments (e.g., 4 bytes each).

Second, one of these segments (e.g., the �rst) is designated as

the base segment and copied to the output. Third, only the

deltas (arithemtic di�erences) of the remaining segments from

the base segment are copied to the output [33]. The achieved

compression ratio depends on how large the deltas are. For ex-

ample, if all segments are very similar to the base segment, the

deltas are small and can be stored in only a few bits for each

delta. We consider 4-byte segments in our implementation

and store the base segments of compressed blocks in auxiliary

registers.

Figure 9: Layout of compressed cache blocks across registers

4.3.2. Indirect-MOV Instruction. The Indirect-MOV proce-

dure (§4.2.1) is required for indirectly addressing registers in

the extended LLC kernel. Our software implementation of

the Indirect-MOV procedure (Algorithm 2) is very portable

and �exible because it uses only instructions from NVIDIA’s

existing PTX ISA [20]. However, it is ine�cient and slow for

two reasons. First, it executes three instructions (i.e., brx.idx,

MOV, and return) to perform a single indirect register access.

Second, two of these instructions (i.e., brx.idx and return) are

branches, which cause irregular control �ow.

To improve the e�ciency of the Indirect-MOV procedure, we

introduce a new instruction in the GPU ISA that can perform

Indirect-MOV natively via minor modi�cations to existing

hardware. Like the software implementation of Indirect-MOV,

the new Indirect-MOV instruction conceptually (1) accesses the

register �le to read the source register Rsrc, (2) re-accesses the

register �le to read the indirectly addressed register R[Rsrc] ,
and (3) moves the value from R[Rsrc] to the destination reg-

ister Rdest .
To support this instruction in GPU hardware, we modify

the register �le architecture. The key idea is to support two

sequential register �le reads for the Indirect-MOV instruction.

We slightly modify the operand collectors in the register �le

to support these sequential reads. The operand collector �rst

accesses the register �le using the register number speci�ed

in the instruction to read a 1024-bit warp register. Then, the

operand collector uses the �rst eight least signi�cant bits of the

read register value as the next register number. The operand

collector then re-accesses the register �le with this new reg-

ister number. The read value is then written to the destina-

tion register using the regular MOV instruction’s data path in

the pipeline. Figure 10 illustrates our changes to the baseline

operand collector. We add a single multiplexer per operand

collector to select between the two di�erent sources of the

register number: (1) the immediate source register number

from the instruction, (2) the value loaded from a register. The

multiplexer is controlled by the ready bit of the register num-

ber loaded from a register, i.e., the indirect register number is

used as soon as it is available.

Figure 10: Native hardware implementation of Indirect-MOV

5. Characterization of the Extended LLC Ker-
nel

We implement the extended LLC kernel, as described in §4.2,

and evaluate it on a real GPU. Our goal is to obtain relevant

metrics that characterize the extended LLC kernel and the

di�erent implementation alternatives (i.e., combinations of

register �le, L1, and shared memory). We evaluate four relevant

metrics for the extended LLC: (1) storage capacity, (2) access

latency, (3) access bandwidth, and (4) energy per byte. We use

these metrics to (i) determine the implementation alternative

that provides the best tradeo�, and (ii) properly con�gure

our simulation of the extended LLC in our cycle-level GPU

simulator (see §6), to evaluate the e�ectiveness of Morpheus

at boosting GPU performance of real-world memory-bound

applications (§7).

Methodology. We implement and evaluate the extended LLC

kernel on a real NVIDIA RTX 3080 GPU [7]. Our implementa-

tion faithfully follows the description in §4.2. However, since

there is no actual Morpheus controller (§4.1) in a real state-

of-the-art GPU, we emulate the warp status table (§4.1.3) by

9

placing a similar data structure, which contains the addresses

of the extended LLC to access in our evaluation, in the con-

ventional LLC. The latency of an access to this emulated warp

status table is similar to an access to the warp status table in

the Morpheus controller, since the Morpheus controller sits

inside the LLC partition (see Figure 4).
5

We implement three variants of the extended LLC kernel:

(1) extended LLC via register �le, (2) extended LLC via L1, and

(3) extended LLC via shared memory. For each of them, we

experiment with di�erent numbers of warps of the extended

LLC kernel on a single GPU core. Each warp is in charge of

one set of the extended LLC. Thus, the larger the number of

warps, the smaller the extended LLC sets are (because of the

�xed size of memory storage). Each extended LLC variant and

number of warps o�ers a di�erent tradeo� in terms of capacity,

latency, bandwidth, and energy/byte.

To measure the extended LLC capacity, we calculate the

available space for the extended LLC data array per GPU core

in cache mode. This depends on the size of the actual storage

(i.e., register �le, shared memory, L1) and the space needed

for auxiliary purposes (e.g., the execution context of extended

LLC kernel). To measure the extended LLC access latency, we

use the Nsight pro�ler tool [35] and the cudaEventElapsedTime
API [34]. To measure the extended LLC access bandwidth, we

�rst measure the number of accesses per second by dividing the

total number of extended LLC accesses (100 million accesses in

our experiments) by the total time takes to service all extended

LLC accesses. Second, we multiply the resulting accesses per

second by 128 (the extended LLC block size in bytes) to calcu-

late the extended LLC bandwidth in bytes per second (B/s). To

measure the extended LLC energy per byte, we �rst measure

the average GPU power consumption using nvidia-smi [20]

while servicing 100 million accesses to the extended LLC. Sec-

ond, we calculate the total energy consumption by multiplying

the measured power consumption with the total time it takes

to service these extended LLC requests. Third, we divide the

total energy consumption by the number of extended LLC ac-

cesses to obtain the energy per access. Fourth, we divide the

energy per access by 128 (the extended LLC block size in bytes)

to calculate the extended LLC energy per byte (J/B).

Extended LLC Capacity. Figure 11(a) reports the extended

LLC capacity per GPU core in cache mode for di�erent imple-

mentations using various numbers of warps, i.e., 1, 8, 16, 32,

and 48. We make four key observations. First, the extended

LLC capacity is substantial per GPU core in cache mode. For

example, when using 8 warps for the extended LLC via register

�le (providing 239 KiB capacity) and 8 warps for the extended

LLC via L1 (providing 128 KiB capacity), the extended LLC

5
We ensure that (1) the data structure that emulates the warp status table

resides in the conventional LLC (and not L1 cache) using the ld.global.cg
instruction [34], and (2) the data structure �ts completely in the conventional

LLC so that all accesses (after the initialization phase of the extended LLC

kernel) to this data structure hit in the conventional LLC.

capacity is 367 KiB per GPU core in cache mode.
6

Second, the

capacity of the extended LLC via register �le varies with the

number of warps. This is due to two main reasons. First, using

fewer than eight warps, the extended LLC kernel cannot utilize

the total register �le capacity since the extended LLC capacity

is limited to the maximum number of registers per thread (i.e.,

256). Third, using eight warps results in the maximum ex-

tended LLC capacity via register �le (i.e., 239 KiB). Using more

than eight warps leads to smaller extended LLCs via register

�le due to allocating a higher number of registers for auxil-
iary purposes (e.g., the execution context of the extended LLC

kernel warps). Fourth, the capacity of the extended LLC via

L1 and via shared memory does not change with the number

of warps. This is because the extended LLC kernel allocates

the whole space of each of these two memories (L1 and shared

memory) to the extended LLC data array no matter how many

warps the kernel uses.

1 8 16 32 48
Number of Warps

50

100

150

200

250

C
a

p
a

ci
ty

(K
iB

) a)

1 8 16 32 48
Number of Warps

300

325

350

375

L
a

te
n

cy
(n

s)

b)

1 8 16 32 48
Number of Warps

0

10

20

30

B
a

n
d

w
id

th
(G

B
/

s)

c)

1 8 16 32 48
Number of Warps

50
75

100

125

150

175

E
n

er
g

y/
B

yt
e

(J
/

B
) 1e-12

d)

Register File Shared Memory L1 Cache

Figure 11: Characterization of the extended LLC using a real
GPU [7]. a) extended LLC capacity, b) extended LLC access
latency, c) extended LLC access bandwidth, and d) extended
LLC energy per byte.

6
Note that using shared memory would not further increase the extended

LLC capacity in this case. This is because the L1 and shared memory are

uni�ed in modern NVIDIA GPUs, i.e., the sum of L1 and shared memory space

in a core is at most their total uni�ed storage capacity (e.g., 128 KiB in an

NVIDIA RTX 3080 [7]).

10

Extended LLC Access Latency and Bandwidth. Figures

11(b) and 11(c) report the extended LLC access latency and

bandwidth, respectively, for di�erent implementations using

various numbers of warps, i.e., 1, 8, 16, 32, and 48. We make

�ve key observations. First, the extended LLC access latency

(≥300 ns) is almost two times longer than the conventional

LLC access latency (∼160 ns [31, 36]). The longer access la-

tency of the extended LLC compared to the conventional LLC is

mainly because of the round trip interconnect latency from the

Morpheus controller to the GPU core in cache mode and from

the GPU core in cache mode to the Morpheus controller. How-

ever, the extended LLC access latency is still approximately

2× faster than accessing o�-chip memory (∼600ns [31, 36]).

Second, the extended LLC access bandwidth per GPU core in

cache mode is 37 GB/s using the register �le implementation

and 48 warps. The bandwidth of each conventional LLC parti-

tion is around 300 GB/s [31, 36], and thus eight GPU cores in

cache mode can collectively provide the same bandwidth as

one conventional LLC partition. Third, increasing the number

of warps of the extended LLC kernel in all three implemen-

tations results in higher extended LLC bandwidth at the cost

of longer access latency. Increased access latency with more

warps is mainly due to the fact that the corresponding warp

servicing a request to the extended LLC needs to wait until its

scheduling slot, and the waiting time becomes longer when

using more warps. Fourth, the extended LLC via register �le

has both lower latency and higher bandwidth for almost all

warp counts, compared to the extended LLC via shared mem-

ory and via L1. This is because the register �le has a lower

access latency and a higher access bandwidth compared to

shared memory and L1.
7

Fifth, the bandwidth of the extended

LLC in the best case (i.e., the extended LLC via register �le

using 48 warps) is still less than 40 GB/s, which is one order

of magnitude lower than the bandwidth of the register �le (1

TB/s). This is because the interconnection network connect-

ing LLC partitions to GPU cores signi�cantly bottleneck the

bandwidth of the extended LLC via register �le (and similarly

via shared memory and via L1).

To further analyze the e�ect of the interconnection network,

we ideally exclude the interconnection network from the ex-

tended LLC accesses. To this end, we (1) assume the address

of the extended LLC request is already ready in an auxiliary
register of the SM operating in cache mode and (2) let the

SM operating in cache mode discard the response instead of

sending it over the interconnection network. We observe that

the access bandwidth of the extended LLC via register �le,

shared memory, and L1 using 48 warps becomes 290 GB/s, 106

GB/s, and 97 GB/s, which is 7.8× , 3.4× , and 3.5× higher than

the non-ideal versions, respectively. Hence, a better intercon-

nect design could signi�cantly improve the performance of the

extended LLC.

Extended LLC Energy per Byte. Figure 11(d) reports energy

7
The access latency of the register �le, shared memory, and L1 are 2, 25,

and 34 ns, respectively [8]. The access bandwidth of the register �le, shared

memory, and L1 are 1 TB/s, 170 GB/s, and 170 GB/s, respectively [8, 31, 36].

per byte results for di�erent implementations using various

numbers of warps, i.e., 1, 8, 16, 32, and 48. Note that the energy

per byte results take into account the energy consumed by all

the components included in the extended LLC accesses, i.e.,

GPU cores in cache mode (executing the extended LLC kernel),

interconnect, and the conventional LLC banks. We make three

key observations. First, The extended LLC energy per byte in

the best case (extended LLC via register �le and using 48 warps)

is 53 pJ which is approximately 5.3× the energy per byte of

the conventional LLC (∼10 pJ [37]). Despite its high energy

consumption compared to the conventional LLC, the extended

LLC can reduce GPU energy consumption by reducing the

number of energy-hungry o�-chip memory accesses. Second,

increasing the number of warps in the extended LLC kernel

signi�cantly reduces energy per byte for all implementations.

This is because using more warps increases the extended LLC’s

throughput, without signi�cantly increasing power consump-

tion, leading to lower energy per byte. Third, the extended

LLC via register �le has a lower energy per byte for all warp

counts compared to the extended LLC via L1 and via shared

memory. This is mainly due to the fact that a register �le ac-

cess consumes less energy compared to an access to the L1 or

shared memory [37].

Combining di�erent extended LLC versions. Our charac-

terization of the extended LLC shows that the extended LLC

via register �le outperforms other implementations in terms

of capacity, access latency, access bandwidth, and energy per

byte. However, to utilize all on-chip memories of a GPU core

in cache mode and thus enable larger extended LLC capacities,

the extended LLC kernel aims to combine the implementation

via register �le with the implementation via L1 and/or via

shared memory. To this end, the extended LLC kernel allocates

a number of warps to the implementation via register �le, and

the remaining number of warps to the implementations via

L1 and shared memory. We only consider the combination

of the extended LLC via register �le and via L1 since L1 and

shared memory are uni�ed in our evaluated GPU system (i.e.,

combining the extended LLC via L1 and via shared memory

does not provide a larger extended LLC capacity).

We use our characterization results to optimize the number

of warps the extended LLC kernel should allocate to each of

the two extended LLC kernel implementations (via register �le

and via L1) to design a high-capacity and high-performance

extended LLC. (1) The extended LLC kernel should allocate

more than 8 warps to the implementation via register �le to

better utilize the register �le capacity (Figure 11(a)). (2) The

extended LLC kernel should allocate fewer than 48 warps to

the implementation via register �le to be able to allocate a

number of warps to the implementation via L1. (3) Among

the remaining options (8, 16, or 32 warps), using 32 warps

in the extended LLC kernel via register �le results in higher

access bandwidth (Figure 11(c)) and lower energy per byte

(Figure 11(d)), while the access latency is almost equal to the

case of using 8 warps (Figure 11(b)). Hence, the extended LLC

kernel combines the extended LLC via register �le and via L1

11

by allocating 32 and 16 warps to each of these two implemen-

tations, respectively. Using our characterization, we observe

that for each GPU core operating in cache mode, the extended

LLC via register �le+L1 has 328 KiB capacity, 185ns average

access latency, 34GB/s average access bandwidth, and 61pJ

average energy per byte. We use this extended LLC implemen-

tation to evaluate the e�ectiveness of Morpheus to boost the

performance of memory-bound applications.

6. Methodology
Simulation methodology. We evaluate Morpheus using the

AccelSim [8] cycle-level simulator. We model our baseline

after the NVIDIA Ampere 3080 GPU [7]. Table 1 shows the

simulation parameters modeling our baseline. To evaluate

energy consumption, we use AccelWattch [37] embedded in

AccelSim as the state-of-the-art GPU energy model.

Table 1: Baseline GPU con�guration
Parameter Value
Number of SMs 68

Scheduler Two-Level [18, 38]

GPU Memory Interface 320-bit GDDR6X [39]

GPU Memory Capacity 10 GiB

Conventional LLC Capacity 5 MiB

L1/Shared-Memory Capacity 128 KiB per SM

Register File Capacity 256 KB per SM

Applications. We randomly choose 14 memory-bound and

3 compute-bound applications from four benchmark suites,

Rodinia [5], Parboil [6], Pannotia [40] and ISPASS [41]. Our

methodology to categorize applications into memory-bound

and compute-bound groups is based on our experiment in

§3. The performance of the compute-bound applications to

increases (linearly) with more GPU cores. In contrast, the

performance of the memory-bound applications either satu-

rates or decreases sharply after a certain number of GPU cores.

Table 2 shows the applications we choose, their names, and

their types (memory-bound or compute-bound). We run each

application either entirely, or until the application reaches two

billion executed instructions.

Table 2: Evaluated Applications

Application Name Type
Breadth-First Search [6] p-bfs Memory-bound

Computational �uid dynamics [5] cfd Memory-bound

Discrete Wavelet Transform (2D) [5] dwt2d Memory-bound

Stencil [6] stencil Memory-bound

Breadth-First Search [5] r-bfs Memory-bound

Back Propagation [5] bprob Memory-bound

sgemm [6] sgem Memory-bound

Needleman-Wunsch [5] nw Memory-bound

Page Rank [40] page-r Memory-bound

K-means [5] kmeans Memory-bound

Histogram [6] histo Memory-bound

Magnteic Resonance Imaging-Gridding [6] mri-gri Memory-bound

Sparse-Matrix Dense-Vector Multiplication [6] spmv Memory-bound

Lattice-Boltzmann [6] lbm Memory-bound

LIBOR Monte Carlo [41] lib Compute-bound

HotSpot [5] hotsp Compute-bound

Magnetic Resonance Imaging - Q [6] mri-q Compute-bound

Evaluated Systems. We evaluate six systems. (1) BL: baseline

system that models a GPU architecture with the parameters

reported in Table 1. BL employs all available GPU cores (i.e.,

68) for application execution. To provide a fair comparison,

we add the extra on-chip storage in Morpheus, the 16-KiB

Bloom �lters (§4.1.2) and the 5-KiB extended LLC query logic

unit (§4.1.3) per LLC partition (overall; 21 KiB×#partitions =

210 KiB), to the conventional LLC capacity. (2) IBL: improved

baseline system where we use the number of GPU cores that

provides the maximum performance for each application and

power-gate the remaining cores. Table 3 (second row) reports

the number of GPU cores we use for each application in IBL.

(3) IBL-4×-LLC: IBL with 4× the LLC size. We increase the

total LLC capacity by increasing the number of the LLC banks

(without adding any latency and power impact). (4) Frequency-
Boost: IBL with higher frequency memory system components,

including the interconnection network, conventional LLC, and

o�-chip DRAM channels. This system uses the energy saved by

power-gated GPU cores in IBL to increase the clock frequency

of the aforementioned components in the GPU memory system

by 10%-20% depending on the number of power-gated cores.

(5) Uni�ed-SM-Mem: IBL that has a larger L1 data cache capac-

ity by using methods from prior works on unifying L1 data

cache, shared memory, and the register �le [42, 43]. Our base-

line architecture (BL) already uni�es L1 data cache and shared

memory. InUni�ed-SM-Mem, we add the amount of unused reg-

ister �le space to the L1 data cache (without additional latency

impact). (6) Di�erent versions of Morpheus with and without

our various optimizations, namely Morpheus-Basic, Morpheus-
Indirect-MOV, Morpheus-Compression, and Morpheus-ALL. For

all Morpheus variants, we determine the number of GPU cores

in cache mode that results in the highest performance per ap-

plication o�ine.
8

Table 3 (third and fourth rows) reports the

number of GPU cores in compute mode for Morpheus-Basic and

Morpheus-ALL. We observe that Morpheus-ALL uses a larger

number of GPU cores in compute mode because it employs

cache compression (§4.3.1), which enables larger extended LLC

capacities per SM in cache mode, which in turn enables higher

performance with more application threads.

7. Evaluation

We evaluate the e�ectiveness of Morpheus compared to dif-

ferent baselines. §7.1 shows the overall e�ect of Morpheus

on GPU performance. §7.2 evaluates the e�ect of Morpheus

on GPU energy e�ciency. §7.3 analyzes the e�ectiveness of

our Bloom �lter-based hit/miss predictor design. §7.4 shows

the e�ect of Morpheus on on-chip and o�-chip bandwidth

utilization. §7.5 studies the storage and power overheads of

Morpheus.

8
This is a static version of Morpheus in which we adjust the number of

SMs in cache mode before running the application. If the best con�guration

per application is not known prior to execution, we could use online pro�ling

techniques similar to prior work [44-46] on top of Morpheus, to learn the best

con�guration for a running application and dynamically adjust the number

of cores in cache mode. We leave the use of online pro�ling techniques with

Morpheus to future work.

12

Table 3: Number of GPU cores executing application threads for di�erent evaluated systems (#available GPU cores is 68).

Application p-bfs cfd dwt2d stencil r-bfs bprob sgem nw page-r kmeans histo mri-gri spmv lbm lib hotsp mri-q

IBL 68 68 68 68 68 68 68 68 68 24 53 34 42 34 68 68 68

Morpheus-Basic 32 42 42 50 34 39 48 18 42 37 47 36 44 32 68 68 68

Morpheus-ALL 40 55 54 56 37 41 54 26 46 47 52 43 47 36 68 68 68

7.1. Performance Analysis
To study the e�ectiveness of Morpheus at improving GPU per-

formance, we measure application execution times on nine dif-

ferent systems, namely BL, IBL, IBL-4×-LLC, Frequency-Boost,
Uni�ed-SM-Mem, Morpheus-Basic, Morpheus-Compression,

Morpheus-Indirect-MOV, and Morpheus-ALL (see §6 for details

of each evaluated system). Figure 12 (top) shows the results.

The x-axis shows applications in two groups, memory-bound

and compute-bound. The y-axis shows the application execu-

tion time (the lower the better) normalized to the baseline (BL)

system.

We make �ve key observations. First, Morpheus (i.e.,

Morpheus-ALL) improves performance greatly with all its opti-

mizations over all real baselines and across all memory-bound

applications. Speci�cally, Morpheus signi�cantly improves

GPU performance by an average of 27% over the best real base-

line (i.e., Uni�ed-SM-Mem) and by 39%, 32%, and 29% over BL,

IBL, and Frequency-Boost, respectively. Second, Morpheus per-

forms within 3% of an ideal baseline with 4× the LLC (i.e., IBL-
4×-LLC) at only small overhead (see §7.5). Third, Morpheus-
Compression improves performance by an average of 9% over

Morpheus-Basic, by providing a larger extended LLC capac-

ity. Fourth, Morpheus-Indirect-MOV improves performance by

an average of 4% over Morpheus-Basic, by providing a lower

extended LLC access latency. Fifth, Morpheus does not af-

fect the performance of compute-bound applications since all

GPU cores stay in compute mode for such applications. We

conclude that Morpheus is highly e�ective at improving the

performance of memory-bound GPU applications.

7.2. Energy E�ciency Analysis
To study the e�ect of Morpheus on GPU energy e�ciency,

we calculate GPU performance/watt by dividing the overall

GPU IPC by GPU average power consumption for each of

the nine systems we evaluate. Figure 12 (bottom) reports the

results, where the y-axis shows performance/watt (the higher

the better). We normalize the results to the performance/watt

of the baseline (BL) system.

We make four key observations. First, Morpheus (i.e.,

Morpheus-ALL) improves GPU energy e�ciency greatly over

all real baselines and across all memory-bound applications.

Morpheus provides 58%, 38%, 35%, and 33% better energy e�-

ciency compared to BL, IBL, Uni�ed-SM-Mem, and Frequency-
Boost, on average, respectively. Morpheus’ energy e�ciency

improvement is due to (1) reducing the number of energy-

hungry o�-chip memory accesses and (2) Morpheus’ large

speedups over all real baselines (§7.1). Second, the energy

e�ciency of the Morpheus-ALL system is within 6% of that

of the IBL-4×-LLC system, for which we ideally assume no
power and latency impact while using a 4× larger LLC. Third,

Morpheus-Compression and Morpheus-Indirect-MOV improve

the energy e�ciency of Morpheus-Basic by 8% and 5%, on av-

erage, respectively. Fourth, Morpheus slightly reduces the

performance/watt of compute-bound applications (less than

1%) compared to the baseline (BL) system due to the power

consumption overhead of the Morpheus controller (see §7.5

for our overhead analysis). A more optimized Morpheus can

power-gate the Morpheus controller completely for compute-

bound applications to avoid the power overhead for such work-

loads [47-50]. We conclude that Morpheus is highly e�ective

at improving the energy e�ciency of memory-bound GPU

applications.

7.3. E�ect of Hit/Miss Prediction
To study the e�ectiveness of Morpheus’ hit/miss prediction

technique at improving Morpheus’ performance, we compare

the execution time of the 14 memory-bound applications on a

Morpheus-Basic-enabled GPU with three hit/miss prediction

designs: (1) our Bloom-Filter design (§4.1.2), (2) No-Prediction,

where we disable the hit/miss prediction technique and imme-

diately forward all extended LLC requests to the extended LLC,

and (3) Perfect-Prediction, where we assume 100% accuracy

for the hit/miss prediction technique. Figure 13 reports the

execution time results normalized to the baseline system (BL).

We make two key observations. First, No-Prediction has a 9%

higher execution time compared to the Bloom-Filter design, on

average. Second, Bloom-Filter’s results are within 1% of Perfect-
Prediction. We conclude that hit/miss prediction is important

for Morpheus’ performance and that our predictor design is

very e�ective.

7.4. On-Chip & O�-Chip Bandwidth Analysis
To further analyze the sources of Morpheus’ performance im-

provement, we study the e�ect of Morpheus on (1) LLC through-
put, (2) interconnect performance, and (3) o�-chip bandwidth
utilization.

LLC throughput. In this study, we aim to measure (1) by how

much Morpheus improves the LLC throughput and (2) deter-

mine the reasons for the LLC throughput increase. To this end,

we measure the LLC (both the conventional LLC and extended

LLC) throughput for four systems, BL, IBL, Morpheus-ALL, and

larger-LLC. The goal of evaluating the larger-LLC system is

to distinguish between two di�erent bene�ts of Morpheus on

LLC (larger LLC capacity and higher number of LLC banks).

In larger-LLC, we increase the conventional LLC size to be

exactly the same as the total LLC capacity in Morpheus-ALL
(i.e., conventional LLC + extended LLC) without increasing

the number of conventional LLC banks. This is to isolate the

13

0

1

N
o

rm
.

ex
ec

.
ti

m
e

p-bfs cfd dwt2d stencil r-bfs bprob sgem nw page-r kmeans histo mri-gri spmv lbm gmean lib hotsp mri-q0

1

2

3

N
o

rm
.

p
er

f.
/

W
IBL IBL-4X-LLC Unified-SM-Mem Frequency-Boost Morpheus-Basic Morpheus-Compr. Morpheus-Indirect-MOV Morpheus-ALL

Memory-bound Compute-bound

Figure 12: Comparison of eight GPU systems’ execution time (top) and performance/watt (bottom) for 14 memory-bound and 3
compute-bound applications, normalized to the baseline system (BL)

p-b
fs cf

d

dw
t2

d

st
en

ci
l

r-
bfs

bpr
ob

sg
em nw

pag
e-

r

km
ea

ns
hist

o

m
ri-

gr
i

sp
m

v
lb

m

gm
ea

n
0

1

N
o

rm
.

ex
ec

.
ti

m
e

No-Prediction Bloom-Filter Perfect-Prediction

Figure 13: E�ect of hit/miss prediction on execution time for
14 memory-bound applications withMorpheus-Basic, normal-
ized to the baseline system (BL)

e�ect of an increased LLC capacity (relative to BL) from the

e�ect of an increased number of banks. The LLC capacity of

larger-LLC varies between applications, as it depends on the

number of cores operating in cache mode in Morpheus-ALL,

which is determined on a per application basis.

We make two key observations. First, Morpheus-ALL im-

proves the LLC throughput by an average of 75% and 68% (up

to 374% and 236%) compared to BL and IBL, respectively. Sec-

ond, the larger-LLC system improves LLC throughput by an

average of 42% compared to BL. We conclude that Morpheus-
ALL’s higher throughput comes from both (1) increasing the

LLC capacity and (2) increasing the number of banks.

Interconnect Performance. Morpheus increases the load on

the interconnection network by servicing the extended LLC

requests through it. We study the performance of the GPU

interconnection network in Morpheus. We measure the overall

network injection rate, network throughput, and average in-

terconnect latency for two designs, BL and Morpheus-ALL. We

make three key observations. First, Morpheus-ALL increases

the load of the on-chip network by 97% compared to BL, on

average. Second, both network injection rate and throughput

increase in Morpheus-ALL by the same amounts, showing that

the GPU interconnection network does not saturate due to

handling more tra�c. Third, the higher load causes 7% longer

average network latency compared to BL. We observe no over-

all application performance loss due to the longer average

network latency.

O�-chip Bandwidth Utilization. To study the e�ect of Mor-

pheus on o�-chip bandwidth utilization, we measure the o�-

chip bandwidth utilization for two systems, IBL and Morpheus-
ALL. We observe that Morpheus-ALL reduces o�-chip band-

width utilization by an average of 17% compared to IBL. This

is mainly due to the fact that the larger LLC enabled by Mor-

pheus reduces the number of o�-chip main memory requests.

To further analyze the reason behind the bandwidth utiliza-

tion reduction, we measure the LLC MPKI (misses per kilo

instructions) for both IBL and Morpheus-ALL. We observe that

Morpheus-ALL reduces the LLC MPKI by 47% compared to IBL.

7.5. Overhead Analysis

We analyze the storage and power overheads of the additional

hardware required by Morpheus (i.e., the Morpheus controller).

Storage cost. The Morpheus controller has two main storage

components: the hit/miss prediction unit (§4.1.2) and the ex-

tended LLC query unit (§4.1.3). The hit/miss prediction unit

has 16-KiB of Bloom �lter storage per LLC partition. The ex-

tended LLC query unit has a 5-KiB on-chip storage per LLC

partition to store the request queue, warp status table, and

read/write data bu�ers (§4.1.3). Overall, Morpheus adds 21 KiB

per LLC partition; which is approximately 4% of the conven-

tional LLC capacity per LLC partition in the NVIDIA RTX 3080

GPU.

Power Consumption. We measure the power consump-

tion of the additional hardware required by Morpheus using

(1) CACTI 6.5 [51] for storage units and (2) the synthesized Ver-

ilog HDL models with the NanGate 45nm open cell library [52]

for logic units. We observe that the Morpheus controller im-

poses a 0.93% overhead to the total GPU power consumption.

Note that we already take into account Morpheus’ power con-

sumption overhead for the energy e�ciency analysis in §7.2.

14

8. Related Work
To our knowledge, this is the �rst work to propose extending

the GPU last-level cache capacity by repurposing the on-chip

memory units (i.e., register �les, L1 caches, scratchpad memo-

ries) of otherwise unused GPU cores. In this section, we brie�y

review related work in four GPU domains: (1) increasing cache
capacity, (2) increasing interconnection network performance,
(3) controlling cache contention, and (4) helper threads.
Increasing Cache Capacity. Prior works increase the capac-

ity of the GPU L1 cache (e.g., [22, 33, 42, 43, 53-71]) by (1) uti-

lizing unused registers in the register �le [22, 43], (2) unifying

on-chip memories in the GPU core [42, 53, 54], (3) applying

cache compression techniques [33, 55-59, 70, 72], (4) caching

cooperatively using multiple instances of the L1 cache [60-62,

64-66], and (5) using dense emerging memory technologies,

e.g., Domain Wall Memory (DWM) [63]. Since the L1 cache is

one of the on-chip memory units that Morpheus repurposes to

increase the GPU LLC capacity, we expect these works can fur-

ther increase the bene�ts of Morpheus by providing a higher

extended LLC capacity.

Prior works increase the GPU LLC capacity (e.g., [63, 73-

76]) by using dense emerging memory technologies, such as

STT-MRAM and DWM, to build a conventional LLC with a

larger capacity. Compared to these works, Morpheus increases

the GPU LLC capacity without (1) adding any extra on-chip

memory, and (2) depending on emerging memory technologies.

Some existing GPUs have high LLC capacity. For example,

the NVIDIA A100 features a 40-MiB LLC [77]. Although re-

turns diminish, Morpheus can still improve the performance

of such a GPU by further increasing the LLC capacity. Since

such a large conventional LLC costs signi�cant silicon area

(e.g., about 27% of the total chip area in the A100 [77]), Mor-

pheus can help to 1) reduce the conventional LLC size in such

large-LLC architectures and 2) enable allocating more hard-

ware resources to compute units.

Improving InterconnectionNetworkPerformance. Prior

works (e.g., [78-90]) increase the GPU LLC throughput by im-

proving interconnection network performance, e.g., by im-

proving network resources [78-86], better distributing the LLC

banks inside the network topologies (e.g., 2D mesh) [87, 88],

and duplicating frequently-accessed cache blocks to reduce

network contention [89]. Morpheus relies on the GPU’s inter-

connection network to enable the extended LLC, and therefore,

Morpheus’ e�ectiveness can be improved by increasing the

performance of the interconnection network.

Controlling Cache Contention. Prior works improve the

e�ectiveness of GPU caches by controlling cache contention

(e.g., [1, 24, 91-107]). These works either (1) bypass some levels

of the cache hierarchy for some memory accesses [1, 91-98], or

(2) throttle threads to control cache thrashing [24, 99-106, 108].

Morpheus can be combined with these techniques to enable

even higher performance.

Helper Threads. Helper threads assist the execution of the

main applications threads, by using idle cores or idle cycles

for various purposes. Prior works (e.g., [4, 109-130]) propose

helper threads to implement optimization techniques for both

CPUs and GPUs, such as data prefetching, pre-computing

branch outcomes, managing the caches, or increasing the e�ec-

tive cache bandwidth and capacity by compressing the cache

contents. In particular, CABA [4] enables each GPU warp

to launch an assist warp on the same GPU core to perform

data compression, exploiting �ne-grained idleness of execution

units. Morpheus uses helper threads for a new purpose: extend-

ing the capacity of the LLC by exploiting on-chip memories of

otherwise unused cores.

9. Conclusion
We introduce Morpheus, the �rst hardware/software co-

designed technique to repurpose otherwise unused GPU cores’

on-chip memories to extend the total GPU last-level cache

capacity. Morpheus introduces two execution modes for GPU

cores: (1) compute mode, where the core behaves exactly like

in a conventional GPU, and (2) cache mode, where the core

lends its on-chip memory space (register �le, L1 cache, shared

memory) to extend the e�ective total LLC size. Morpheus

reuses the on-chip memory resources of a core in cache mode

using a software helper kernel. Morpheus improves the perfor-

mance and energy e�ciency of a baseline NVIDIA RTX 3080

architecture by an average of 39% and 58%, respectively, across

14 memory-bound applications. Morpheus performs within 3%

of an ideal baseline with 4× the LLC, while increasing GPU

power consumption by only 0.93%. We hope that Morpheus

can help researchers and system designers to rethink how the

large on-chip memory resources of GPUs and other accelera-

tors are managed by software and hardware cooperatively.

Acknowledgments
We thank the anonymous reviewers of MICRO 2022 for their

encouraging feedback. We thank HPCAN and SAFARI Re-

search Group members for their feedback. SAFARI Research

Group acknowledges the generous gifts provided by our indus-

trial partners: Google, Huawei, Intel, Microsoft, and VMware.

This research was partially supported by the ETH Future Com-

puting Laboratory.

References
[1] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu, “Adaptive

cache management for energy-e�cient GPU computing,” in MICRO, 2014.

[2] N. Nematollahi, M. Sadrosadati, H. Falahati, M. Barkhordar, and H. Sarbazi-Azad,

“Neda: Supporting direct inter-core neighbor data exchange in GPUs,” IEEE CAL,

2018.

[3] N. Nematollahi, M. Sadrosadati, H. Falahati, M. Barkhordar, M. P. Drumond,

H. Sarbazi-Azad, and B. Falsa�, “E�cient nearest-neighbor data sharing in GPUs,”

ACM TACO, 2020.

[4] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun, C. Das,

M. Kandemir, T. C. Mowry, and O. Mutlu, “A case for core-assisted bottleneck

acceleration in GPUs: enabling �exible data compression with assist warps,” in

ISCA, 2015.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Shea�er, S.-H. Lee, and K. Skadron,

“Rodinia: A benchmark suite for heterogeneous computing,” in IISWC, 2009.

[6] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu,

and W.-m. W. Hwu, “Parboil: A revised benchmark suite for scienti�c and commer-

cial throughput computing,” Center for Reliable and High-Performance Computing,

2012.

[7] NVIDIA, “A102 (RTX 3080) architecture whitepaper - NVIDIA �le downloads,”

2021. [Online]. Available: https://images.nvidia.com/aem-dam/en-zz/Solutions/

geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.

pdf

15

https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf

[8] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim: An extensible

simulation framework for validated GPU modeling,” in ISCA, 2020.

[9] X. Zhu, M. Awatramani, D. Rover, and J. Zambreno, “Onac: Optimal number of

active cores detector for energy e�cient GPU computing,” in ICCD, 2016.

[10] J. Tan and X. Fu, “RISE: Improving the streaming processors reliability against soft

errors in GPGPUs,” in PACT, 2012.

[11] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and K. Skadron, “Real-

world design and evaluation of compiler-managed GPU redundant multithread-

ing,” in ISCA, 2014.

[12] W. Zhao, Q. Chen, H. Lin, J. Zhang, J. Leng, C. Li, W. Zheng, L. Li, and M. Guo,

“Themis: Predicting and reining in application-level slowdown on spatial multi-

tasking GPUs,” in IPDPS, 2019.

[13] P. Aguilera, K. Morrow, and N. S. Kim, “QoS-aware dynamic resource allocation

for spatial-multitasking GPUs,” in ASP-DAC, 2014.

[14] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The case for GPGPU

spatial multitasking,” in HPCA, 2012.

[15] H. Dai, Z. Lin, C. Li, C. Zhao, F. Wang, N. Zheng, and H. Zhou, “Accelerate GPU

concurrent kernel execution by mitigating memory pipeline stalls,” in HPCA, 2018.

[16] X. Zhao, Z. Wang, and L. Eeckhout, “HeteroCore GPU to exploit TLP-resource

diversity,” IEEE TPDS, 2019.

[17] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,

“Exploiting core criticality for enhanced GPU performance,” in SIGMETRICS, 2016.

[18] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt,

“Improving GPU performance via large warps and two-level warp scheduling,” in

MICRO, 2011.

[19] B. H. Bloom, “Space/time trade-o�s in hash coding with allowable errors,” Com-
munications of the ACM, 1970.

[20] NVIDIA, “CUDA C++ programming guide,” 2022. [Online]. Available: https:

//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[21] M. Sadrosadati, A. Mirhosseini, S. B. Ehsani, H. Sarbazi-Azad, M. Drumond, B. Fal-

sa�, R. Ausavarungnirun, and O. Mutlu, “LTRF: Enabling high-capacity register

�les for GPUs via hardware/software cooperative register prefetching,” in ASPLOS,

2018.

[22] Y. Oh, G. Koo, M. Annavaram, and W. W. Ro, “Linebacker: Preserving victim cache

lines in idle register �les of GPUs,” in ISCA, 2019.

[23] F. Khorasani, H. A. Esfeden, N. Abu-Ghazaleh, and V. Sarkar, “In-register param-

eter caching for dynamic neural nets with virtual persistent processor specializa-

tion,” in MICRO, 2018.

[24] X. Xie, Y. Liang, X. Li, Y. Wu, G. Sun, T. Wang, and D. Fan, “Enabling coordinated

register allocation and thread-level parallelism optimization for GPUs,” in MICRO,

2015.

[25] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha, S. Ghose, A. Jog,

P. B. Gibbons, and O. Mutlu, “Zorua: A holistic approach to resource virtualization

in GPUs,” in MICRO, 2016.

[26] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler, M. Rhu, and W. J.

Dally, “Architecting an energy-e�cient dram system for GPUs,” in HPCA, 2017.

[27] M. Zhu, Y. Zhuo, C. Wang, W. Chen, and Y. Xie, “Performance evaluation and

optimization of HBM-enabled GPU for data-intensive applications,” IEEE TVLSI,
2018.

[28] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch, “Unlocking

bandwidth for GPUs in CC-NUMA systems,” in HPCA, 2015.

[29] J. Zhao and Y. Xie, “Optimizing bandwidth and power of graphics memory with

hybrid memory technologies and adaptive data migration,” in ICCAD, 2012.

[30] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scalable wide-area

web cache sharing protocol,” IEEE/ACM TON, 2000.

[31] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza, “Dissecting the NVidia Turing

T4 GPU via microbenchmarking,” arXiv preprint arXiv:1903.07486, 2019.

[32] M. Mantor, “AMD Radeon™ HD 7970 with graphics core next (GCN) architecture,”

in HCS, 2012.

[33] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons, and T. C.

Mowry, “Base-delta-immediate compression: Practical data compression for on-

chip caches,” in PACT, 2012.

[34] NVIDIA. (August 2022) CUDA toolkit documentation, v11.7. [Online]. Available:

https://docs.nvidia.com/cuda/index.html

[35] K. Iyer and J. Kiel, “GPU debugging and Pro�ling with NVIDIA Parallel Nsight,”

Game Development Tools, 2016.

[36] D. Yan, W. Wang, and X. Chu, “Optimizing batched winograd convolution on

GPUs,” in PPoPP, 2020.

[37] V. Kandiah, S. Peverelle, M. Khairy, J. Pan, A. Manjunath, T. G. Rogers, T. M.

Aamodt, and N. Hardavellas, “AccelWattch: A power modeling framework for

modern GPUs,” in MICRO, 2021.

[38] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm,

and K. Skadron, “Energy-e�cient mechanisms for managing thread context in

throughput processors,” in ISCA, 2011.

[39] Micron. (May 2021) 8Gb: 2 Channel x16/x8 GDDR6X SGRAM. [On-

line]. Available: https://media-www.micron.com/-/media/client/global/

documents/products/data-sheet/dram/gddr/gddr6/gddr6x_sgram_8gb_brief.pdf?

rev=161547726f0b45239d3da37ef29b09bf

[40] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia: Understand-

ing irregular GPGPU graph applications,” in IISWC, 2013.

[41] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, “Analyzing

CUDA workloads using a detailed GPU simulator,” in ISPASS, 2009.

[42] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally, “Unifying

primary cache, scratch, and register �le memories in a throughput processor,” in

MICRO, 2012.

[43] N. Jing, J. Wang, F. Fan, W. Yu, L. Jiang, C. Li, and X. Liang, “Cache-emulated

register �le: An integrated on-chip memory architecture for high performance

GPGPUs,” in MICRO, 2016.

[44] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-slicer: E�cient

intra-SM slicing through dynamic resource partitioning for GPU multiprogram-

ming,” in ISCA, 2016.

[45] L.-W. Chang, H.-S. Kim, and W.-m. W. Hwu, “DySel: Lightweight dynamic selec-

tion for kernel-based data-parallel programming model,” in ASPLOS, 2016.

[46] J. J. K. Park, Y. Park, and S. Mahlke, “Dynamic resource management for e�cient

utilization of multitasking GPUs,” in ASPLOS, 2017.

[47] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose,

“Microarchitectural techniques for power gating of execution units,” in ISLPED,

2004.

[48] O. Kayiran, A. Jog, A. Pattnaik, R. Ausavarungnirun, X. Tang, M. T. Kandemir,

G. H. Loh, O. Mutlu, and C. R. Das, “μc-states: Fine-grained GPU datapath power

management,” in PACT, 2016.

[49] M. Abdel-Majeed, D. Wong, and M. Annavaram, “Warped gates: Gating aware

scheduling and power gating for GPGPUs,” in MICRO, 2013.

[50] M. Sadrosadati, S. B. Ehsani, H. Falahati, R. Ausavarungnirun, A. Tavakkol,

M. Abaee, L. Orosa, Y. Wang, H. Sarbazi-Azad, and O. Mutlu, “ITAP: Idle-time-

aware power management for GPU execution units,” ACM TACO, 2019.

[51] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0: A tool to

model large caches,” HP laboratories, 2009.

[52] J. Knudsen, “Nangate 45nm open cell library,” CDNLive, EMEA, 2008.

[53] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou, P. Srivastava,

S. V. Adve, and V. S. Adve, “Stash: Have your scratchpad and cache it too,” in ISCA,

2015.

[54] S. Darabi, E. Yousefzadeh-Asl-Miandoab, N. Akbarzadeh, H. Falahati, P. Lot�-

Kamran, M. Sadrosadati, and H. Sarbazi-Azad, “OSM: O�-chip shared memory for

GPUs,” IEEE TPDS, 2022.

[55] S. Sardashti, A. Seznec, and D. A. Wood, “Yet another compressed cache: A low-

cost yet e�ective compressed cache,” ACM TACO, 2016.

[56] S. Sardashti and D. A. Wood, “Decoupled compressed cache: Exploiting spatial

locality for energy-optimized compressed caching,” in MICRO, 2013.

[57] A. Arelakis and P. Stenstrom, “SC 2: A statistical compression cache scheme,” in

ISCA, 2014.

[58] A. Ghasemazar, P. Nair, and M. Lis, “Thesaurus: E�cient cache compression via

dynamic clustering,” in ASPLOS, 2020.

[59] A. Ghasemazar, M. Ewais, P. Nair, and M. Lis, “2DCC: Cache compression in two

dimensions,” in DATE, 2020.

[60] J. Chang and G. Sohi, “Cooperative caching for chip multiprocessors,” in ISCA,

2006.

[61] M. K. Qureshi, “Adaptive spill-receive for robust high-performance caching in

CMPs,” in HPCA, 2009.

[62] S. Dublish, V. Nagarajan, and N. Topham, “Cooperative caching for GPUs,” ACM
TACO, 2016.

[63] R. Venkatesan, S. G. Ramasubramanian, S. Venkataramani, K. Roy, and A. Raghu-

nathan, “STAG: Spintronic-tape architecture for GPGPU cache hierarchies,” in

ISCA, 2014.

[64] N. Hardavellas, M. Ferdman, B. Falsa�, and A. Ailamaki, “Reactive NUCA: Near-

optimal block placement and replication in distributed caches,” in ISCA, 2009.

[65] J. Chang and G. S. Sohi, “Cooperative caching for chip multiprocessors,” in ISCA,

2006.

[66] J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip multiprocessors,”

in ICS, 2007.

[67] B. Li, J. Sun, M. Annavaram, and N. S. Kim, “Elastic-Cache: GPU cache architecture

for e�cient �ne- and coarse-grained cache-line management,” in IPDPS, 2017.

[68] M. A. Ibrahim, O. Kayiran, Y. Eckert, G. H. Loh, and A. Jog, “Analyzing and lever-

aging decoupled L1 caches in GPUs,” in HPCA, 2021.

[69] B. Li, J. Wei, J. Sun, M. Annavaram, and N. S. Kim, “An e�cient GPU cache ar-

chitecture for applications with irregular memory access patterns,” ACM TACO,

2019.

[70] E. Choukse, M. B. Sullivan, M. O’Connor, M. Erez, J. Pool, D. Nellans, and S. W.

Keckler, “Buddy compression: Enabling larger memory for deep learning and HPC

workloads on GPUs,” in ISCA, 2020.

[71] D. Wang and W. Xiao, “A reuse distance based performance analysis on GPU L1

data cache,” in IPCCC, 2016.

[72] A. Arunkumar, S.-Y. Lee, V. Soundararajan, and C.-J. Wu, “LATTE-CC: Latency tol-

erance aware adaptive cache compression management for energy e�cient GPUs,”

in HPCA, 2018.

[73] M. H. Samavatian, H. Abbasitabar, M. Arjomand, and H. Sarbazi-Azad, “An e�-

cient STT-RAM last level cache architecture for GPUs,” in DAC, 2014.

[74] N. Jing, L. Jiang, T. Zhang, C. Li, F. Fan, and X. Liang, “Energy-e�cient eDRAM-

based on-chip storage architecture for GPGPUs,” IEEE TC, 2015.

[75] M. H. Samavatian, M. Arjomand, R. Bashizade, and H. Sarbazi-Azad, “Architecting

the last-level cache for GPUs using STT-RAM technology,” ACM TODAES, 2015.

[76] J. Zhan, O. Kayıran, G. H. Loh, C. R. Das, and Y. Xie, “OSCAR: Orchestrating STT-

RAM cache tra�c for heterogeneous CPU-GPU architectures,” in MICRO, 2016.

[77] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky, “Nvidia a100

tensor core gpu: Performance and innovation,” IEEE Micro, 2021.

[78] X. Zhao, Y. Liu, A. Adileh, and L. Eeckhout, “LA-LLC: Inter-core locality-aware

last-level cache to exploit many-to-many tra�c in GPGPUs,” IEEE CAL, 2016.

16

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/gddr/gddr6/gddr6x_sgram_8gb_brief.pdf?rev=161547726f0b45239d3da37ef29b09bf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/gddr/gddr6/gddr6x_sgram_8gb_brief.pdf?rev=161547726f0b45239d3da37ef29b09bf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/gddr/gddr6/gddr6x_sgram_8gb_brief.pdf?rev=161547726f0b45239d3da37ef29b09bf

[79] Y. Liu, X. Zhao, M. Jahre, Z. Wang, X. Wang, Y. Luo, and L. Eeckhout, “Get out of

the valley: Power-e�cient address mapping for GPUs,” in ISCA, 2018.

[80] J. Wang, L. Jiang, J. Ke, X. Liang, and N. Jing, “A sharing-aware L1. 5D cache for

data reuse in GPGPUs,” in ASP-DAC, 2019.

[81] A. Mirhosseini, M. Sadrosadati, B. Soltani, H. Sarbazi-Azad, and T. F. Wenisch,

“BiNoCHS: Bimodal network-on-chip for CPU-GPU heterogeneous systems,” in

NOCS, 2017.

[82] A. Mirhosseini, M. Sadrosadati, F. Aghamohammadi, M. Modarressi, and

H. Sarbazi-Azad, “BARAN: Bimodal adaptive recon�gurable-allocator network-on-

chip,” ACM TOPC, 2019.

[83] X. Zhao, S. Ma, Y. Liu, L. Eeckhout, and Z. Wang, “A low-cost con�ict-free NoC

for GPGPUs,” in DAC, 2016.

[84] X. Zhao, D. Kaeli, Z. Wang, L. Eeckhout et al., “Intra-cluster coalescing and

distributed-block scheduling to reduce GPU NoC pressure,” IEEE TC, 2019.

[85] A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-e�ective on-chip networks

for manycore accelerators,” in MICRO, 2010.

[86] H. Kim, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Providing cost-e�ective on-chip net-

work bandwidth in GPGPUs,” in ICCD, 2012.

[87] M. Sadrosadati, A. Mirhosseini, S. Roozkhosh, H. Bakhishi, and H. Sarbazi-Azad,

“E�ective cache bank placement for GPUs,” in DATE, 2017.

[88] H. Jang, J. Kim, P. Gratz, K. H. Yum, and E. J. Kim, “Bandwidth-e�cient on-chip

interconnect designs for GPGPUs,” in DAC, 2015.

[89] X. Zhao, M. Jahre, and L. Eeckhout, “Selective replication in memory-side GPU

caches,” in MICRO, 2020.

[90] V. Sathish, M. J. Schulte, and N. S. Kim, “Lossless and lossy memory I/O link com-

pression for improving performance of GPGPU workloads,” in PACT, 2012.

[91] A. Li, G.-J. van den Braak, A. Kumar, and H. Corporaal, “Adaptive and transparent

cache bypassing for GPUs,” in SC, 2015.

[92] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Veidenbaum, “Im-

proving cache management policies using dynamic reuse distances,” in MICRO,

2012.

[93] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and improving the use of

demand-fetched caches in GPUs,” in ICS, 2012.

[94] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang, “Coordinated static and dynamic

cache bypassing for GPUs,” in HPCA, 2015.

[95] C. Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and H. Zhou, “Locality-driven

dynamic GPU cache bypassing,” in ICS, 2015.

[96] W. Jia, K. A. Shaw, and M. Martonosi, “MRPB: Memory request prioritization for

massively parallel processors,” in HPCA, 2014.

[97] R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R. Das, M. T. Kandemir,

and O. Mutlu, “Exploiting inter-warp heterogeneity to improve GPGPU perfor-

mance,” in PACT, 2015.

[98] M. Rhu, M. B. Sullivan, J. Leng, and M. Erez, “A locality-aware memory hierarchy

for energy-e�cient GPU architectures,” in MICRO, 2013.

[99] H. Wang, F. Luo, M. Ibrahim, O. Kayiran, and A. Jog, “E�cient and fair multi-

programming in GPUs via e�ective bandwidth management,” in HPCA, 2018.

[100] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious wavefront

scheduling,” in MICRO, 2012.

[101] T. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-aware warp scheduling,”

in MICRO, 2013.

[102] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more nor less: Opti-

mizing thread-level parallelism for GPGPUs,” in PACT, 2013.

[103] B. Wang, Y. Zhu, and W. Yu, “OAWS: Memory occlusion aware warp scheduling,”

in PACT, 2016.

[104] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger, D. S. Fussell, and

S. W. Redder, “Priority-based cache allocation in throughput processors,” in HPCA,

2015.

[105] M. Mao, J. Hu, Y. Chen, and H. Li, “VWS: A versatile warp scheduler for exploring

diverse cache localities of GPGPU applications,” in DAC, 2015.

[106] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun, M. T. Kandemir, G. H.

Loh, O. Mutlu, and C. R. Das, “Managing GPU concurrency in heterogeneous ar-

chitectures,” in MICRO, 2014.

[107] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal, “Locality-aware CTA

clustering for modern GPUs,” in ASPLOS, 2017.

[108] G. Koo, Y. Oh, W. W. Ro, and M. Annavaram, “Access pattern-aware cache man-

agement for improving data utilization in GPU,” in ISCA, 2017.

[109] S. Darabi, N. Mahani, H. Baxishi, E. Yousefzadeh-Asl-Miandoab, M. Sadrosadati,

and H. Sarbazi-Azad, “NURA: A framework for supporting non-uniform resource

accesses in GPUs,” ACM POMACS, 2022.

[110] T. M. Aamodt, P. Chow, P. Hammarlund, H. Wang, and J. P. Shen, “Hardware sup-

port for prescient instruction prefetch,” in HPCA, 2004.

[111] J. A. Brown, H. Wang, G. Chrysos, P. H. Wang, and J. P. Shen, “Speculative pre-

computation on chip multiprocessors,” Proc. of MTEAC, 2002.

[112] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt, “Simultaneous

subordinate microthreading (SSMT),” in ISCA, 1999.

[113] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt, “Microarchitectural support for

precomputation microthreads,” in MICRO, 2002.

[114] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen, “Dynamic speculative precom-

putation,” in MICRO, 2001.

[115] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, and J. P.

Shen, “Speculative precomputation: Long-range prefetching of delinquent loads,”

in ISCA, 2001.

[116] M. Dubois, “Fighting the memory wall with assisted execution,” in Proceedings of
the 1st Conference on Computing Frontiers, 2004.

[117] M. Dubois and Y. Song, “Assisted execution,” University of Southern California
CENG Technical Report, 1998.

[118] K. Z. Ibrahim, G. T. Byrd, and E. Rotenberg, “Slipstream execution mode for cmp-

based multiprocessors,” in HPCA, 2003.

[119] M. Kamruzzaman, S. Swanson, and D. M. Tullsen, “Inter-core prefetching for mul-

ticore processors using migrating helper threads,” in ASPLOS, 2011.

[120] D. Kim and D. Yeung, “Design and evaluation of compiler algorithms for pre-

Execution,” in ASPLOS, 2002.

[121] J. Lu, A. Das, W.-C. Hsu, K. Nguyen, and S. G. Abraham, “Dynamic helper threaded

prefetching on the Sun UltraSPARC/spl reg/CMP processor,” in MICRO, 2005.

[122] C.-K. Luk, “Tolerating memory latency through software-controlled pre-execution

in simultaneous multithreading processors,” in ISCA, 2001.

[123] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution: An alter-

native to very large instruction windows for out-of-order processors,” in HPCA,

2003.

[124] O. Mutlu, H. Kim, and Y. N. Patt, “Techniques for e�cient processing in runahead

execution engines,” in ISCA, 2005.

[125] M. Stephenson, S. K. S. Hari, Y. Lee, E. Ebrahimi, D. R. Johnson, D. Nellans,

M. O’Connor, and S. W. Keckler, “Flexible software pro�ling of GPU architectures,”

in ISCA, 2015.

[126] W. Zhang, D. M. Tullsen, and B. Calder, “Accelerating and adapting precomputa-

tion threads for e�cient prefetching,” in HPCA, 2007.

[127] C. B. Zilles, J. S. Emer, and G. S. Sohi, “The use of multithreading for exception

handling,” in MICRO, 1999.

[128] C. Zilles and G. Sohi, “Execution-based prediction using speculative slices,” in ISCA,

2001.

[129] M. Bauer, H. Cook, and B. Khailany, “CudaDMA: optimizing GPU memory band-

width via warp specialization,” in SC, 2011.

[130] T. M. Aamodt and P. Chow, “Optimization of data prefetch helper threads with

path-expression based statistical modeling,” in ICS, 2007.

17

	1 Introduction
	2 Background
	3 Motivation
	4 Morpheus
	4.1 Morpheus Controller
	4.1.1 Address Separation
	4.1.2 Hit/Miss Prediction
	4.1.3 Extended LLC Query Logic Unit

	4.2 Extended LLC Controller
	4.2.1 Extended LLC via Register File
	4.2.2 Extended LLC via Unified L1/Shared-memory
	4.2.3 Supporting Atomic Instructions in the Extended LLC

	4.3 Optimizing Morpheus
	4.3.1 Cache Compression
	4.3.2 Indirect-MOV Instruction

	5 Characterization of the Extended LLC Kernel
	6 Methodology
	7 Evaluation
	7.1 Performance Analysis
	7.2 Energy Efficiency Analysis
	7.3 Effect of Hit/Miss Prediction
	7.4 On-Chip & Off-Chip Bandwidth Analysis
	7.5 Overhead Analysis

	8 Related Work
	9 Conclusion

