
Appears in the Proceedings of the 55th IEEE/ACM International Symposium on Microarchitecture, 2022

Sparse Attention Acceleration with Synergistic
In-Memory Pruning and On-Chip Recomputation

Amir Yazdanbakhsh∗ Ashkan Moradifirouzabadi∗† Zheng Li∗† Mingu Kang†

Google Research, Brain Team †University of California, San Diego (∗Equal Contribution)
ayazdan@google.com, ashkan@ucsd.edu, zhengli@ucsd.edu, mingu@ucsd.edu

Abstract—As its core computation, a self-attention
mechanism gauges pairwise correlations across the entire
input sequence. Despite favorable performance, calculating
pairwise correlations is prohibitively costly. While recent work
has shown the benefits of runtime pruning of elements with
low attention scores, the quadratic complexity of self-attention
mechanisms and their on-chip memory capacity demands
are overlooked. This work addresses these constraints by
architecting an accelerator, called SPRINT1, which leverages
the inherent parallelism of ReRAM crossbar arrays to compute
attention scores in an approximate manner. Our design prunes
the low attention scores using a lightweight analog thresholding
circuitry within ReRAM, enabling SPRINT to fetch only a
small subset of relevant data to on-chip memory. To mitigate
potential negative repercussions for model accuracy, SPRINT
re-computes the attention scores for the few fetched data
in digital. The combined in-memory pruning and on-chip
recompute of the relevant attention scores enables SPRINT
to transform quadratic complexity to a merely linear one. In
addition, we identify and leverage a dynamic spatial locality
between the adjacent attention operations even after pruning,
which eliminates costly yet redundant data fetches. We evaluate
our proposed technique on a wide range of state-of-the-art
transformer models. On average, SPRINT yields 7.5× speedup
and 19.6× energy reduction when total 16KB on-chip memory
is used, while virtually on par with iso-accuracy of the baseline
models (on average 0.36% degradation).

Keywords-Transformer; Attention Mechanism; Self-
Attention; Sparsity; Model Compression; In-Memory
Computing; Neural Processing Units; ReRAM; Deep
Learning; Hardware-Software Co-Design

I. INTRODUCTION

The sweeping success of self-attention mechanisms shifted
the focus of our community from Convolutional Neural Net-
works [25, 65, 128, 153] to seeking software [70, 71, 75, 76,
138, 163] and hardware approaches [54, 90, 96, 144] to im-
prove efficiency of the attention mechanism. At its crux, it cre-
ates and employs three abstractions of its inputs (e.g. words or
pixel patches): query, key, and value embeddings. The core op-
eration of self-attention is the computation of pairwise corre-
lations between query and key embeddings, followed by com-
puting a weighted sum of value vectors proportional to mea-
sured correlations. Despite its compelling performance, the as-
sociated compute and memory footprint cost of self-attention

1SPRINT: SParse attention acceleration with appRoximate IN-memory
Token pruning

mechanisms can readily become inordinate2, especially as the
input sequence length increases (e.g. > 2K), a prevailing trend
in recent deep learning models [32, 76, 93, 111, 112, 138].

To address this challenge, a recent line of research [54, 55,
90, 137, 144] intuits that each query is germane to only a
dynamic subset of the few key embeddings when determining
the input context. This pruning approach appears beneficial,
yet does not effectively address the main cost driver of
the self-attention mechanism: data communication overhead.
This is because identifying the relevance of key embeddings
per query, especially to preserve model accuracy, still requires
fetching all embeddings to on-chip resources and performing
costly query−key computations. Commonly, these methods
presume sufficiently large on-chip resources to keep all
embeddings for a single head on chip. This assumption can
readily fail, particularly in models with ever-increasing input
sequences and in resource-constrained devices. For example,
if we embrace a design with only 20% of requisite on-chip
buffers available for embeddings in a head, data communi-
cation emerges as the main determinant of efficiency (on
average, > 60% of total energy consumption as shown in Fig-
ure 1). To address this, we propose in-memory pruning solu-
tions that obviate the need to bring embeddings onto the chip.

An emerging body of work has illustrated significant
benefits of ReRAM in-memory computing, due to the
inherent efficiency of analog computing and massive paral-
lelism capability [29, 53, 89, 101, 131, 132, 145, 150, 161].
We leverage ReRAM technology to enable in-memory
pruning, reducing the pressure on the accelerator to fetch all
embeddings onto the chip. While appealing, materializing
the possibility of in-memory pruning comes with its own
challenges, listed as follows:
1) Circuit inaccuracies: There are various inaccuracies,

such as thermal noise, coupling noise, and process
variations associated with ReRAM analog circuitry,
which limit the precision of in-memory computing.

2) Data conversion overhead: Runtime pruning [90], a
common approach to preserve model accuracy, requires
layer-wise comparisons with a threshold value. The cost
of converting the analog results of in-memory computing
(multiple bits) to the digital domain for perpetual

2The cost of pairwise correlations grows in the order of O(N2) with respect
to input sequence length.

1

ar
X

iv
:2

20
9.

00
60

6v
1

 [
cs

.L
G

]
 1

 S
ep

 2
02

2

mailto:ayazdan@google.com
mailto:ashkan@ucsd.edu
mailto:zhengli@ucsd.edu
mailto:mingu@ucsd.edu

comparisons against threshold values can outweigh the
benefits of in-memory computing.

3) Selective read of unpruned embeddings: Supporting in-
memory ReRAM pruning enforces a particular data layout
for key embeddings. However, this layout constraints the
ability to selectively read the unpruned vectors.

To remedy these considerations, this work makes the
following contributions:
1 We introduce a unique perspective on the ReRAM

in-memory computing paradigm. We employ approximate
in-memory compute and precise on-chip recompute in
tandem to mitigate the likely negative repercussions to
model accuracy due to inherent circuit inaccuracies.
2 We employ analog comparators to carry out the

comparisons with threshold values and instead produce 1-bit
data to indicate the pruning status. With this shift in design,
we reduce the hardware cost, which is proportional to input
bit precision, to merely the cost of a series of 1-bit analog
to digital converters (ADCs).
3 We repurpose an existing solution, which enables us to

implement data reuse based on our observations. On the
hardware side, we rely on recently taped-out transposable
ReRAMs [141] that introduce in-situ transposed read access.
While initially intended for efficiently accessing neural
network weights, our application of this hardware selectively
reads unpruned embeddings. For the data reuse, we observe
that there is a considerable spatial locality between unpruned
key vectors of adjacent queries. We exploit this spatial
location to improve data reuse and further reduce the data
communication overhead.

We evaluate our approach in several self-attention models
with large sequences, including BERT, ALBERT, ViT, GPT-2,
and two futuristic designs (e.g. 2K and 4K input sequence
length). Under an iso design, our results show that, on
average, SPRINT delivers 7.5× speed-up and 19.6× energy
reduction compared to a baseline design with 16KB on-chip
memory. The benefit increases as on-chip resources become
scarcer, representing a design point for resource constrained
platforms, e.g. 1.6× more energy reduction with 16KB
on-chip memory than the case with 64KB capacity.

II. BACKGROUND AND MOTIVATION

A. Background
Self-attention computations. “Self-attention” computes
pairwise correlations across the entire input sequence [140].
Each input element, a word or a pixel patch, is encoded to a
vector of size 1×e. We then project these embeddings onto
three latent spaces by multiplying each vector into distinct
learned weight matrices, WQ, WK, and WV for query, key,
and value vectors, respectively. In the next step, we calculate
s scores per query vector qi (i-th row out of s rows in Q),
each score representing the relevance of a query to all the
key vectors, including itself. The resulting scores are then
normalized by employing a row-wise “Softmax” operation,

producing an attention probability matrix. A higher proba-
bility value indicates greater relevance of the corresponding
element with respect to others in the input sequence.

Finally, to obtain the attention values (As×d), the proba-
bility matrix is multiplied by the value matrix followed by
a sum reduction. Intuitively, the objective of this step is to
scratch out the value of the low probability elements, while
intensifying the others. To further improve the performance of
the self-attention mechanism, multiple paths with dedicated
query, key, and value weigh matrices are introduced. This self-
attention is generally known as “multi-headed”. Under this
paradigm, final values are generated via a concatenated form
of attention vectors from each head, which is projected onto
a matrix of size s×dw using one or more feed-forward layers.
Learned runtime pruning. The self-attention mechanism is
prohibitively costly in terms of computation and memory, in
the order of O(s2). Recently proposed methods [54, 90, 144]
prune attention values with low scores by banking on inher-
ently large redundancy in input sequences. While [54, 144]
trades model accuracy for higher performance,
LEOPARD [90] proposes a learned runtime pruning method
trailed by an early compute termination mechanism to ensure
on par model accuracy with baseline. Once complete, it
incorporates the learned threshold values during inference to
prune inconsequential scores, after performing the entire com-
putation of Q×KT , cutting down most of the computations
after Softmax. A common theme among existing methods is
the assumption of sufficiently large on-chip buffers to store
the entire key and value matrices. However, this assumption
fails at longer input sequences [32, 76, 93, 112, 138] (e.g.
> 2K) as well as for resource-constrained accelerators.
This work builds upon the learned runtime pruning method
introduced in [75, 90] and specifically tackles the pressures
on on-chip capacity and data communication overhead. Our
objective is to eliminate unnecessary data communications
and on-chip computations of Q×KT by approximating the
thresholding mechanism inside memory.

B. Motivation
As the input sequence length is poised to increase dramat-

ically for future transformer models (e.g. s= 1024 and 2048
in GPT [111]), motivated by the resulting improvements in
model performance [32, 76, 93], the assumption of sufficient
on-chip resources is no longer valid. Additionally, as
transformer models pave their way into resource-constrained
devices [155], the increased demand for on-chip memory
capacity and higher compute efficiency form a challenging
design target, even for transformer models with modest
sequence length (e.g. s= [128, 256, 384] for BERT [71, 82]).

While recent literature [54, 90, 144] favors pruning, these
approaches nevertheless are plagued by the considerable over-
head of data communication even with adequately sized on-
chip buffers. This cost is exacerbated when on-chip resources
are limited, because of frequent instances of data communica-

2

Table 1

Energy S = 32 S = 64 S = 128 S = 256 S = 512 S = 1024 S = 2048 S = 4096
20% 50.68263208 56.61428274 60.26328597 62.30631417 63.3902494 63.94894625 64.23262838 64.37557253
40% 45.09822312 51.07547817 54.90974417 57.11152943 58.29622509 58.91140823 59.22496704 59.38327213
60% 37.42390998 42.97566469 46.75928488 49.0166081 50.25793086 50.910093 51.24451954 51.41388175
80% 26.21644748 30.00449554 32.84506239 34.6524865 35.68522718 36.2393588 36.52668028 36.67301635

100% 8.306312002 5.877665169 3.708841025 2.133985002 1.153976799 0.6015066772 0.3072820899 0.1553269633

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

20% 40% 60% 80% 100%

S = 32 S = 64
S = 128 S = 256
S = 512 S = 1024
S = 2048 S = 4096

Pe
rc

en
ta

ge
 o

f E
ne

rg
y

Sp
en

t o
n

M
em

or
y

Ac
ce

ss
es

Percentage of Available
On-Chip Memory

Figure 1: Percentage of energy spent on memory accesses to process one
attention head with respect to various percentages of available on-chip
memory. The results are shown across various sequence (S) length.

tion. Figure 1 measures the contribution of off-chip memory
read and write accesses to the overall energy consumption
to process a single-head self-attention layer3. The x-axis
encompasses various fractions of on-chip memory capacity
with respect to different input sequence lengths. As on-chip
resources become scarce (20% of requisite on-chip buffers
available to store the entire key and value matrices), on aver-
age, the energy contribution of on-chip memory increases to
> 60%, turning into the dominant energy contributor. In this
tightly-budgeted scenario, approaches that unlock the opportu-
nity to fetch only a subset of relevant data become attractive.

One such compelling solution is applying the run-time
pruning such as [54, 90, 96, 144]. However, even these
techniques require to bring in the entire key and value
matrices to exercise thresholding. This research tackles above
challenge by approximating Q×KT , followed by a compar-
ison with threshold values. Despite the approximation, our
results ensure that this in-memory thresholding mechanism
can consistently identify the entire subset of relevant vectors.
To guarantee accuracy on par with baseline, we recompute the
score values in a precise manner after selective data fetching.

C. Data Communication Optimization
Processing self-attention scores with limited on-chip

memory capacity requires frequent data movement between
adjacent query vectors. This section points out several
opportunities to cut down the cost of such movements.
1) In-memory Thresholding

Under scarce on-chip resources, a logical optimization
step can leverage in-memory computing to eliminate incon-
sequential data communications for pruned key and value
vectors. For example, in Figure 2, the core simply stipulates
K2,4,5,6,11,13 for q1×KT computations (q1→“The”). This

3Section VII outlines the experimental setup details.

The
more

pictures
of

him
that

appear
in

the
news

,
the

more
embarrassed

John
becomes
masked

masked
…

Th
e

m
or
e

pi
ct
ur
es of
hi
m

th
at

ap
pe

ar in th
e

ne
w
s ,

th
e

m
or
e

em
ba

rra
ss

ed Jo
hn

be
co

m
es

m
as

ke
d

m
as

ke
d…

Qu
er
y

Key
Figure 2: Query-Key relation for the first attention layer of CoLA task from
GLUE dataset [143]. White squares represent pruned entries. The gray
stripes are masked regions.

observation provides the opportunity to significantly cut costs
by informing the accelerator to only fetch the requisite data.
2) Spatial Locality in Adjacent Queries

While in-memory thresholding trims down the amount
of data per query that are brought into on-chip buffers, it
increases the frequency of data fetches. This is because
a new set of key and value vectors should be fetched
to proceed computing for subsequent queries once the
computations for qi×KT completes. This increase in the
frequency of data fetches may well neutralize the potential
benefits of reducing the amount of transferred data.

To explore future potential reductions in the amount of
transferred data and compensate for the likely overhead of
frequent data transfers, we study the similarities between
unpruned keys across input queries. Figure 2 illustrates
a real example of CoLA task from GLUE dataset [143]
(eighth head in the first attention layer). Each row indicates
a query and its corresponding unpruned key locations, filled
in blue. The grey shading on the last few rows and columns
specifies the input mask, commonly used in transformer
models when the sequence length in the input dataset is
less than the one in the model. It is visually evident that
a significant number of keys are inconsequential per query,
and that there is a high spatial locality between adjacent
rows. For example, compared to query “The”, the additional
required keys for the adjacent query “more” are only
“appear” and “ in”. The remaining unpruned key elements,
such as “more”, “of ”, and “him”, are identical between
these queries, obviating additional data transfers.
Theoretical expectation of spatial locality. Equation 1
calculates the probability of L, defined as the number of

3

Table 1

Number of
CORELETs Benchmark Benchmark Value

2 Sequential BERT-B 1.210618315 1.0279 1.489157441 1.0735 1.977029361 1.226597905 2.563716004 1.471433878
2 Sequential ViT-B 1.058900149 1.0226 1.217332488 1.0291 1.354415615 1.12523067 1.607852645 1.248478532
2 Sequential GPT-2-L 1.099311532 1.032 1.178709955 1.078 1.659205028 1.129734159 1.985161445 1.263920426
2 Interleaving BERT-B
2 Interleaving ViT-B
2 Interleaving GPT-2-L
4 Sequential BERT-B
4 Sequential ViT-B 1.210618315 1.058900149 1.099311532
4 Sequential GPT-2-L 1.0279 1.0226 1.032
4 Interleaving BERT-B 1.489157441 1.217332488 1.178709955
4 Interleaving ViT-B 1.0735 1.0291 1.078
4 Interleaving GPT-2-L 1.977029361 1.354415615 1.659205028
8 Sequential BERT-B 1.226597905 1.12523067 1.129734159
8 Sequential ViT-B 2.563716004 1.607852645 1.985161445
8 Sequential GPT-2-L 1.471433878 1.248478532 1.263920426
8 Interleaving BERT-B
8 Interleaving ViT-B
8 Interleaving GPT-2-L

16 Sequential BERT-B
16 Sequential ViT-B
16 Sequential GPT-2-L
16 Interleaving BERT-B
16 Interleaving ViT-B
16 Interleaving GPT-2-L

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
Random Dataset

C
O

R
EL

ET
 Im

ba
la

nc
e

BERT-B

BERT-L

ALBERT-XL

ALBERT-XXL

ViT-B

Table 1-1

Number of
CORELETs Benchmark Benchmark Random Dataset Random Dataset

2 Random BERT-B 34.58565035 82.37718703 0.3458565035 0.8237718703
2 SQUAD BERT-B 23.26405554 85.55676385 0.2326405554 0.8555676385
4 Random ViT-B 39.95016318 83.66179564 0.3995016318 0.8366179564
4 CIFAR ViT-B 22.16653208 73.9006961 0.2216653208 0.739006961
4 Random ALBERT-XXL 21.3659103 87.3797201 0.213659103 0.873797201
8 SQUAD ALBERT-XXL 21.52329994 87.55826541 0.2152329994 0.8755826541

BERT-B

 o
f D

at
a

O
ve

rla
p

%
BERT-L

ALBERT-XL

ALBERT-XXL

ViT-B
GPT-2-L

Synth-1

Synth-2

Geomean

1st Layer Last Layer 1st Layer Last Layer 1st Layer Last Layer
BERT-B (SQUAD) ViT-B (CIFAR) ALBERT-XXL (SQUAD)

Figure 3: Number of common indices between neighboring tokens (Qi vs.
Qi+1) with the practical dataset vs. randomly selected pruned tokens with
the pruning rate from [90].

overlapping elements between adjacent queries of size S.
In this equation, M represents the number of the unpruned
elements in each query. The probability of L is calculated by
first multiplying the numbers of possible combinations of L
elements out of M and the remaining M - L elements out of
S - M. This product is subsequently divided by the number of
possible combinations of M elements out of S. The resulting
probability of each L is then multiplied by the value of L and
summed across M to calculate the theoretical expected over-
lap between adjacent queries, as demonstrated in Equation 1.

P(L)=
MCL×S−MCM−L

SCM

, E(L)=

M∑
L=1

L·P(L) (1)

In Figure 3, we compare the percentages of overlaps,
averaged across multiple inputs and observed in various
extant datasets [39, 71, 111], with the theoretical expectation
formula, as presented in Equation 1. The results reveals a
striking 2 - 3× increase in the observed overlap percentage
in the real world scenarios. This increase highlights a notable
data reuse opportunity because most of the requisite elements
already reside in on-chip buffers. Therefore, exploiting this
data reuse opportunity limits the number of data fetches only
to the unpruned elements that differ between adjacent queries,
leading to a dramatic cost reduction. One could leverage
spatial locality across larger windows (>2) at the cost of hard-
ware complexity. However, on average, the resulting overlap
is below 5%, which does not justify the requisite overhead.
3) Futile Computations in Padded Regions

It is a common practice [148] in transformer models to
pad input sequences that are shorter than the maximum
supported length. The padded inputs do not meaningfully
contribute to the self-attention computations, and hence are
irrelevant for the final model accuracy. These padded regions
are highlighted as gray squares in Figure 2, where only 16
queries out of 128 are computationally relevant. This leaves
(128-16)×(128-16) score computations inconsequential.
The padded regions are commonly nullified by placing a
sufficiently large negative value [148]. Passing these negative
values through Softmax prompts their probability to approach

In
p

u
t

B
u

ff
e

r

Output Buffer

D
AC

ADC

v11

v12

v1n
o11

in1
rn1

i21
r21

i11
r11

ADC ADC

D
AC

DA
C

o12

in2
rn2

i22
r22

i12
r12

o1m

inm
rnm

i2m
r2m

i1m
r1m

Figure 4: In-memory computing with ReRAM cross-bar array.

zero, excluding them from subsequent computations. To
further eliminate unnecessary data communications in these
padded regions, we can proactively identify them as early
as possible in memory.

III. IN-MEMORY THRESHOLDING

Overview of ReRAM. Resistive Random Access Memory
(ReRAM) is a non-volatile memory that stores data
using its adjustable resistance. Figure 4 demonstrates a
ReRAM 2D crossbar array [102]. To further improve
the density and energy efficiency of ReRAM, recent
methods [95, 149, 160, 165] use Multi-Level Cells (MLC) to
store multiple bits of information inside each cell. In contrast
to Single-Level Cells (SLC), the MLC ReRAM permits
a range of resistance values inside each cell. Although
storing more bits per cell appeals by increasing ReRAM
memory density, it can easily become a limiting factor. As
the number of bits/cell increases, each cell renders itself
more amenable to circuit noises and limits the accuracy of
computations. Recent studies [15, 60] deem a four bits/cell
MLC ReRAM design the optimal balance between robustness
and complexity of current sensing detection circuitry.
Vector-Matrix multiplication with ReRAM in-memory
computing. ReRAM can perform efficient and highly parallel
analog vector-matrix multiplications, as demonstrated by
prior work [29, 53, 123, 131] on DNN acceleration. To
perform such multiplications, the matrix elements are mapped
onto memristor conductance and the input vector is fed
into ReRAM’s wordlines (Figure 4, horizontal lines), one
element per row, as biased voltages generated by a digital-to-
analog converter (DAC). Additionally, a sum reduction can be
executed on the resulting multiplications across the crossbar
columns as serial currents [89, 151]. Once complete, the
weighted-sum vector forms an analog current at the boundary
of the ReRAM crossbar, one element per column. The

4

following equation formally presents a multiplication between
vector v1×n and matrix Mn×m on a ReRAM crossbar array:

mi j =
1
ri j

o1 j =

n∑
i=1

v1i ·mi j (2)

where mi j and ri j represent each element of matrix M and
its corresponding resistance value in ReRAM cells.
Application in run-time pruning. The in-memory principle
introduced above can be seamlessly applied for accelerating
the attention mechanism. This can be achieved by storing each
ki vector in a column of the crossbar array, and applying the
input voltage level, which corresponds to the element of query
vector qi, to each wordline as described in Figure 6(a). Ideally,
we require s columns to store entire sequence length while d
rows are needed to accommodate the entire embedding size.
If the array size does not match with problem size, multiple
banks of array can be employed in a tiled manner. All of ki
vectors stored in multiple columns are processed for parallel
dot-product operations in one shot. Once it completes, the
next query vector qi+1 is processed in the subsequent cycle.
Analog↔Digital challenges. It is shown [29, 89, 123] that
digital↔analog conversion drains a significant portion of
total ReRAM power consumption, especially as the number
of conversion bits increases. For example, the power and
area of a 5-bit ADC are >20× [139] and >30× [136]
higher than a 1-bit ADC, respectively. Therefore, it is
crucial to take the power overhead of these converters into
account, especially for designs with greater than one-bit
precision requirements. In the following, we discuss the
main challenges to in-memory thresholding.

A. In-Memory Thresholding Challenges
1 Analog computing inaccuracies. Analog computing in

ReRAM is commonly known to be susceptible to inherent
circuit noises and inaccuracies, such as thermal noise,
temperature fluctuations, process variations, and coupling
noise between adjacent cells [23, 59, 64]. These inaccuracies
limit the feasible precision of computations in ReRAM
crossbar arrays. To evaluate the impact of limited compute
precision for in-memory thresholding on the final model
accuracy, we use the following approach4:

Prune=Argwhere (Scoreb
R<Th); Score[Prune]=−c (3)

where Scoreb
R denotes the in-memory score values (e.g.

results of qi×KT) when the output has limited accuracy
with a b-bit precision. “Argwhere” finds the indices of score
elements that are lower than the target threshold. Note that
the threshold values (Th) are learned during the full-precision
finetuning process such as LEOPARD [75, 90]. The scores
of the identified pruning indices are then forcefully set to
a large negative value (−c) to remove irrelevant elements.

4As we explain in Section VII, we do not perform additional fine-tuning
to quantize key values to lower bit-precision.

Table 1

Energy BERT-MRPC BERT-SQUAD ViT
1 0 0 0
2 0.4093137383 0.02686849574 0.9884

3 0.7892157435 0.7679280984 0.9878

4 0.8651961088 0.7986754967 0.9874

5 0.8578431606 0.8003784295 0.9858

6 0.8627451062 0.8000946074 0.985

7 0.8651961088 0.7987701041 0.9846

8 0.8676471114 0.8003784295 0.9846

0.0%
20.0%
40.0%
60.0%
80.0%

100.0%

1 2 3 4 5 6 7 8

BERT-MRPC
BERT-SQUAD
ViT

M
od

el
 A

cc
ur

ac
y

(
) %

Number of Bits for In-Memory Score (b)
Figure 5: Sensitivity of model accuracy to the number of bits (b) used
for in-memory thresholding (comparison of in-memory scores with Th,
Equation 3).

Also, recall that we perform low-precision in-memory com-
puting for the sole purpose of identifying the irrelevant key
vectors. With on-chip accelerators, the score computation for
unpruned vectors is still performed in full-precision.

Figure 5 compares the final model accuracy after
quantizing the Score with different bit-precision (b) across
three different models: BERT-Base [71] with GLUE [143],
BERT-Base with SQUAD [113], and ViT [39] with [78]
dataset. The results show that the quantization error with
4-bit precision virtually has no impact on the final model
accuracy5. Thus, the runtime pruning mechanism is robust
against approximation, even when the computation has a
certain level of errors. This is intuitive because the incorrectly
pruned vectors already exhibit a small score value, likely in
the vicinity of Th. Hence, the impact on model accuracy is
negligible. Finally, even more sensitive workload to the noise
can be in theory compensated by adding a modest negative
margin on top of Th in Equation 3 at the cost of reducing the
pruning ratio (directly proportional to hardware performance).
2 ADC converter overhead. The overhead of ADC

converters increases proportionately to the precision of
conversion. Two design choices can support comparisons
between vector-matrix multiplication outputs and the
threshold values. The first option uses a 5-bit ADC to convert
the outputs and employs digital comparators for thresholding.
The other option utilizes analog comparators for thresholding
prior to ADC. The output of each analog comparison
represents a binary value, which indicates whether to
prune the corresponding key vector. Since the resulting
pruning vector only requires one bit per key, we can use
a low-overhead 1-bit ADC (implemented as a comparator).
The low overhead of 1-bit ADC (>20× [139] lower area and
>30× [136] lower power consumption compared to a 5-bit
ADC) favors the second option for in-memory thresholding.

5A recent study from HP Lab [60] has shown that ReRAM in-memory
computing for 64-tap dot-product delivers 5-bit equivalent output accuracy
after including all the error sources.

5

WL1

WL2

WLd

BL1 BL2 BLs
K1 K2 Ks

Wordline Driver

WL1

D
A

C

BL1

Analog Comparator

BL2

BLd

Wordline Driver

D
A

C

Analog Comparator

𝝋

+ -

𝑽𝝉𝒉
+ -

𝑽𝝉𝒉
+ -

𝑽𝝉𝒉

𝝋 𝝋

𝒊𝟏 𝒊𝟐 𝒊𝒔

(a) (b)

S
A

S
A

Q1.K1 Q1.K2 Q1.Ks

q11

q12

q1d

k11

k1d

k12

Not
Used

Not
Used

Figure 6: Transposable ReRAM crossbar array. (a) ReRAM crossbar during
in-memory pruning, (b) Transposed ReRAM crossbar during normal read.

3 Reading unpruned vectors overhead. Finally,
performing in-memory thresholding followed by fetching
each unpruned K vector from ReRAM arrays (for digital
re-compute) is arduous and can impose significant read
latency. This occurs because we store each vector of K

vertically at each ReRAM column (Figure 4), and ki is
mapped to the ith ReRAM column. On the other hand,
accessing from ReRAM through a standard read operations
fetches the data stored horizontally in a row. Therefore,
fetching from ReRAM requires sequentially asserting all
the (horizontal) wordlines, bringing in each row of the K

matrix (even the ones associated with pruned k vectors), and
selectively fetching the unpruned vectors to on-chip buffers.
We address this challenge by a recent taped-out transposable
ReRAM proposal [141], which we expound below.

B. Transposable ReRAM for Thresholding
Overview. A transposable ReRAM [141] supports (1) in-situ
access to the array to perform vector-matrix computations
(in-situ computation), as well as (2) reading their transposed
values (transposed read). Figure 6 shows the overall design
of a transposable ReRAM in these two modes. In the
“in-situ computation” mode, the ReRAM array performs
vector-matrix multiplications, similarly to conventional
(non-transposable) ReRAM crossbar shown in Figure 4.
In this case, we assign the value of each element in input
vector qi to wordlines (horizontal) and assert all the bitlines
(vertical) to enable parallel multiplications. On the other
hand, in the new “transposed read” mode, the horizontal
lines become bitlines and vertical line becomes wordline.
In this mode, only one wordline gets asserted. Once the
bitline current from all the columns are fully developed, the
sense amplifier reads all the values stored on the ReRAM
conductance of the asserted wordline (in the column).
In-memory thresholding dataflow. As discussed in the
previous section, one of the challenges for performing
in-memory thresholding is reading unpruned vectors after
score calculation (3). The “transposed read” mode presents
a viable solution to this challenge. Next, we present a

Queue Buffer
<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥
<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥
<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥…Key BufferLSB

<latexit sha1_base64="2+HEzV1lbjnAob+O88VMsg4pHfI=">AAAB/3icZVDLSgMxFM34bMdX1aWbYCkIQpnpQl0W3bhswT6wLSWTudOGZjJDkhHL0IVrt7rwC9ypWz/FT/ArNH0grT1w4XDOPST3eDFnSjvOl7Wyura+sZnJ2lvbO7t7uf2DuooSSaFGIx7JpkcUcCagppnm0IwlkNDj0PAGV2O/cQdSsUjc6GEMnZD0BAsYJdpI1dNuLu8UnQnwMnFnJF/Oxi+37/c/lW7uu+1HNAlBaMqJUi3XiXUnJVIzymFktxMFMaED0oOWoYKEoDrp5KMjXDCKj4NImhEaT1S7MBdJSajUMPTMakh0Xy2ZY/XPnPc8z2eiN1oItBIdXHRSJuJEg6DT94OEYx3hcRnYZxKo5kNDCJXMnIBpn0hCtanMNt24/5tYJvVS0T0rlqqmpEs0RQYdoWN0glx0jsroGlVQDVEE6BE9oWfrwXq13qyP6eqKNcscogVYn791F5la</latexit>

+
<latexit sha1_base64="2+HEzV1lbjnAob+O88VMsg4pHfI=">AAAB/3icZVDLSgMxFM34bMdX1aWbYCkIQpnpQl0W3bhswT6wLSWTudOGZjJDkhHL0IVrt7rwC9ypWz/FT/ArNH0grT1w4XDOPST3eDFnSjvOl7Wyura+sZnJ2lvbO7t7uf2DuooSSaFGIx7JpkcUcCagppnm0IwlkNDj0PAGV2O/cQdSsUjc6GEMnZD0BAsYJdpI1dNuLu8UnQnwMnFnJF/Oxi+37/c/lW7uu+1HNAlBaMqJUi3XiXUnJVIzymFktxMFMaED0oOWoYKEoDrp5KMjXDCKj4NImhEaT1S7MBdJSajUMPTMakh0Xy2ZY/XPnPc8z2eiN1oItBIdXHRSJuJEg6DT94OEYx3hcRnYZxKo5kNDCJXMnIBpn0hCtanMNt24/5tYJvVS0T0rlqqmpEs0RQYdoWN0glx0jsroGlVQDVEE6BE9oWfrwXq13qyP6eqKNcscogVYn791F5la</latexit>

+
<latexit sha1_base64="2+HEzV1lbjnAob+O88VMsg4pHfI=">AAAB/3icZVDLSgMxFM34bMdX1aWbYCkIQpnpQl0W3bhswT6wLSWTudOGZjJDkhHL0IVrt7rwC9ypWz/FT/ArNH0grT1w4XDOPST3eDFnSjvOl7Wyura+sZnJ2lvbO7t7uf2DuooSSaFGIx7JpkcUcCagppnm0IwlkNDj0PAGV2O/cQdSsUjc6GEMnZD0BAsYJdpI1dNuLu8UnQnwMnFnJF/Oxi+37/c/lW7uu+1HNAlBaMqJUi3XiXUnJVIzymFktxMFMaED0oOWoYKEoDrp5KMjXDCKj4NImhEaT1S7MBdJSajUMPTMakh0Xy2ZY/XPnPc8z2eiN1oItBIdXHRSJuJEg6DT94OEYx3hcRnYZxKo5kNDCJXMnIBpn0hCtanMNt24/5tYJvVS0T0rlqqmpEs0RQYdoWN0glx0jsroGlVQDVEE6BE9oWfrwXq13qyP6eqKNcscogVYn791F5la</latexit>

+
<latexit sha1_base64="2+HEzV1lbjnAob+O88VMsg4pHfI=">AAAB/3icZVDLSgMxFM34bMdX1aWbYCkIQpnpQl0W3bhswT6wLSWTudOGZjJDkhHL0IVrt7rwC9ypWz/FT/ArNH0grT1w4XDOPST3eDFnSjvOl7Wyura+sZnJ2lvbO7t7uf2DuooSSaFGIx7JpkcUcCagppnm0IwlkNDj0PAGV2O/cQdSsUjc6GEMnZD0BAsYJdpI1dNuLu8UnQnwMnFnJF/Oxi+37/c/lW7uu+1HNAlBaMqJUi3XiXUnJVIzymFktxMFMaED0oOWoYKEoDrp5KMjXDCKj4NImhEaT1S7MBdJSajUMPTMakh0Xy2ZY/XPnPc8z2eiN1oItBIdXHRSJuJEg6DT94OEYx3hcRnYZxKo5kNDCJXMnIBpn0hCtanMNt24/5tYJvVS0T0rlqqmpEs0RQYdoWN0glx0jsroGlVQDVEE6BE9oWfrwXq13qyP6eqKNcscogVYn791F5la</latexit>

+
(b) q×KT

ex
MSB

(c) Softmax (d) ×V

Key BufferMSB

Value Buffer

FI
FO

div
<latexit sha1_base64="2+HEzV1lbjnAob+O88VMsg4pHfI=">AAAB/3icZVDLSgMxFM34bMdX1aWbYCkIQpnpQl0W3bhswT6wLSWTudOGZjJDkhHL0IVrt7rwC9ypWz/FT/ArNH0grT1w4XDOPST3eDFnSjvOl7Wyura+sZnJ2lvbO7t7uf2DuooSSaFGIx7JpkcUcCagppnm0IwlkNDj0PAGV2O/cQdSsUjc6GEMnZD0BAsYJdpI1dNuLu8UnQnwMnFnJF/Oxi+37/c/lW7uu+1HNAlBaMqJUi3XiXUnJVIzymFktxMFMaED0oOWoYKEoDrp5KMjXDCKj4NImhEaT1S7MBdJSajUMPTMakh0Xy2ZY/XPnPc8z2eiN1oItBIdXHRSJuJEg6DT94OEYx3hcRnYZxKo5kNDCJXMnIBpn0hCtanMNt24/5tYJvVS0T0rlqqmpEs0RQYdoWN0glx0jsroGlVQDVEE6BE9oWfrwXq13qyP6eqKNcscogVYn791F5la</latexit>

+ <latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>

⇥
<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>

⇥
<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>

⇥
…

Output
FIFO

d×8b

16
b

<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥
<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥
<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥…

<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥
<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥
<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥…

<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥
<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥
<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>⇥…

…

<latexit sha1_base64="2u7wpct7f4Nk0jX+r6D7fjBpoP8=">AAACEXicZVDLSsNAFJ3UV42vVMGNm2ApuCpJF+qy1I0gQov2AW0Ik8m0HTqZhJmJUkK+wrVbXfkB7kTc+QVu3PsXTtoirT0wcDjnHu6d40WUCGlZX1puZXVtfSO/qW9t7+zuGYX9lghjjnAThTTkHQ8KTAnDTUkkxZ2IYxh4FLe90UXmt+8wFyRkt3IcYSeAA0b6BEGpJNco9AIohwjS5Cp1k+ubWuoaRatsTWAuE3tGitXDxjd5qX3UXeOn54coDjCTiEIhurYVSSeBXBJEcar3YoEjiEZwgLuKMhhg4SST01OzpBTf7IdcPSbNiaqX5iIJDIQYB54azS4VS2am/pnznuf5hA3ShUA3lv1zJyEsiiVmaLq/H1NThmZWj+kTjpGkY0Ug4kR9wURDyCGSqkRddWP/b2KZtCpl+7RcaaiSamCKPDgCx+AE2OAMVMElqIMmQOAePIIn8Kw9aK/am/Y+Hc1ps8wBWID2+QutdqCB</latexit>KMSB

<latexit sha1_base64="Jp59tNuwLao5GfX6ygS0StIS4iA=">AAACKXicZZDLSsNAFIYn9VbjLerSTWgpKEJNulCXpW4EXbRoL9CUMplM2qGTSZiZCCXkGdz4Fq7d6jO4s25d+RZOL5TWHhj4+P9zOHN+N6JESMsaaZm19Y3Nrey2vrO7t39gHB41RBhzhOsopCFvuVBgShiuSyIpbkUcw8CluOkObsZ+8wlzQUL2KIcR7gSwx4hPEJRK6hpnTgBlH0Ga1NKLOTcW+C7tJvcPlbRr5K2iNSlzFewZ5Ms55/xlVB5Wu8av44UoDjCTiEIh2rYVyU4CuSSI4lR3YoEjiAawh9sKGQyw6CSTk1KzoBTP9EOuHpPmRNULCyMJDIQYBq5qHf9UrJhjdW4ueq7rEdZLlwbasfSvOwlhUSwxQ9P9fkxNGZrj2EyPcIwkHSqAiBN1gon6kEMkVbi6ysb+n8QqNEpF+7JYqqmQKmBaWXACcuAU2OAKlMEtqII6QOAZvIF38KG9ap/al/Y9bc1os5ljsFTazx92+ao/</latexit>Q/V/KLSB

…

… … …

(a) ReRAM

d×
4b

d×
4b

12
b

17
b

8b

16
b16b

8b

…<latexit sha1_base64="2+HEzV1lbjnAob+O88VMsg4pHfI=">AAAB/3icZVDLSgMxFM34bMdX1aWbYCkIQpnpQl0W3bhswT6wLSWTudOGZjJDkhHL0IVrt7rwC9ypWz/FT/ArNH0grT1w4XDOPST3eDFnSjvOl7Wyura+sZnJ2lvbO7t7uf2DuooSSaFGIx7JpkcUcCagppnm0IwlkNDj0PAGV2O/cQdSsUjc6GEMnZD0BAsYJdpI1dNuLu8UnQnwMnFnJF/Oxi+37/c/lW7uu+1HNAlBaMqJUi3XiXUnJVIzymFktxMFMaED0oOWoYKEoDrp5KMjXDCKj4NImhEaT1S7MBdJSajUMPTMakh0Xy2ZY/XPnPc8z2eiN1oItBIdXHRSJuJEg6DT94OEYx3hcRnYZxKo5kNDCJXMnIBpn0hCtanMNt24/5tYJvVS0T0rlqqmpEs0RQYdoWN0glx0jsroGlVQDVEE6BE9oWfrwXq13qyP6eqKNcscogVYn791F5la</latexit>+

<latexit sha1_base64="2+HEzV1lbjnAob+O88VMsg4pHfI=">AAAB/3icZVDLSgMxFM34bMdX1aWbYCkIQpnpQl0W3bhswT6wLSWTudOGZjJDkhHL0IVrt7rwC9ypWz/FT/ArNH0grT1w4XDOPST3eDFnSjvOl7Wyura+sZnJ2lvbO7t7uf2DuooSSaFGIx7JpkcUcCagppnm0IwlkNDj0PAGV2O/cQdSsUjc6GEMnZD0BAsYJdpI1dNuLu8UnQnwMnFnJF/Oxi+37/c/lW7uu+1HNAlBaMqJUi3XiXUnJVIzymFktxMFMaED0oOWoYKEoDrp5KMjXDCKj4NImhEaT1S7MBdJSajUMPTMakh0Xy2ZY/XPnPc8z2eiN1oItBIdXHRSJuJEg6DT94OEYx3hcRnYZxKo5kNDCJXMnIBpn0hCtanMNt24/5tYJvVS0T0rlqqmpEs0RQYdoWN0glx0jsroGlVQDVEE6BE9oWfrwXq13qyP6eqKNcscogVYn791F5la</latexit>

+

<latexit sha1_base64="2+HEzV1lbjnAob+O88VMsg4pHfI=">AAAB/3icZVDLSgMxFM34bMdX1aWbYCkIQpnpQl0W3bhswT6wLSWTudOGZjJDkhHL0IVrt7rwC9ypWz/FT/ArNH0grT1w4XDOPST3eDFnSjvOl7Wyura+sZnJ2lvbO7t7uf2DuooSSaFGIx7JpkcUcCagppnm0IwlkNDj0PAGV2O/cQdSsUjc6GEMnZD0BAsYJdpI1dNuLu8UnQnwMnFnJF/Oxi+37/c/lW7uu+1HNAlBaMqJUi3XiXUnJVIzymFktxMFMaED0oOWoYKEoDrp5KMjXDCKj4NImhEaT1S7MBdJSajUMPTMakh0Xy2ZY/XPnPc8z2eiN1oItBIdXHRSJuJEg6DT94OEYx3hcRnYZxKo5kNDCJXMnIBpn0hCtanMNt24/5tYJvVS0T0rlqqmpEs0RQYdoWN0glx0jsroGlVQDVEE6BE9oWfrwXq13qyP6eqKNcscogVYn791F5la</latexit>

+
ex
LSB

<latexit sha1_base64="tBSg45zLTh7O48n/4h84W1goCbw=">AAACBHicZVDLSgMxFL1TX+34qrp0EywFV2WmC3VZdOOygn1gW0omk2ljM5khyYhl6Na12/oNggtx63/4CX6Fpg+ktQcCh3Pu4d4cL+ZMacf5sjJr6xubW9mcvb2zu7efPzisqyiRhNZIxCPZ9LCinAla00xz2owlxaHHacMbXE38xgOVikXiVg9j2glxT7CAEayNVG9rFlLVzReckjMFWiXunBQquXh89/b4U+3mv9t+RJKQCk04VqrlOrHupFhqRjgd2e1E0RiTAe7RlqECmyWddHrtCBWN4qMgkuYJjaaqXVyIpDhUahh6ZjTEuq9WzIn6Zy56nucz0RstBVqJDi46KRNxoqkgs/1BwpGO0KQR5DNJieZDQzCRzHwBkT6WmGjTm226cf83sUrq5ZJ7VirfmJIuYYYsHMMJnIIL51CBa6hCDQjcwzOM4cV6sl6td+tjNpqx5pkjWIL1+QvvpZvf</latexit>

⇥

AddressOn-Chip?

U
np

ru
ne

d
In

de
x

Bu
ffe

r AddressOn-Chip?

U
np

ru
ne

d
In

de
x

Bu
ffe

r

Transposable
(Pruning+Storage)

Standard
(Storage)

Ad
dr

es
s

G
en

er
at

or

Ad
dr

es
s

G
en

er
at

or

div

Q
ue

ry
 B

an
k-

to
-B

an
k

Tr
an

sf
er

2

3

4

1

Figure 7: The overview of SPRINT system. Data transfers within ReRAMs
and between ReRAMs and accelerator consist of: (1) bank-to-bank between
standard and transposable ReRAMs, (2) unpruned KMSB vectors and their
corresponding indices, (3) Q vector, and (4) unpruned KLSB and V vectors.

dataflow to identify unpruned key vectors leveraging
transposable ReRAMs. In this dataflow, we store each key
vector vertically in the ReRAM crossbar array (the first
key vector is mapped onto the first ReRAM column, and
so on). Because analog circuit noises limit the supported
bit-precision on each memory cell, we only store a
predefined subset of MSB-side bits within each cell. Our
experiment showed that a 4-bit precision is sufficient for
in-memory thresholding, yielding on par model accuracy. As
such, we only store four MSBs per key vector element in
transposable ReRAM arrays. The rest of LSBs can be stored
on conventional ReRAM modules. Similarly, the elements of
query and value vectors are stored on conventional ReRAM
modules. Note that these modules do not need any support
for in-memory computations and are solely used for storage6.

To process the query vector q1×S, the on-chip accelerator
first transmits a subset of query vector MSBs to the
transposable ReRAMs7 that store the key matrix KT

d×S.
A low-precision DAC converts the digital values of the
query vector to analog and feeds them into the ReRAM via
wordlines. The transposable ReRAM array performs a low-
precision vector-matrix multiplication in analog to calculate
the Scores, which are produced after vertically applying an
analog reduction sum per key vector. The next step performs
in-memory thresholding using analog comparators. Note
that the threshold values can either be set at the start of
the computations or sent along with each q vector. Finally,
after performing the analog comparisons, a voltage value
(corresponding to a 1-bit digital value) flows through a series
of 1-bit ADCs. The ADC outputs indicate the pruning state
of their corresponding key vectors, where “1” means pruned.

The generated binary pruning vector is sent back to the
on-chip accelerator, which subsequently gets translated into
multiple memory requests to selectively fetch unpruned key
and value vectors from their corresponding modules. Note
that the pruning vectors for both key and value are completely

6We homogeneously use ReRAM for storage of queries and values and
in-memory thresholding for simplicity. Another possibility can exploit a
heterogeneous design, in which DRAM memories are used for query/value
matrices and small ReRAM crossbar arrays for in-memory thresholding.

7The number of MSBs in query and key are identically set to 4-bits.

6

identical. Upon receiving the first unpruned key vector, the
accelerator can start recomputing Scores in full-precision.
The same process repeats for the rest of the query vectors.

IV. OVERVIEW OF SPRINT SYSTEM

As shown in Figure 7, the overall SPRINT architecture
includes two main components: 1) ReRAM memory, and
2) on-chip accelerator, as described below.
ReRAM memory. ReRAM memory banks are split into two
categories, standard and transposable. Standard ReRAM is
solely used for storage (Q, V, and KLSB), while transposable
ReRAM is for both storage (KMSB) and performing
dot-product and in-memory thresholding, informing the
on-chip accelerator which embedding vector to fetch. The
in-memory thresholding mechanism, explained in Section III,
exclusively uses MSBs to determine pruning criteria.
On-chip accelerator. The SPRINT on-chip accelerator
performs three main operations, q × KT , Softmax, and
×V in a pipelined manner. Figure 7 depicts the major
microarchitectural units with their associated bit precision and
data flow. The arithmetic is further described in Section VI.
The accelerator fetches the unpruned k / v vectors from
ReRAM along with a binary vector, indicating which k /
v indices are unpruned, to store in unpruned index buffers.
Based on these indices, the address generator block produces
addresses to access the unpruned vector from K/V buffers.
The accelerator first performs q1×d×{KMSB,KLSB} followed
by an adder tree to precisely calculate the score values. Note
that, Q buffer only stores the streamed-in q1×d temporarily for
the window of score computation. Then, the Softmax block
normalizes the Score values into a probability distribution
proportional to the exponentials of the input Scores. Finally,
the last block multiplies each v vector by their corresponding
Score probability, followed by a reduction sum across the
weighted v vectors to generate the final attention values.

V. SPRINT MEMORY CONTROLLER

Background. A memory controller receives a stream of
memory access requests from the on-chip accelerator,
generates their corresponding memory command stream.
The memory controller consequently arbitrates the memory
commands and schedules them to off-chip memory according
to a scheduling policy. The technology of a memory (e.g.
DRAM or ReRAM) dictates a set of timing constraints that
must be satisfied by the memory controller between each
issued memory command. To communicate data between
the on-chip accelerator and off-chip memory, a sequence
of memory commands generated by the memory controller
are required. These commands collectively retrieve data
from rows across multiple chips into their corresponding
row buffers and select a column from the currently fetched
retrieved data. A subsequent column access to the same
row enjoys the row-buffer locality, hence, lowest access

latency. However, the consecutive accesses between different
rows are generally suffer from substantially higher access
latency. The memory controller aims to schedule the memory
commands in order to maximize the row-buffer locality.

A. Data Layout Organization
We presume a similar organization as conventional memory

subsystems for SPRINT. In general, optimizing the data layout
organization for deep learning applications is straightforward
because of their predictable memory access pattern. We
observe the same pattern for SPRINT data layout organization.
As explained, to support in-memory thresholding, we presume
a non-interleaving data organization for Ks (similar to prior
work [41, 74, 84]). That is, we store each vector of k (a
column in KT

d×S) in one column of memory mat. Based
on our observation (spatial locality between unpruned key
indices, Section II-B), we distribute the neighboring k vectors
across different banks/channels. Our empirical results show
that this distribution of k vectors provides a better utilization
of memory bandwidth and reduces structural conflicts. Same
data layout organization works for v vectors. The Q matrix,
on the other hand, does not need to follow this particular
data layout organization. That is because each q vector is
processed sequentially and after every q-K vector-matrix
multiplication which provides sufficient time for the memory
subsystem to handle the upcoming query read requests.

The final data layout organization requirement is for
the MSB and LSB parts of k vectors. As described in
Section III-B, MSB and LSB parts of key vectors must be
distributed across different type of ReRAM crossbar arrays,
transposable and conventional respectively. This separation
of MSB and LSB bits can be established statically before
the computation starts. To effectively enable this special data
layout organization, we can provide device-side allocation
APIs so the user can specify different requirements for
Q / K / V matrices without exposing physical underlying
structure of memory subsystem. Similar software support
has been proposed in prior work [31, 74].
Scaling for embedding size. One potential challenge to the
proposed data layout organization and in-memory threshold-
ing mechanism is posed by scalability. Specifically, as the
embedding size of key vectors increases, applying the reduc-
tion sum across each column of ReRAM arrays may seem
infeasible. This limitation can be readily addressed by split-
ting the key vector into multiple adjacent ReRAM columns,
similarly to [67]. With this circuit modification, the resulting
analog current from the adjacent key vector splits can be
subsequently merged and compared with the threshold value.

B. Memory Controller Microarchitecture
The on-chip memory controller designed for SPRINT is

separated into a frontend and a backend engine. The frontend
engine communicates with multiple on-chip accelerators,
accepting memory requests, whereas the backend engine
generates and issues commands to off-chip memory modules

7

with respect to their timing constraints.

C. Memory Controller Execution Flow
Overview. The memory controller in SPRINT governs
the tasks of in-memory thresholding and fetching the
corresponding unpruned d×1 vectors of KT

d×s matrix. To
complete these operations, the memory controller first
sends a low-precision variant of qi vector of size 1×d to
KMSB ReRAM banks. Each KMSB ReRAM bank executes
low-precision in-memory thresholding and generates a binary
pruning vector of size s. The jth element of the generated
binary vector indicates whether to prune the jth column of
KT

d×s matrix (i.e., ‘1’ → pruned and ‘0’ → unpruned). Upon
receiving the binary pruning vector, the memory controller
processes this vector and consequently issues a stream of
read requests to fetch the unpruned vectors of KT

d×s matrix.
Spatial locality detection engine. To further reduce the data
movement between off-chip memory and on-chip buffers, we
design and integrate a spatial locality detection (SLD) engine
in the front-end of the memory controller. The primary task
of the engine is to detect and exploit spatial locality between
the last and current binary pruning vectors associated with
the attention score computations for adjacent query vectors
(i.e., qi

1×d and qi+1
1×d). The advantages are two folds: (1)

“only” generating memory requests for k vectors that do not
exists in on-chip K buffer, hence reducing data transfer and
memory contention, and (2) bootstrapping the attention score
(Q×KT) computations for the k vectors that already reside in
on-chip K buffer, hence minimizing the data transfer latency.
The following equations describe the logic behind these two
tasks given the last and current binary pruning vector:

Task 1→ Memory Requests Vector=Pt−1
1×s∧Pt

1×s (4)

Task 2→ Spatial Locality Vector=Pt−1
1×s∧Pt

1×s (5)

where Pt−1
1×s and Pt

1×s represent binary pruning vectors
associated with the last and current attention score
computations at a given time point t, respectively.
Memory request generator engine. The main objective for
the memory request generator (MRG) engine is to produce
a potentially limited number of memory requests to fetch
key vectors that do not currently reside in on-chip key
memory. Each memory controller retains one MRG engine
to produce the corresponding key vector addresses residing
in that particular bank. At each cycle, a binary value is read
from the memory request vector. If zero, it means that the
corresponding key vector is not required for the current at-
tention score computation; hence, bypassing memory request
generation step. On the other hand, a one-value indicates
that a key vector must be fetched from off-chip memory.
Hence, a memory request with an address corresponding to
the location of the desired key vector is generated.

To satisfy the key vector organization requirement
(Section IV), we decided to statically place the adjacent key

vectors into memory modules attached to different channels.
As such, to properly generate the key vector addresses,
we equip each MRG with a base register and a shared
up counter block. The base register indicates the starting
key vector index located on a particular memory channel.
The up counter starts from zero upon receiving a binary
pruning vector and increases by the number of memory
channels. We also equip each memory controller with a key
index generator (KIG) engine, which has the exact same
microarchitecture. However, in lieu of memory request vector,
KIG engine operates on spatial locality vectors to generate
the key vector addresses for SPRINT on-chip engines in
order to bootstrap the attention score computations.
Memory commands and timing considerations.
Supporting SPRINT style in-memory thresholding into
memory requires introducing additional memory commands
and memory timing constraints. To enable in-memory
thresholding in SPRINT, we introduce two additional memory
commands, CopyQ and ReadP. CopyQ copies elements of
query vector to in-memory query buffer, whereas ReadP reads
elements of resulting binary pruning vector from in-memory
pruning vector buffer. Depending on the bit-width of query
and pruning vectors, the memory controller may issue one or
more consecutive CopyQ and ReadP commands. Note that to
initiate in-memory thresholding computations, we add one-
bit in CopyQ command in which a one-value indicating the
start of computations. Issuing other memory commands will
be prohibited amid in-memory thresholding computations.

As you may observe, there is some similarities between
CopyQ and ReadP commands and normal memory read and
write, respectively, projecting a similar timing constraints as
read/write commands. However, since CopyQ works with an
isolated buffer from memory arrays, it neither requires tRP
for row pre-charging, nor tRCD to activate a memory row.
On the other hand, since consecutive CopyQ commands still
occupy data buses, we adhere to the tCL timing constraint.
The scenario for ReadP is quite different as it communicates
with the bank row buffers to read the resulting binary pruning
vectors into on-chip buffers for further processing. Therefore,
we conservatively follow the exact same timing constraints
as memory read command for ReadP. For both introduced
commands, burst CopyQ and ReadP follow the same timing
constraints as normal burst memory read and write.

While the described scenarios for CopyQ and ReadP
covers most of the required timing constraints, it still leaves
one crucial timing constraints between adjacent CopyQ and
ReadP commands. This timing, dubbed tAxTh, represents
the number of cycles that each ReRAM crossbar requires to
perform in-memory thresholding and producing the resulting
pruning vector. Our circuit simulations show that this timing
is <8 cycles [21].
Power implications of in-memory thresholding. In
addition to timing constraints, memory systems are also

8

Table 1

Number of
CORELETs Benchmark Benchmark Value

2 Sequential BERT-B 1.210618315 1.0279 1.489157441 1.0735 1.977029361 1.226597905 2.563716004 1.471433878
2 Sequential ViT-B 1.058900149 1.0226 1.217332488 1.0291 1.354415615 1.12523067 1.607852645 1.248478532
2 Sequential GPT-2-L 1.099311532 1.032 1.178709955 1.078 1.659205028 1.129734159 1.985161445 1.263920426
2 Interleaving BERT-B
2 Interleaving ViT-B
2 Interleaving GPT-2-L
4 Sequential BERT-B
4 Sequential ViT-B 1.210618315 1.058900149 1.099311532
4 Sequential GPT-2-L 1.0279 1.0226 1.032
4 Interleaving BERT-B 1.489157441 1.217332488 1.178709955
4 Interleaving ViT-B 1.0735 1.0291 1.078
4 Interleaving GPT-2-L 1.977029361 1.354415615 1.659205028
8 Sequential BERT-B 1.226597905 1.12523067 1.129734159
8 Sequential ViT-B 2.563716004 1.607852645 1.985161445
8 Sequential GPT-2-L 1.471433878 1.248478532 1.263920426
8 Interleaving BERT-B
8 Interleaving ViT-B
8 Interleaving GPT-2-L

16 Sequential BERT-B
16 Sequential ViT-B
16 Sequential GPT-2-L
16 Interleaving BERT-B
16 Interleaving ViT-B
16 Interleaving GPT-2-L

0.0
0.4
0.8
1.2
1.6
2.0

BERT-B ViT-B GPT-2-L

C
O

R
EL

ET
 Im

ba
la

nc
e

BERT-B

BERT-L

ALBERT-XL

ALBERT-XXL

ViT-B

Table 1-1

Number of
CORELETs Benchmark Benchmark BERT-B ViT-B GPT-2-L

2 Interleaving BERT-B 1.210618315 1.058900149 1.099311532
2 Interleaving ViT-B 1.0279 1.0226 1.032
2 Interleaving GPT-2-L 1.489157441 1.217332488 1.178709955
4 Sequential BERT-B 1.0735 1.0291 1.078
4 Sequential ViT-B 1.977029361 1.354415615 1.659205028
4 Sequential GPT-2-L 1.226597905 1.12523067 1.129734159
4 Interleaving BERT-B 2.563716004 1.607852645 1.985161445
4 Interleaving ViT-B 1.471433878 1.248478532 1.263920426
4 Interleaving GPT-2-L
8 Sequential BERT-B
8 Sequential ViT-B
8 Sequential GPT-2-L
8 Interleaving BERT-B
8 Interleaving ViT-B
8 Interleaving GPT-2-L

16 Sequential BERT-B
16 Sequential ViT-B
16 Sequential GPT-2-L
16 Interleaving BERT-B
16 Interleaving ViT-B
16 Interleaving GPT-2-L

Sequential

Interleaving

Sequential

Interleaving

Sequential

Interleaving

Sequential

Interleaving

2 CORELETs× 4 CORELETs× 8 CORELETs× 16 CORELETs×

C
O

R
EL

ET
 Im

ba
la

nc
e

Figure 8: CORELET utilization imbalance with and without token interleaving
across CORELETs.

under power budget limitations. tFAW and tRRD represent
the memory timing constraints linked to power budget.
To account for this power budget limitation, we model
the analog in-memory thresholding circuit and estimate
the power of analog comparators. Our simulation shows
that the overhead of additional analog circuitry for analog
comparisons merely increases the total power budget
by < 0.07% of total in-memory computation [89]. This
power overhead has negligible implications on these timing
constraints, hence we posit the nominal values for tFAW and
tRRD in our simulations (similar to work [72, 74]).

VI. SPRINT ON-CHIP ACCELERATOR

The SPRINT processor includes N CORELETs to enable
a higher parallelism degree. A CORELET is an independent
processing block that computes the entire self-attention
mechanism pipeline, including Q×KT , Softmax, and ×V.
Each CORELET consists of a QK-processing unit (QK-PU)
and a V-processing unit (V-PU). QK-PU performs the 1×d
dot product between q and k, whereas V-PU processes the
1×d dot product between the Softmax output and v in the
digital domain. In addition, each CORELET has a small
number of buffers to store unpruned key and value vectors.
Note that the query vectors are processed in a stream
manner, and thus do not need multi-entry buffers (Q-buf).
Finally, each CORELET has its own look-up-tables to record
which key and value vectors are currently present on chip.
Workload balancing across CORELETs. SPRINT accelerator
can simultaneously process multiple key vector sub-elements
in each CORELET while the same query vector is distributed
among all the CORELETs. As soon as the computations
of one query and all of its associated keys complete, the
computations of the next query can begin. In this design,
the adjacent key vectors are assigned to different CORELETs,
called token-interleaving. For example, given total four avail-
able CORELETs, SPRINT process K4n+is in the i-th CORELET
if the token is unpruned. This balances the workload across
CORELETs while considering the spatial locality, by which
the unpruned indices tend to appear in adjacent locations.

Figure 8 shows the workload imbalance ratio with 2×, 4×,

8×, and 16× CORELETs. We calculate the imbalance ratio by
dividing the maximum by the minimum numbers of assigned
unpruned tokens per CORELET and averaging the numbers
for all the queries (i.e. the value of one implies ideal workload
balance across CORELETs). The proposed workload distri-
bution scheme considerably improves the utilization balance
compared to the sequential token mapping, e.g. neighboring
tokens belonging to the same CORELETs. We observe that for
large models such as GPT-2-L, SPRINT can readily leverage
higher parallelism from more CORELETs. However, SPRINT
may underutilize the CORELETs for smaller models (e.g.,
BERT-B) because of their inferior parallelism opportunity.
Handling data misses. To minimize the number of stalls
due to data misses, the unpruned key vectors are proactively
prefetched by the memory controller (as explained in
Section V-B). We also configure the main memory bandwidth
(Table I) to provide a new pair of k and v in burst mode to
further reduce such stalls. Note that by leveraging the spatial
locality between unpruned key vectors, on average, only 2.1%
of the sequence length is required to be fetched between
adjacent queries. This high data reuse drastically reduces the
likelihood of data misses. When a rare data miss occurs, the
computations for the next available key vector can proceed
until the data miss is handled by the memory controller.
We implement this bypassing of unavailable key vectors by
adding a rotating pointer to key/value index buffers.
SPRINT accelerator arithmetic operations. Once at least
one key vector resides in K-buf, the computation can start.
At each cycle, SPRINT performs a dot-product between each
subset of elements from key and query vectors. If all the key
elements can not be processed during one compute iteration,
SPRINT stores the partial sums in a register until the results
are ready to be processed by a Softmax module. Similar to
prior work [54, 90], we use a two look-up-tables method for
exponent calculation. Afterwards, SPRINT stores the stream-
ing outputs in FIFOs for accumulation. Once complete, each
score is normalized to produce the corresponding probabili-
ties. To balance the throughput between different stages of the
pipeline, we employ two divider units. Finally, the computed
score probabilities are used in V-PU to calculate the weighted
sum of v vectors. Note that the unpruned indices for key
vectors can be used for the pruning of value vectors as well.
Two-dimensional sequence reduction. As introduced in
Section II-C3, a large portion (e.g. 46% for the SQUAD
dataset) of the total sequence length is futile due to
zero-padding. Figure 2 illustrates the zero-padded (gray)
area, which reduces the required output computation in
both vertical and horizontal dimensions. Horizontally, the
computation is reduced to k vectors per q, whereas vertically,
it is reduced to q vectors. We implement this mechanism
by enabling the memory controller to filter out the read
requests for these masked regions.
SPRINT accelerator design choice. The SPRINT accelerator

9

does not employ a double-buffering scheme for on-chip
memory in order to avoid the doubled cost of memory
capacity. When the new data arrives from main memory,
those are stored in a temporary small buffer. Meanwhile,
a stall request is issued to initiate the write process into
K-buf and V-buf. Note that, due to spatial locality across
unpruned k elements for adjacent q vectors, the number
of newly fetched k / v is infrequent. Similar to prior
work [54, 90, 144], SPRINT performs all the computations
in 8-bit precision, except Softmax with 12-bit inputs. For
final attention score, we employ 16-bit precision.

VII. METHODOLOGY AND EVALUATION

Benchmarks. We use the following models to evaluate
the efficacy of SPRINT: BERT-Base (BERT-B) [71], BERT-
Large (BERT-L) [71], ALBERT-X-Large (ALBERT-XL) [82],
ALBERT-XX-Large (ALBERT-XXL) [82], ViT-Base (ViT-B) [24],
and GPT-2-Large (GPT-2-L) [111]. We employ the Stanford
Question Answering Dataset (SQUAD) [113] to test BERT-B,
BERT-L, ALBERT-XL, ALBERT-XXL, the WikiText-2 [99] to test
GPT-2-L, and CIFAR10 [78] dataset to test the ViT-B. We use
the default sequence length (s) of 197, 384, and 1024 for
the CIFAR10, SQUAD and WikiText-2 datasets, respectively.
All models use an embedding size of d=64. On top of the
above datasets, we create two additional synthetic models
Synth1 and Synth2 with 2K and 4K sequences. These
additional models estimate the projected benefit of SPRINT
architecture for longer input sequences.
Model fine-tuning for target benchmarks. For the baseline,
we use pre-trained models from HuggingFace [148] and
fine-tune them on each task with the reported hyperparame-
ters [39, 71, 82]. We only alter batch size due to our limited
GPU memory. Nonetheless, even with reduced batch size, the
final accuracy after fine-tuning does not change discernibly.
Following the described methodology [90], we implement
differentiable soft thresholding into the studied transformer
models. We identify the optimal pruning threshold per
attention layer as part of the task-specific fine-tuning process.
We use identical hyperparameters for training, except for the
learning rate and the number of epochs. The search space
for the model learning rate is {2e−3, 2e−4, 2e−5}, whereas
the search space of {2e−5, 2e−6} is used for the learned
threshold. The number of epochs varies from one to three
depending on the target tasks. We conduct our experiments
with PyTorch v1.10 [106] on an Nvidia RTX 3090 GPU,
except for GPT-2-L, for whcih we use an Nvidia A100 GPU.

The resulting pruning rates for BERT-B, BERT-L, ALBERT-
XL, ALBERT-XXL, ViT-B, and GPT-2-L are 74.6%, 75.5%,
65.1%, 73.1%, 64.4%, and 73.9%, respectively. For Synth1
and Synth2, we set a pruning rate of 75% and a padding
ratio of 50%. The estimated main memory access when
switching to new query vector for Synth1 and Synth2 are
obtained by scaling up the numbers from BERT-B based on

Table I: Hardware configurations of SPRINT.

Modules Configurations for S-SPRINT / M-SPRINT / L-SPRINT

ReRAM BW 16×64-bit channels @ 1 GHz per CORELET
ReRAM Array 256 × 128 standard bitcell, 64 × 128 transposable array with 4-b MLC
On-Chip Cache 16/32/64KB in total of K/V buffers (= 8/16/32 banks), 128-b port per bank
QK-PU / V-PU 1/2/4 EA of 1-D 64 (=D) way 8×8-b MAC array
Softmax 1/2/4 EA of 12-b input, 8-b output, 2EA of 64B LUTs, 2EA of dividers
Query Buffer 64B / 128B / 256B
Index Buffer 0.5KB / 1KB / 2KB

Table II: Energy consumption of major microarchitectural units of SPRINT.

Microarchitecture Units Energy
QK-PU/V-PU Dot-Product 192.56 (pJ); 8 bits, 64-tap
Key/Value Buffer 256 (pJ); 4 banks with 128-bit access per bank
Softmax 89.8 (pJ); 2 LUT accesses + multiply + division
Analog Comparator 5.34 (pJ); 128 Columns
In-Memory Computation 833.6 (pJ); 64 Rows×128 Columns
ReRAM Access Write: 12492.8 (pJ), Read: 1587.2 (pJ); 512 bits

the sequence length difference.
SPRINT hardware simulations. Table I lists the design
parameters of SPRINT for three studied configurations: (1)
S-SPRINT: a CORELET with 16KB, (2) M-SPRINT: two
CORELETs with 32KB, and (3) L-SPRINT: four CORELETs
with 64KB total on-chip buffer capacity. We use Cadence
Genus 19.1 [19] for the logic synthesis and Cadence
Innovus 19.1 [20] for the placement/routing (PnR) of digital
blocks with a 65 nm TSMC general-purpose standard cell
library. We generate the digital blocks to meet the target
frequency of 1 GHz from the post-layout simulations. For
SRAM on-chip memories, we use ARM Memory Compiler
with High density 65 nm single-port SRAM (version r0p0)
[13] to measure its energy consumption. ReRAM crossbar
in-memory operation consumes 0.10 pJ / MAC in 65 nm
including the digital-to-analog conversion (DAC) [21]. The
standard ReRAM read/write operations consume 3.1 pJ/bit
and 24.4 pJ/bit, respectively [51]8. Each analog comparator
consumes 41 fJ [89]. A recent study of ReRAM in-memory
computing [60] has shown that 64-tap in-memory dot-
product delivers 5-bit equivalent output accuracy. To emulate
the limited accuracy of the in-memory thresholding, we use
an identical error specification in Section III-A with b=5.
SPRINT performance simulator. We collect the numbers of
in-memory dot-product operations and analog comparisons,
read accesses to ReRAM, on-chip q × KT for unpruned
elements, accesses to LUTs, and division operations for
Softmax. In addition, we compile the numbers of additions
and multiplications to calculate the weighted sum of v vectors.
For the numbers of read accesses to ReRAM, the simulator
properly accounts for the spatial locality between adjacent
queries and limited on-chip memory capacity. Finally, be-
cause the majority of these statistics are input-dependent,
we average these numbers across the entire input dataset

8Compared to NVSim [38] with a similar configuration, we use a more
conservative model with 1.6× and 7.2× higher read delay and energy,
respectively, to accommodate for additional ReRAM overheads.

10

for each model. For energy consumption, we multiply the
average number of operations across the self-attention layers
by their corresponding energy consumption from post-layout
simulation along with the reported access energy for ReRAM,
as listed in Table II. For latency and throughout estimation,
we calculate the delay of self-attention layers while taking
into account the in-memory thresholding compute delay
along with the communication delay between ReRAM arrays
and CORELETs. We also implement token interleaving (See
Section VI), which distributes tokens across the entire input
dataset to CORELETs. Such interleaving better leverages
the spatial localities between k vectors and minimizes the
imbalance factor. We report the delay of each self-attention
layer as the worst-case delay across the N CORELETs.
Baseline architecture. We employ the same configuration
of S-SPRINT, M-SPRINT, and L-SPRINT, but without the
in-memory pruning, proposed memory controller, and two-
dimensional computing reduction for the padded sequences.
We compare SPRINT and the baseline at iso-setups including
the same frequency, the number of processing elements,
on-chip memory capacity, and bit widths for all the input
and output of digital logic blocks.
Comparison to prior systems. A3 [54], SpAtten [144],
and LeOPArd [90] also support the run-timing pruning
to minimize the required computation. A3 is a prior state
of the art on using approximation to accelerate attention
mechanism. A3 thresholds after processing a limited number
of k vectors from the sorted queue in a magnitude order
to minimize the run-timing pruning overhead. Nonetheless,
A3 does not consider the data movement cost from the
main memory assuming enough on-chip memory capacity.
LeOPArd performs the gradient-based training to co-optimize
the model accuracy and pruning rate by tuning the pruning
threshold automatically during the training instead of
empirical methods. Again, LeOPArd does not consider the
cost from main memory access. SpAtten proposed a cascaded
pruning to exclude the redundant heads and tokens from all
the subsequent layers once those are pruned in the previous
layer. SpAtten reduces the DRAM access cost for GPT-2, but
not for other models assuming enough on-chip capacity.

A. Accuracy and Performance
Impacts on model accuracy from in-memory pruning.
Figure 9 depicts the model accuracy of the various models
under four different scenarios: (1) baseline (software-
only) [148], (2) with runtime pruning, (3) SPRINT without
on-chip recompute, and (4) SPRINT that includes both in-
memory thresholding and on-chip recompute. On average, the
absolute accuracy difference (excluding GPT-2-L) for runtime
pruning (second bar) and SPRINT (fourth bar) is 0.22% with
maximum degradation of 0.24% in ALBERT-XL. Compared to
runtime pruning, SPRINT improves ViT-B accuracy by 0.5%.
Figure 9 also ablates the impact of on-chip recompute (third
bar) on accuracy. On average, the accuracy degradation of

Table 1

Benchmark Baseline
Runtime
Pruning

SPRINT w/o
Recompute SPRINT

BERT-B 0.80198 0.7994 0.7758751183 0.7987701041
BERT-L 0.8351 0.833 0.81447 0.8338694418
ALBERT-XL 0.857142857 0.85146 0.80917 0.8491012299
ALBERT-XXL 0.873509934 0.8728 0.7922043519 0.870577105
ViT-B 0.9873 0.9797 0.9445 0.9847
GPT-2-L 17.55 17.48 23.3682 17.65

70.0%
75.0%
80.0%
85.0%
90.0%
95.0%

100.0%

Baseline Runtime Pruning
SPRINT w/o Recompute SPRINT

Ta
sk

 A
cc

ur
ac

y

BERT-B

BERT-L

ALBERT-XL

ALBERT-XXL

10.0
12.5
15.0
17.5
20.0
22.5
25.0

Pe
rp

le
xi

ty

ViT-B
GPT-2-L

Figure 9: Comparison of task accuracy between baseline and different
SPRINT configurations. Second and third bars show task accuracy with
runtime pruning and SPRINT w/o on-chip recompute. Fourth bar depicts
SPRINT accuracy after including on-chip recompute. GPT-2-L accuracy is
measured as a perplexity metric (lower is better).

SPRINT without on-chip recompute is ≈4% (5.71 perplexity
gap in GPT-2-L). On average, compared to the baseline
models (first bar), accuracy degradation of SPRINT is merely
0.36%and separately, the perplexity of GPT-2-L increases by
0.10. These results underscore the importance of on-chip
recompute in preserving the baseline model accuracy.
Main memory data movement analysis. Figure 10 shows
the reduction in the total amount of data movement from
the main memory to the processor (compared to S-Baseline)
during processing a single self-attention head. We illustrate
the data movement reduction in two configurations: (1) “Mask
Only” 7→ sequence reduction for the padded area and (2)
“SPRINT” 7→ run-timing pruning on top of the sequence
reduction of the padded area. We normalize the results
to S-Baseline, in which neither of these optimizations are
employed. The data reduction is higher with L-SPRINT due
to the large on-chip buffer whereas S-SPRINT requires more
data movement. Across the 48 studied configurations, our pro-
posed system yields, on average, 94.9%, 98.5%, and 98.9% in
S-SPRINT, M-SPRINT and L-SPRINT, respectively. The
benefit varies across workloads due to their different pruning
rate and the portion of padded area. For instance, BERT-B has
higher data movement reduction due to its 46% padded area
and 74.6% pruning rate compared to ViT with 64.3% pruning
rate and no padded area. The mask only scenario has the mod-
est data movement reduction of 65.2%, 84.5%, and 92.2% in
S-SPRINT, M-SPRINT, and L-SPRINT, respectively. The only
exception is observed in ViT-B due to the lack of zero padding.
Specifically, ViT-B is an exception because M-SPRINT has
already sufficient memory capacity to store entire (197)
sequence length. The gap among S-, M-, L-SPRINT configu-
rations is the narrowest in Synth1 and Synth2, where the input
sequence length is significantly larger. Thus, even L-SPRINT
model can accommodate only highly limited fraction of the
entire sequence length, e.g. 12.5% in Synth2. For the same rea-
son, the data movement reduction is less significant in Synth
models compared to others as those cannot contain enough
number of correlated tokens in their scarce on-chip memory.

11

50.0%
60.0%
70.0%
80.0%
90.0%

100.0%
S-SPRINT M-SPRINT L-SPRINT

Table 1-1

Number of
CORELETs Benchmark Benchmark S-SPRINT M-SPRINT L-SPRINT S-SPRINT M-SPRINT L-SPRINT S-SPRINT M-SPRINT L-SPRINT

2 Mask Only BERT-B 29.8772585 15.26059936 0.6000463406 0.298772585 0.1526059936 0.006000463406 0.701227415 0.8473940064 0.993999536594
2 SPRINT BERT-B 1.654319405 0.8658630841 0.6000463406 0.01654319405 0.0086586308410.0060004634060.98345680595 0.9913413691590.993999536594
2 Mask Only BERT-L 24.99436419 12.80639941 0.5818341356 0.2499436419 0.1280639941 0.005818341356 0.7500563581 0.8719360059 0.994181658644
4 SPRINT BERT-L 1.129992642 0.6675270373 0.5818341356 0.01129992642 0.0066752703730.0058183413560.98870007358 0.9933247296270.994181658644
4 Mask Only ALBERT-XL 23.61605049 12.11348412 0.5763755075 0.2361605049 0.1211348412 0.005763755075 0.7638394951 0.8788651588 0.994236244925
4 SPRINT ALBERT-XL 1.32357057 0.691154811 0.5763755075 0.0132357057 0.00691154811 0.005763755075 0.9867642943 0.99308845189 0.994236244925
4 Mask Only ALBERT-XXL 23.61605049 12.11348412 0.5763755075 0.2361605049 0.1211348412 0.005763755075 0.7638394951 0.8788651588 0.994236244925
4 SPRINT ALBERT-XXL 1.32357057 0.691154811 0.5763755075 0.0132357057 0.00691154811 0.005763755075 0.9867642943 0.99308845189 0.994236244925
4 Mask Only ViT-B 101.006013 2.885391446 2.885391446 1.01006013 0.02885391446 0.02885391446 0 0.97114608554 0.97114608554
8 SPRINT ViT-B 26.91338256 2.885391446 2.885391446 0.2691338256 0.02885391446 0.02885391446 0.7308661744 0.97114608554 0.97114608554
8 Mask Only GPT-2-L 25.05831405 21.50244391 14.39070363 0.2505831405 0.2150244391 0.1439070363 0.7494168595 0.7849755609 0.8560929637
8 SPRINT GPT-2-L 2.009391825 1.351477991 0.6288984889 0.02009391825 0.01351477991 0.0062889848890.97990608175 0.98648522009 0.993711015111
8 Mask Only Synth-1 25.01545369 23.35296223 20.02797931 0.2501545369 0.2335296223 0.2002797931 0.7498454631 0.7664703777 0.7997202069
8 SPRINT Synth-1 2.910228064 2.063896064 1.31115637 0.02910228064 0.02063896064 0.0131115637 0.97089771936 0.97936103936 0.9868884363
8 Mask Only Synth-2 25.00688928 24.20143454 22.59052508 0.2500688928 0.2420143454 0.2259052508 0.7499311072 0.7579856546 0.7740947492

16 SPRINT Synth-2 3.42438011 2.803003882 1.982157905 0.0342438011 0.02803003882 0.01982157905 0.9657561989 0.97196996118 0.98017842095

Mask Only

D
at

a
M

ov
em

en
t

Mask + Pruning

Table 1-1-1

Benchmark Benchmark Mask Only SPRINT Mask Only SPRINT
BERT-B S-SPRINT 29.8772585 1.654319405 0.701227415 0.98345680595
BERT-B M-SPRINT 15.26059936 0.8658630841 0.8473940064 0.991341369159
BERT-B L-SPRINT 0.6000463406 0.6000463406 0.9939995365940.993999536594
BERT-L S-SPRINT 24.99436419 1.129992642 0.7500563581 0.98870007358
BERT-L M-SPRINT 12.80639941 0.6675270373 0.8719360059 0.993324729627
BERT-L L-SPRINT 0.5818341356 0.5818341356 0.9941816586440.994181658644
ALBERT-XL S-SPRINT 23.61605049 1.599262013 0.7638394951 0.98400737987
ALBERT-XL M-SPRINT 12.11348412 0.8245551087 0.8788651588 0.991754448913
ALBERT-XL L-SPRINT 0.5763755075 0.5763755075 0.9942362449250.994236244925
ALBERT-XXL S-SPRINT 23.61605049 1.32357057 0.7638394951 0.9867642943
ALBERT-XXL M-SPRINT 12.11348412 0.691154811 0.8788651588 0.99308845189
ALBERT-XXL L-SPRINT 0.5763755075 0.5763755075 0.9942362449250.994236244925
ViT-B S-SPRINT 101.006013 26.91338256 -0.01006013 0.7308661744
ViT-B M-SPRINT 2.885391446 2.885391446 0.97114608554 0.97114608554
ViT-B L-SPRINT 2.885391446 2.885391446 0.97114608554 0.97114608554
GPT-2-L S-SPRINT 25.05831405 2.009391825 0.7494168595 0.97990608175
GPT-2-L M-SPRINT 21.50244391 1.351477991 0.7849755609 0.98648522009
GPT-2-L L-SPRINT 14.39070363 0.6288984889 0.8560929637 0.993711015111
Synth-1 S-SPRINT 25.01545369 2.910228064 0.7498454631 0.97089771936
Synth-1 M-SPRINT 23.35296223 2.063896064 0.7664703777 0.97936103936
Synth-1 L-SPRINT 20.02797931 1.31115637 0.7997202069 0.9868884363
Synth-2 S-SPRINT 25.00688928 3.42438011 0.7499311072 0.9657561989
Synth-2 M-SPRINT 24.20143454 2.803003882 0.7579856546 0.97196996118
Synth-2 L-SPRINT 22.59052508 1.982157905 0.7740947492 0.98017842095
Average S 0.6522620078875 0.65226200788750.94879434101375
Average M 0.84470475108 0.984808913219875
Average L 0.92221346130350.988572205373625

Table 2

S-SPRINT M-SPRINT L-SPRINT

0.701227415 0.8473940064 0.993999536594

0.98345680595 0.991341369159 0.993999536594

0.7500563581 0.8719360059 0.994181658644

0.98870007358 0.993324729627 0.994181658644

0.7638394951 0.8788651588 0.994236244925

0.9867642943 0.99308845189 0.994236244925

0.7638394951 0.8788651588 0.994236244925

0.9867642943 0.99308845189 0.994236244925

0 0.97114608554 0.97114608554

0.7308661744 0.97114608554 0.97114608554

0.7494168595 0.7849755609 0.8560929637

0.97990608175 0.98648522009 0.993711015111

0.7498454631 0.7664703777 0.7997202069

0.97089771936 0.97936103936 0.9868884363

0.7499311072 0.7579856546 0.7740947492

0.9657561989 0.97196996118 0.98017842095

50.0%
60.0%
70.0%
80.0%
90.0%

100.0%
Mask Only SPRINT

D
at

a
M

ov
em

en
t

R
ed

uc
tio

n

S-SPR
IN

T

M
-SPR

IN
T

L-SPR
IN

T

BERT-B

S-SPR
IN

T

M
-SPR

IN
T

L-SPR
IN

T

BERT-L

S-SPR
IN

T

M
-SPR

IN
T

L-SPR
IN

T

ALBERT-XL

S-SPR
IN

T

M
-SPR

IN
T

L-SPR
IN

T

ALBERT-XXL

S-SPR
IN

T

M
-SPR

IN
T

L-SPR
IN

T

ViT-B

S-SPR
IN

T

M
-SPR

IN
T

L-SPR
IN

T

GPT-2-L
S-SPR

IN
T

M
-SPR

IN
T

L-SPR
IN

T

Synth-1

S-SPR
IN

T

M
-SPR

IN
T

L-SPR
IN

T

Synth-2

S-SPR
IN

T

M
-SPR

IN
T

L-SPR
IN

T

Average

~0
%

Figure 10: Total data movement reduction from main memory normalized to that of S-Baseline configuration in two scenarios: (1) “mask only” 7→ with
sequence reduction for the padded area and (2) “SPRINT” 7→with run-time pruning on top of the sequence reduction.

Table 1

Number of
CORELETs Benchmark Benchmark Value

2 Sequential BERT-B 1.210618315 1.0279 1.489157441 1.0735 1.977029361 1.226597905 2.563716004 1.471433878
2 Sequential ViT-B 1.058900149 1.0226 1.217332488 1.0291 1.354415615 1.12523067 1.607852645 1.248478532
2 Sequential GPT-2-L 1.099311532 1.032 1.178709955 1.078 1.659205028 1.129734159 1.985161445 1.263920426
2 Interleaving BERT-B
2 Interleaving ViT-B
2 Interleaving GPT-2-L
4 Sequential BERT-B
4 Sequential ViT-B 1.210618315 1.058900149 1.099311532
4 Sequential GPT-2-L 1.0279 1.0226 1.032
4 Interleaving BERT-B 1.489157441 1.217332488 1.178709955
4 Interleaving ViT-B 1.0735 1.0291 1.078
4 Interleaving GPT-2-L 1.977029361 1.354415615 1.659205028
8 Sequential BERT-B 1.226597905 1.12523067 1.129734159
8 Sequential ViT-B 2.563716004 1.607852645 1.985161445
8 Sequential GPT-2-L 1.471433878 1.248478532 1.263920426
8 Interleaving BERT-B
8 Interleaving ViT-B
8 Interleaving GPT-2-L

16 Sequential BERT-B
16 Sequential ViT-B
16 Sequential GPT-2-L
16 Interleaving BERT-B
16 Interleaving ViT-B
16 Interleaving GPT-2-L

0.0
2.0
4.0
6.0
8.0

10.0
12.0

S-SPRINT M-SPRINT L-SPRINT

C
O

R
EL

ET
 Im

ba
la

nc
e

BERT-B

BERT-L

ALBERT-XL

ALBERT-XXL

ViT-B

Table 1-1

Number of
CORELETs Benchmark Benchmark S-SPRINT M-SPRINT L-SPRINT

2 Mask Only BERT-B 8.981299683 8.859918796 8.642513167
2 Mask Only BERT-L 10.38115259 10.08564324 9.559072363
4 Mask Only ALBERT-XL 7.496720185 7.378661599 7.151994071
4 Mask Only ALBERT-XXL 9.215329124 8.996709093 8.606022716
4 Mask Only ViT-B 2.794088131 2.763414233 2.715079323
8 Mask Only GPT-2-L 8.579807289 8.448018205 8.158812561
8 Mask Only Synth-1 8 7.891881227 7.698229407
8 Mask Only Synth-2 8 7.891881227 7.698229407

7.49 7.36 7.13

BERT-B

Sp
ee

du
p

BERT-L

ALBERT-XL

ALBERT-XXL

ViT-B
GPT-2-L

Synth-1

Synth-2

Geomean

7.
49

×
7.

36
×

7.
13

×

×
×
×
×
×
×
×

Figure 11: Speedup comparison to a baseline design for self-attention layers.

Table 1

Number of
CORELETs Benchmark Benchmark Value

2 Sequential BERT-B 1.210618315 1.0279 1.489157441 1.0735 1.977029361 1.226597905 2.563716004 1.471433878
2 Sequential ViT-B 1.058900149 1.0226 1.217332488 1.0291 1.354415615 1.12523067 1.607852645 1.248478532
2 Sequential GPT-2-L 1.099311532 1.032 1.178709955 1.078 1.659205028 1.129734159 1.985161445 1.263920426
2 Interleaving BERT-B
2 Interleaving ViT-B
2 Interleaving GPT-2-L
4 Sequential BERT-B
4 Sequential ViT-B 1.210618315 1.058900149 1.099311532
4 Sequential GPT-2-L 1.0279 1.0226 1.032
4 Interleaving BERT-B 1.489157441 1.217332488 1.178709955
4 Interleaving ViT-B 1.0735 1.0291 1.078
4 Interleaving GPT-2-L 1.977029361 1.354415615 1.659205028
8 Sequential BERT-B 1.226597905 1.12523067 1.129734159
8 Sequential ViT-B 2.563716004 1.607852645 1.985161445
8 Sequential GPT-2-L 1.471433878 1.248478532 1.263920426
8 Interleaving BERT-B
8 Interleaving ViT-B
8 Interleaving GPT-2-L

16 Sequential BERT-B
16 Sequential ViT-B
16 Sequential GPT-2-L
16 Interleaving BERT-B
16 Interleaving ViT-B
16 Interleaving GPT-2-L

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

S-SPRINT M-SPRINT L-SPRINT

C
O

R
EL

ET
 Im

ba
la

nc
e

BERT-B

BERT-L

ALBERT-XL

ALBERT-XXL

ViT-B

Table 1-1

Number of
CORELETs Benchmark Benchmark S-SPRINT M-SPRINT L-SPRINT

2 Mask Only BERT-B 22.92261811 17.18975111 8.550834675
2 Mask Only BERT-L 28.45670148 20.53770069 9.906223948
4 Mask Only ALBERT-XL 23.46840174 17.61410815 8.742657066
4 Mask Only ALBERT-XXL 26.771474 19.89529955 9.650950312
4 Mask Only ViT-B 2.752203995 2.06312562 2.06312562
8 Mask Only GPT-2-L 30.13191436 31.63229887 29.74238853
8 Mask Only Synth-1 25.9981281 29.72378218 32.41422488
8 Mask Only Synth-2 24.21086491 26.74690266 30.78519801

19.56 16.82 12.03

BERT-B

En
er

gy
 R

ed
uc

tio
n

BERT-L

ALBERT-XL

ALBERT-XXL

ViT-B
GPT-2-L

Synth-1

Synth-2

Geomean

19
.5

6×
16

.8
2×

12
.0

3×

×
×
×
×
×
×
×
×

Figure 12: Total energy reduction compared to a baseline design for
self-attention layers.

Performance and energy comparison. Figure 11 compares
the SPRINT speedup over the baseline design across all the
24 studied task. On average, S-, M-, and L-SPRINT achieve
7.5×, 7.4×, and 7.1×speedup, respectively. These speedups
are attributed to skipping the majority of computing cycles
due to the in-memory run-time pruning. From the ablation
study, the limited speedup of 1.8×, 1.7×, and 1.7× is
achieved on average from the run-time pruning without
the in-memory computing support. This is because all
the Q × KT must initially be computed in the on-chip
accelerator so the ×V processing can be pruned. The

speedup benefit diminishes in L-SPRINT slightly (<5%
compared to S-SPRINT) because the workload utilization is
not appropriately balanced across CORELETs (See Figure 8)
even after k vector distribution. BERT-L enjoys the maximum
benefits with 9.6 - 10.4× speedup while ViT-B has minimum
improvement of 2.7 - 2.8×. This is because of the different
pruning rates and portion of padded area in those models.

Figure 12 shows the energy reductions achieved by
SPRINT, including on-chip accelerator and ReRAM-based
main memory, compared to the Baseline for the three
configurations. We observe an energy reductions of 19.6× for
S-SPRINT, 16.8× for M-SPRINT, and 12.0× for L-SPRINT.
The S-SPRINT achieves the largest energy reduction because
the proportion of main memory access out of the total energy
is significantly higher than the other configurations. We
attribute this higher main memory accesses to the highly
constrained memory capacity and frequent memory accesses.
This leads to more improvement by the proposed technique
which reduces the data movement effectively. On the other
hand, Synth1 and Synth2 show the exception in this trend
because even L-SPRINT can contain only very few fraction
of the entire sequence, e.g. 12.5% in Synth2 vs. 100% in
BERT-B. In such a regime, where the memory capacity is
significantly limited, the larger memory provides more room
to fetch the correlated data together increasing the chance
of data re-use. Therefore, L-SPRINT achieves more energy
benefit compared to S- and M-SPRINT in Synth models. The
energy benefit is greater in Synth1 and Synth2 models than the
other cases as those require more frequent data access due to
their large sequence length so that the benefit by SPRINT is
magnified. In contrast, ViT-B shows the minimum benefit due
to its small sequence length, and thus infrequent data access.
Energy consumption breakdown. Figure 13a details the
energy breakdown of M-SPRINT with pruning-only (second
bar) and with pruning+in-ReRAM thresholding (third bar).
The energy breakdown includes: (1) ReRAM read/write, (2)
in-ReRAM pruning, (3) on-chip K/V buffers read/write, and
(4) computations in QK-PU, Softmax, and V-PU. On average,
in baseline (first bar) 47.8% of the energy consumption

12

Energy Breakdown
Pla$orm Memory

Read
Memory

Write
In-

Memeor
y

Pruning

On-Chip
Read

On-Chip
Write

Qk-PU V-PU Softmax ratio

Baseline BERT-B 46.059851494.185614506 0 21.957322 7.4290083048.2580115718.2580115713.852180564100.000000006
Pruning
Only

BERT-B
23.425113934.185614506 0 11.644723963.7782392758.2580115710.50100423610.233707444552.02641492261.92210053594449

M-SPRINT BERT-B 0.7903763752.2806798540.051051571191.3321259290.12747024550.50100423610.50100423610.23370744455.8174198913917.1897511049535
Baseline BERT-L 46.059851494.185614506 0 21.957322 7.4290083048.2580115718.2580115713.852180564100.0000000060.0581741989104095
Pruning
Only

BERT-L
23.334595814.185614506 0 11.505320163.7636400018.2580115710.39614643590.184793589651.62812207351.93692886724866

M-SPRINT BERT-L 0.60934014262.0844192140.046658401321.0533183170.098271697750.39614643590.39614643590.18479358964.8690942340720.5377006890277
Baseline ALBERT-XL 46.059851494.185614506 0 21.957322 7.4290083048.2580115718.2580115713.852180564100.0000000060.0486909423377785
Pruning
Only

ALBERT-XL
23.406258624.185614506 0 11.687375833.7751986458.2580115710.53308643470.248673083752.09421869041.91959880616135

M-SPRINT ALBERT-XL 0.75266576252.0255952630.045341664511.4174296560.12138898640.53308643470.53308643470.24867308375.6772672855117.6141081574983
Baseline ALBERT-XXL 46.059851494.185614506 0 21.957322 7.4290083048.2580115718.2580115713.852180564100.0000000060.0567726728516936
Pruning
Only

ALBERT-XXL
23.345378144.185614506 0 11.555204353.7653792128.2580115710.43366870370.202296901351.745553384 1.93253320268714

M-SPRINT ALBERT-XXL 0.6309047962.0255952630.045341664511.1530867070.10175012080.43366870370.43366870370.20229690135.0263128600119.8952995547916
Baseline ViT 2.67087537915.72666143 0 42.109639890.430786351415.8371723815.837172387.387692194100.00000000440.0502631285978884
Pruning
Only

ViT
2.67448431915.72666143 0 28.628755160.431334425715.837172385.6970193962.65753410571.65296121571.39561573321953

M-SPRINT ViT 2.6780932615.80689950.353827414115.147870430.43188249995.6970193965.6970193962.65753410548.470146001 2.0631256196822
Baseline GPT2-L 62.872988480.9649748408 0 13.499101610.140804595.0769277425.0769277422.36827500299.99999999680.48470146002551
Pruning
Only

GPT2-L
31.931983430.7238276088 0 7.1430474045.150318875.0769277420.29598322760.138069658450.46015794081.98176153380495

M-SPRINT GPT2-L 0.99097838070.48268037680.010804493920.786993210.15983314540.29598322760.29598322760.13806965843.1613257204231.6322988646404
Baseline Synth-1 65.660975890.4323307827 0 12.0958120610.590479984.5491593174.5491593172.12208265399.99999999970.0316132572042948
Pruning
Only

Synth-1
33.556423070.8340178272 0 6.4259001585.4123258374.5491593170.28432245730.132630165851.19477883231.95332419204842

M-SPRINT Synth-1 1.4518702630.21616539130.0048387251050.75598825380.23417169280.28432245730.28432245730.13263016583.36430940640529.7237821852292
Baseline Synth-2 66.849072030.2054770872 0 11.4977342810.782108394.3242260014.3242260012.017156214100.00000000320.0336430940629734
Pruning
Only

Synth-2
34.392641870.1541078154 0 6.1081713355.547200084.3242260010.27026412510.126072263450.92268348991.96376139570559

M-SPRINT Synth-2 1.9362117060.10273854360.00229973710.71860839240.31229176850.27026412510.27026412510.12607226343.7387506612 26.7469026594846

0%

25%

50%

75%

100%

ReRAM Read ReRAM Write In-ReRAM Pruning On-Chip Read
On-Chip Write QK-PU V-PU Softmax

TE
TR

IS

N
or

m
al

iz
ed

 E
ne

rg
y

Br
ea

kd
ow

n

BERT-B BERT-L ALBERT-XL ALBERT-XXL ViT-B GPT-2-L Synth-1 Synth-2

Baseline

Pruning

SPRINT

Baseline

Pruning

SPRINT

Baseline

Pruning

SPRINT

Baseline

Pruning

SPRINT

Baseline

Pruning

SPRINT

Baseline

Pruning

SPRINT

Baseline

Pruning

SPRINT

Baseline

Pruning

SPRINT

1.
92

x
17

.1
8x

1.
94

x

20
.5

4x

1.
92

x

1.
93

x

1.
40

x

2.
00

x

1.
95

x

1.
96

x

17
.6

1x

19
.9

0x

2.
10

x

31
.6

3x

29
.7

2x

26
.7

5x

(a) Baseline vs. Pruning vs. SPRINT

Energy Breakdown
Pla$orm Memory

Read
Memory

Write
In-

Memeor
y

Pruning

On-Chip
Read

On-Chip
Write

Qk-PU V-PU Softmax ratio

M-SPRINT BERT-B 0.7903763752.2806798540.051051571191.3321259290.12747024550.50100423610.50100423610.23370744455.81741989139
M-SPRINT BERT-L 0.60934014262.0844192140.046658401321.0533183170.098271697750.39614643590.39614643590.18479358964.86909423407
M-SPRINT ALBERT-XL 0.75266576252.0255952630.045341664511.4174296560.12138898640.53308643470.53308643470.24867308375.67726728551
M-SPRINT ALBERT-XXL 0.6309047962.0255952630.045341664511.1530867070.10175012080.43366870370.43366870370.20229690135.02631286001
M-SPRINT GPT2-L 0.99097838070.48268037680.010804493920.786993210.15983314540.29598322760.29598322760.13806965843.16132572042
M-SPRINT Synth-1 1.4518702630.21616539130.0048387251050.75598825380.23417169280.28432245730.28432245730.13263016583.364309406405
M-SPRINT Synth-2 1.9362117060.10273854360.00229973710.71860839240.31229176850.27026412510.27026412510.12607226343.7387506612

0%
1%
2%
3%
4%
5%
6%

ReRAM Read ReRAM Write In-ReRAM Pruning On-Chip Read
On-Chip Write QK-PU V-PU Softmax

TE
TR

IS

N
or

m
al

iz
ed

 E
ne

rg
y

Br
ea

kd
ow

n

BERT-B

BERT-L

ALBERT-XL

ALBERT-XXL

GPT-2-L

Synth-1

Synth-2

0%
10%
20%
30%
40%
50%

ViT-B

(b) SPRINT Zoom-In

Figure 13: M-SPRINT’s energy breakdown normalized to baseline for self-
attention layers. (a) The first bar shows the energy breakdown for baseline
(no pruning), whereas the second and the third bars present the energy
breakdown for pruning-only and SPRINT (in-ReRAM pruning), respectively.
(b) Zoomed-in view of normalized energy breakdown for SPRINT.

comes from ReRAM read operations, except ViT-B, whose
input sequence is 2×- 5× shorter compared to other models.

For the pruning-only scenario, SPRINT still needs to fetch
the entire q and k vectors from ReRAM, even though some
are inconsequential, and perform the requisite Q×KT compu-
tations followed by on-chip comparison with threshold values
for the run-time pruning. After that, Softmax and ×V are
processed for the unpruned tokens. Therefore, most benefits in
the pruning-only case originate from reducing the number of
main memory and on-chip memory reads for V and operations
in Softmax and dot-product in V-PU. Across the self-attention
models, we observe around 1.9×- 2.0× energy savings,
except ViT with only 1.4×. We attribute the lower energy
savings in ViT-B to its lower pruning rate (64%), fewer spatial
localities (on average 2.6× less compared to other models),
and lack of masking (See the gray stripes in Figure 2).

With pruning and in-ReRAM threshold (third bar), SPRINT
significantly reduces the number of ReRAM reads as well as
on-chip computations (Q×KT , Softmax, and ×V), mainly
by the virtue of in-ReRAM pruning. In this configuration
(zoomed-in view in Figure 13b), SPRINT only fetches the
elements of K and V matrices (unpruned ones) that certainly
contribute to the computation of final attention values. On
average, SPRINT reduces the overall energy consumption of
self-attention layers by 16.9×. Compared to other models,
ViT-B confers significantly lower energy savings, merely
2.10×, for the same reasons as the pruning-only scenario.

Table III: SPRINT performance comparison with prior work. SPRINT and
LeOPArd use the 65 nm technology node, whereas A3 and SpAtten use the
40 nm version.

Metric (unit) A3 SpAtten LeOPArd M-SPRINT

Sequence Length 50 - 384 384 - 1024 50 - 1024 128 - 4096
Process (nm) 40 40 65 65
Area (mm2) 2.1 1.6 3.5 1.9
Key Buffer (KB) 20 24 48 16
Value Buffer (KB) 20 24 64 16
GOPs / s 518.0 360.0 574.1 1816.2
GOPs / J 4709.1 382.0 519.3 902.7
GOPs / s / mm2 249.0 238.0 165.5 973.5
GOPs / s / J / mm2 2263.6 252.5 119.7 469.7

Mem. Cost Included % " % "

While SPRINT architecture slightly reduces the number of
ReRAM writes by obviating this need for zero-padded areas,
ReRAM writes still have the highest contribution to the
overall energy consumption. The overhead of in-memory
pruning including peripheral circuitry is negligible (only
4%) due to its highly parallel and low-voltage analog
operations. These results substantiate that the in-ReRAM
pruning benefits outweigh its marginal overhead.
Data movement cost analysis. The data movement
described in Figure 7 is categorized (1) bank-to-bank
transfer of Q (1 in Figure 7), and the transfer from the
ReRAM main memory to the on-chip accelerator for (2)
Q 3 , and (3) unpruned K 2 , 4 and V 4 . We include
the contributions of these data movements in the analysis
of Figure 12 and Figure 13. The energy overhead of (1)
is negligible (< 0.04% of the entire energy based on the
post-layout simulations with an activity factor of 0.5) as it is
the intra-chip data transfer. However, on average, (2) takes
<3.7% whereas (3) consumes 31.2%, 20.7%, and 15.5%
of energy for S-/M-/L-SPRINT, respectively.
Comparison with A3, SpAtten, and LeOPArd. Table III
lists the details of prior works and M-SPRINT architecture in
terms of throughput (GOPs / s), energy efficiency (GOPs / J),
and area efficiency (GOPs / s / mm2). For fair comparison,
we also included the area from the in-memory thresholding
[141], which takes only 3% out of total M-SPRINT area. Due
to the absence of reported results in A3, we calculated above
results in Table III given the frequency and power numbers
obtained from [54]. The prior arts considered the scenario of
enough on-chip memory with minimal consideration of the
dram access cost. On the other hand, SPRINT includes all
the costs from the frequent main memory access assuming
the limited on-chip memory scenario by considering > 4×
longer sequences (up to 4096) than prior arts.

Compared to prior work, M-SPRINT yields the best
GOPs / s and GOPs / s / mm2 even including the main
memory access cost due to it’s in-memory pruning. Compared
to A3, M-SPRINT achieves 3.5× and 3.9× improvements
in GOPs / s and GOPs / s / mm2 respectively. However, it

13

achieves 5.2× lower GOPs / J. This is due to two reasons:
(1) the DRAM access read and write costs are not considered
in the results of A3 and (2) the lower process technology (40
nm) in A3. Taking into account the difference in the process
technology node (65 nm vs. 45 nm), GOPs / J of SPRINT in-
crease to 3873.5 with Dennard scaling [37] (1.2× lower than
A3). Moreover, M-SPRINT achieves 3.2× higher GOPs / s
and 5.9× higher GOPs / s / mm2 than LeOPArd. Although
the DRAM access costs are not incorporated in LeOPArd,
M-SPRINT still delivers 1.7× higher GOPs / J. Finally,
M-SPRINT achieves 5.0×, 2.4×, and 4.1× enhancements
in GOPs / s, GOPs / J, and GOPs / s / mm2, respectively,
as compared to SpAtten. The benefits that are gained from
GOPs / s and GOPs / s / mm2 are based on the early stage
in-memory pruning by leveraging the spatial locality.

Table III also compares GOPs / s / J / mm2 between
M-SPRINT and prior work [54, 90, 144]. M-SPRINT yields
1.9× and 3.9× higher GOPs / s / J / mm2 compared to
SpAtten and LeOPArd, respectively. However, M-SPRINT
delivers 4.8× lower GOPs / s / J / mm2 compared to A3,
mainly due to considering DRAM access read and write
costs and lower process technology node. With Dennard
scaling [37], GOPs / s / J / mm2 of SPRINT increase to
8648.5 (3.8× better than A3).
End-to-End comparison including fully-connected net-
works (FFNs). Although SPRINT focuses on accelerating
self-attention layers, the proposed accelerator can be repur-
posed to perform the FFN by exploiting QK/V-PU as two
8-bit input 64-tap dot-product engines. The K/V buffers
store 16KB weights of the FFN to provide 128 8-b weights
per cycle by reusing the weights over many inputs. The
M-SPRINT achieves speed and energy benefits for the end-to-
end execution even in such small benchmarks (BERT-B: 2.2×
/ 1.8×, BERT-L: 2.4× / 2.0× for energy saving / speedup)
by avoiding futile computations for the padded region (see
Section II-C3), effectively reducing the iterations in FFN com-
putations. ViT-B achieves only marginal benefit (1.1× / 1.0×)
due to the lack of padded area. M-SPRINT achieves greater
benefit for larger benchmarks, e.g. 7.7× / 4.7× for Synth2.
SPRINT on-chip accelerator and ReRAM in-memory
Area. Figure 14 shows the S-SPRINT layout in a 65 nm
process which occupies 1.18× 0.8 mm2 including 16KB
on-chip SRAM. The layout estimation of ReRAM in-
memory [141], including 64×128 transposable array and
other peripheral circuitry, is also shown in Figure 14. Due
to the inherent high-density of ReRAM, the area overhead
takes only around 6% in S-SPRINT.

VIII. RELATED WORK

Contrary to the broad spectrum of in-memory
computing [14, 69, 74, 77, 97, 103, 107], SPRINT principally
positions itself as a joint in-memory analog pruning and
on-chip digital recomputation system for attention-based

QK-PU + Q-BUF

K-BUF

V-BUF

Softmax
V-PU

1180um

80
0u
m

estimated
ReRAM
in-memory
dimension

Figure 14: S-SPRINT on-chip accelerator layout with estimated ReRAM
in-memory area overhead [141].

models. This synergistic method yields substantial gains
and curtails the costly on-chip memory requirement. These
gains are maintained while preserving the baseline model
accuracy. We review the relevant literature here.
In-memory computing and specialized memory
controller design. We can broadly categorize in-memory
computing into (1) 3D stacking [3, 4, 92, 108, 164, 166, 169],
(2) exploiting the inherent massive parallelism inside
memory [10, 14, 44, 74, 84, 84, 98, 120–122, 156], and
(3) emerging memory technologies and DRAM modifica-
tions [1, 2, 2, 11, 12, 17, 29, 36, 43, 52, 53, 62, 63, 68, 81, 87,
88, 123, 129, 134, 141, 142, 159]. Similar to this prior work,
SPRINT also exploits the internal structure of memory to
enable a form of in-memory computation. However, our work
distinguishes itself by seamlessly blending lightweight in-
memory analog approximate computing and on-chip precise
recompute. The first phase informs the on-chip accelerator to
only fetch a few relevant key vectors from memory, reducing
the hefty cost of data communication, while the second phase
ensures model accuracy on par with baseline models. SPRINT
also intersects with [5, 6, 18, 22, 47, 57, 58, 86, 114] as
it similarly equips the memory controller with custom
hardware blocks and specialized memory commands to
unlock the full potential of in-memory thresholding.
Machine learning acceleration. There is an abundance of
prior work on accelerators for machine learning [8, 9, 26–
29, 35, 40, 42, 45, 46, 48–50, 54–56, 61, 65, 66, 73, 79,
80, 85, 90, 94, 96, 104, 105, 109, 115, 116, 118, 119, 123–
128, 131, 133, 135, 137, 144, 152–155, 162, 167]. SPRINT
explores a different design point by seamlessly combining
in-memory thresholding and on-chip recomputation to reduce
the costly data communication overhead. In addition, there
is a line of work on software-only techniques that statically
induce sparsity in self-attention [16, 30, 76, 100, 110, 117,
146, 147, 157, 158]. On the other hand, recent work [33,
34, 168] unlocks dynamic sparsity in self-attention models,
yet provoking the entire computation of Q×KT . Finally, a
class of hardware-software methods targets early compute

14

termination [7, 83, 91, 130]. While this work is not closely
related, our contribution of disseminating the computations
between in-memory and on-chip can be employed to perform
in-memory identification of early compute opportunities.

IX. CONCLUSION

Self-attention mechanisms have become integral to
transformer models in multiple applications, ranging from
natural language processing to computer vision. Despite their
benefits, attention mechanisms require extravagant compute
and storage space resources, quadratically proportional
to input sequence length. Recent work has presented the
benefits of runtime pruning in self-attention mechanisms,
albeit overlooked quadratic complexity and on-chip memory
capacity requirements. SPRINT harnesses the inherent
parallelism of ReRAM crossbar arrays to compute the
attention scores in a low-precision format. The resulting
attention scores cross a lightweight analog thresholding
circuitry, which dynamically prunes the inconsequential
scores. Hence, SPRINT fetches only a small subset of relevant
data to on-chip memory. To mitigate the negative repercussion
of approximate ReRAM computations on model accuracy,
SPRINT recomputes the sparse attention scores for the few
fetched data in digital. Furthermore, the paper identified and
exploited a dynamic spatial locality between the adjacent
attention operations even after runtime pruning. This spatial
locality further reduces the redundant data fetches and scales
down the on-chip memory demand. The combined in-memory
pruning and on-chip recomputation of the relevant attention
scores reduce the quadratic complexity of self-attention
mechanism into a merely linear one. The proposed shift in
compute and space complexity yields significant performance
gains as well as enables the acceleration of futuristic models
with significantly larger input sequence length.

ACKNOWLEDGMENT

We would like to extend our gratitude towards Hadi
Esmaeilzadeh, Soroush Ghodrati, Stella Aslibekyan, Suvinay
Subramanian, James Laudon, and extended Google Research,
Brain Team for their invaluable feedback and comments.

REFERENCES

[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw,
and R. Das, “Compute Caches,” in HPCA, 2017.

[2] A. Agrawal, A. Jaiswal, D. Roy, B. Han, G. Srinivasan, A. Ankit,
and K. Roy, “Xcel-RAM: Accelerating Binary Neural Networks in
High-Throughput SRAM Compute Arrays,” IEEE Transactions on
Circuits and Systems I, 2019.

[3] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable
Processing-in-Memory Accelerator for Parallel Graph Processing,”
in ISCA, 2015.

[4] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled Instructions: A
Low-Overhead, Locality-Aware Processing-in-Memory Architecture,”
in ISCA, 2015.

[5] B. Akesson, “An Introduction to SDRAM and Memory Controllers,”

https://www.es.ele.tue.nl/~premadona/files/akesson01.pdf, 2018,
accessed: 2021–04-18.

[6] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: A Predictable
SDRAM Memory Controller,” in CODES+ISSS, 2007.

[7] V. Aklaghi, A. Yazdanbakhsh, K. Samadi, H. Esmaeilzadeh, and
R. K. Gupta, “SnaPEA: Predictive Early Activation for Reducing
Computation in Deep Convolutional Neural Networks,” in ISCA,
2018.

[8] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov,
and A. Moshovos, “Bit-Pragmatic Deep Neural Network Computing,”
in MICRO, 2017.

[9] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural
Network Computing,” in ISCA, 2016.

[10] S. Angizi and D. Fan, “ReDRAM: A Reconfigurable Processing-
In-DRAM Platform for Accelerating Bulk Bit-Wise Operations,” in
ICCAD, 2019.

[11] S. Angizi, Z. He, and D. Fan, “DIMA: A Depthwise CNN
In-Memory Accelerator,” in ICCAD, 2018.

[12] S. Angizi, Z. He, and D. Fan, “ParaPIM: A Parallel Processing-in-
memory Accelerator for Binary-Weight Deep Neural Networks,” in
ASPDAC, 2019.

[13] ARM, “Artisan Memory Compilers,” https://developer.arm.com/ip-
products/physical-ip/embedded-memory, 2021, accessed: 2021-11-08.

[14] B. Asgari, R. Hadidi, J. Cao, D. E. Shim, S.-K. Lim, and
H. Kim, “Fafnir: Accelerating Sparse Gathering by Using Efficient
Near-Memory Intelligent Reduction,” in HPCA, 2021.

[15] H. Aziza, S. Hamdioui, M. Fieback, M. Taouil, M. Moreau, P. Girard,
A. Virazel, and K. Coulié, “Multi-Level Control of Resistive RAM
(RRAM) Using a Write Termination to Achieve 4 Bits/Cell in High
Resistance State,” Electronics, 2021.

[16] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The Long-
Document Transformer,” arXiv preprint arXiv:2004.05150, 2020.

[17] D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay, “ReVAMP:
ReRAM based VLIW Architecture for In-memory Computing,” in
DATE, 2017.

[18] M. N. Bojnordi and E. Ipek, “PARDIS: A Programmable Memory
Controller for the DDRx Interfacing Standards,” in ISCA, 2012.

[19] Cadence, “Genus Synthesis Solution,” https://www.cadence.com/
en_US/home/tools/digital-design-and-signoff/synthesis/genus-
synthesis-solution.html, 2021, accessed: 2021-11-08.

[20] Cadence, “Innovus Implementation System,” https://www.
cadence.com/en_US/home/tools/digital-design-and-signoff/soc-
implementation-and-floorplanning/innovus-implementation-
system.html, 2021, accessed: 2021-11-08.

[21] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang,
M. P. Flynn, and W. Lu, “A Fully Integrated Reprogrammable
Memristor–CMOS System for Efficient Multiply–Accumulate
Operations,” Nature Electronics, pp. 290–299, 2019.

[22] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama, “Impulse: Building a Smarter Memory Controller,” in
HPCA, 1999.

[23] M.-F. Chang, P.-F. Chiu, and S.-S. Sheu, “Circuit Design Challenges
in Embedded Memory and Resistive RAM (RRAM) for Mobile SoC
and 3D-IC,” in ASP-DAC, 2011.

[24] T. Chen, Y. Cheng, Z. Gan, L. Yuan, L. Zhang, and Z. Wang, “Chasing
Sparsity in Vision Transformers: An End-to-End Exploration,” in
NeurIPS, 2021.

[25] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: a small-footprint high-throughput accelerator for
ubiquitous machine-learning,” in ASPLOS, 2014.

[26] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,”
in ISCA, 2016.

[27] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible

15

https://www.es.ele.tue.nl/~premadona/files/akesson01.pdf
https://developer.arm.com/ip-products/physical-ip/embedded-memory
https://developer.arm.com/ip-products/physical-ip/embedded-memory
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html

Accelerator for Emerging Deep Neural Networks on Mobile Devices,”
JETCAS, 2019.

[28] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “DaDianNao: A Machine-Learning
Supercomputer,” in MICRO, 2014.

[29] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A Novel Processing-in-Memory Architecture for Neural Net-
work Computation in ReRAM-based Main Memory,” in ISCA, 2016.

[30] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating
Long Sequences with Sparse Transformers,” arXiv preprint
arXiv:1904.10509, 2019.

[31] C. Choi, “Multi-Stream Write SSD,” Flash Memory Summit, 2016.
[32] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane,

T. Sarlos, P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser, D. Belanger,
L. Colwell, and A. Weller, “Rethinking Attention with Performers,”
arXiv preprint arXiv:2009.14794, 2020.

[33] G. M. Correia, V. Niculae, and A. F. Martins, “Adaptively Sparse
Transformers,” arXiv preprint arXiv:1909.00015, 2019.

[34] B. Cui, Y. Li, M. Chen, and Z. Zhang, “Fine-Tune BERT with
Sparse Self-Attention Mechanism,” in EMNLP-IJCNLP, 2019.

[35] A. Delmas Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud,
S. Sharify, M. Nikolic, K. Siu, and A. Moshovos, “Bit-Tactical: A
Software/Hardware Approach to Exploiting Value and Bit Sparsity
in Neural Networks,” in ASPLOS, 2019.

[36] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “DrAcc: A
DRAM based Accelerator for Accurate CNN Inference,” in DAC,
2018.

[37] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, “Design of Ion-Implanted MOSFET’s with Very
Small Physical Dimensions,” JSSC, 1974.

[38] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-Level
Performance, Energy, and Area Model for Emerging Nonvolatile
Memory,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[39] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale,” in ICLR, 2021.

[40] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das, “Neural Cache: Bit-Serial In-Cache
Acceleration of Deep Neural Networks,” in ISCA, 2018.

[41] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA:
Near-DRAM Acceleration Architecture Leveraging Commodity
DRAM Devices and Standard Memory Modules,” in HPCA, 2015,
pp. 283–295.

[42] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil,
P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt,
A. M. Caulfield, E. S. Chung, and D. Burger, “A Configurable
Cloud-Scale DNN Processor for Real-Time AI,” in ISCA, 2018.

[43] S. Froehlich, S. Shirinzadeh, and R. Drechsler, “Parallel Computing
of Graph-based Functions in ReRAM,” JETC, 2022.

[44] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM:
In-Memory Compute using Off-the-Shelf DRAMs,” in MICRO, 2019.

[45] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
Scalable and Efficient Neural Network Acceleration with 3D
Memory,” in ASPLOS, 2017.

[46] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram:
Optimized Coarse-Grained Dataflow for Scalable NN Accelerators,”
in ASPLOS, 2019.

[47] M. Ghasempour, A. Jaleel, J. D. Garside, and M. Luján, “DReAM:
Dynamic Re-arrangement of Address Mapping to Improve the
Performance of DRAMs,” in MEMSY, 2016.

[48] S. Ghodrati, B. H. Ahn, J. Kyung Kim, S. Kinzer, B. R. Yatham,
N. Alla, H. Sharma, M. Alian, E. Ebrahimi, N. S. Kim, C. Young,
and H. Esmaeilzadeh, “Planaria: Dynamic Architecture Fission for
Spatial Multi-Tenant Acceleration of Deep Neural Networks,” in

MICRO, 2020.
[49] S. Ghodrati, H. Sharma, S. Kinzer, A. Yazdanbakhsh, J. Park,

N. S. Kim, D. Burger, and H. Esmaeilzadeh, “Mixed-Signal
Charge-Domain Acceleration of Deep Neural networks through
Interleaved Bit-Partitioned Arithmetic,” in PACT, 2020.

[50] S. Ghodrati, H. Sharma, C. Young, N. S. Kim, and H. Esmaeilzadeh,
“Bit-Parallel Vector Composability for Neural Acceleration,” in DAC,
2020.

[51] A. Grossi, E. Vianello, M. M. Sabry, M. Barlas, L. Grenouillet,
J. Coignus, E. Beigne, T. Wu, B. Q. Le, M. K. Wootters, C. Zambelli,
E. Nowak, and S. Mitra, “Resistive RAM Endurance: Array-Level
Characterization and Correction Techniques Targeting Deep Learning
Applications,” IEEE Transactions on Electron Devices, vol. 66,
no. 3, pp. 1281–1288, 2019.

[52] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “AC-DIMM:
Associative Computing with STT-MRAM,” in ISCA, 2013.

[53] Y. Halawani, B. Mohammad, M. A. Lebdeh, M. Al-Qutayri, and S. F.
Al-Sarawi, “ReRAM-based In-memory Computing for Search Engine
and Neural Network Applications,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 2019.

[54] T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H.
Park, S. Lee, K. Park, J. W. Lee, and D.-K. Jeong, “A3̂: Accelerating
Attention Mechanisms in Neural Networks with Approximation,” in
HPCA, 2020.

[55] T. J. Ham, Y. Lee, S. H. Seo, S. Kim, H. Choi, S. J. Jung, and J. W.
Lee, “ELSA: Hardware-Software Co-design for Efficient, Lightweight
Self-Attention Mechanism in Neural Networks,” in ISCA, 2021.

[56] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in ISCA, 2016.

[57] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi,
“Simulating DRAM Controllers for Future System Architecture
Exploration,” in ISPASS, 2014.

[58] M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, and
T. Vijaykumar, “Newton: A DRAM-maker’s Accelerator-in-Memory
(AiM) Architecture for Machine Learning,” in MICRO, 2020.

[59] Z. He, J. Lin, R. Ewetz, J.-S. Yuan, and D. Fan, “Noise Injection
Adaption: End-to-end ReRAM Crossbar Mon-Ideal Effect Adaption
for Meural Network Mapping,” in DAC, 2019.

[60] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-product Engine
for Neuromorphic Computing: Programming 1T1M Crossbar to
Accelerate Matrix-Vector Multiplication,” in DAC, 2016.

[61] S. Hussain, M. Javaheripi, P. Neekhara, R. Kastner, and F. Koushanfar,
“FastWave: Accelerating Autoregressive Convolutional Neural
Networks on FPGA,” in ICCAD, 2019.

[62] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-Memory
Acceleration of Deep Neural Network Training with High Precision,”
in ISCA, 2019.

[63] L. Jiang, M. Kim, W. Wen, and D. Wang, “XNOR-POP: A
Processing-In-Memory Architecture for Binary Convolutional Neural
Networks in Wide-IO2 DRAMs,” in ISLPED, 2017.

[64] B. K. Joardar, J. R. Doppa, P. P. Pande, H. Li, and K. Chakrabarty,
“AccuReD: High Accuracy Training of CNNs on ReRAM/GPU
Heterogeneous 3-D Architecture,” IEEE TCAD, 2021.

[65] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,

16

R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in ISCA, 2017.

[66] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-serial Deep Neural Network Computing,”
in MICRO, 2016.

[67] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A
Multi-functional In-memory Inference Processor using a Standard
6T SRAM Array,” IEEE Journal of Solid-State Circuits, 2018.

[68] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz,
“An Energy-Efficient VLSI Architecture for Pattern Recognition via
Deep Embedding of Computation in SRAM,” in ICASSP, 2014.

[69] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “FlexRAM: Toward an Advanced Intelligent
Memory System,” in ICCR, 1999.

[70] S. Kao, S. Subramanian, G. Agrawal, A. Yazdanbakhsh, and
T. Krishna, “FLAT: An Optimized Dataflow for Mitigating Attention
Bottlenecks,” arXiv preprint arXiv:2107.06419, 2021.

[71] J. D. M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,”
in NAACL-HLT, 2019.

[72] B. Kim, J. Chung, E. Lee, W. Jung, S. Lee, J. Choi, J. Park, M. Wi,
S. Lee, and J. H. Ahn, “MViD: Sparse Matrix-Vector Multiplication
in Mobile DRAM for Accelerating Recurrent Neural Networks,”
IEEE Transactions on Computers, 2020.

[73] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A Programmable Digital Neuromorphic Architecture
with High-Density 3D Memory,” in ISCA, 2016.

[74] H. Kim, H. Park, T. Kim, K. Cho, E. Lee, S. Ryu, H.-J. Lee,
K. Choi, and J. Lee, “GradPIM: A Practical Processing-in-DRAM
Architecture for Gradient Descent,” in HPCA, 2021.

[75] S. Kim, S. Shen, D. Thorsley, A. Gholami, J. Hassoun, and
K. Keutzer, “Learned Token Pruning for Transformers,” arXiv
preprint arXiv:2107.00910, 2021.

[76] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The Efficient
Transformer,” arXiv preprint arXiv:2001.04451, 2020.

[77] P. M. Kogge, “EXECUBE-A New Architecture for Scaleable MPPs,”
in ICPP, 1994.

[78] A. Krizhevsky and G. Hinton, “Learning Multiple Layers of Features
from Tiny Images,” Computer Science Department, University of
Toronto, Tech. Rep, 2009.

[79] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and
T. Krishna, “Understanding Reuse, Performance, and Hardware Cost
of DNN Dataflow: A Data-Centric Approach,” in MICRO, 2019.

[80] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects,” in ASPLOS, 2018.

[81] Y. Kwon, Y. Lee, and M. Rhu, “TensorDIMM: A Practical
Near-Memory Processing Architecture for Embeddings and Tensor
Operations in Deep Learning,” in MICRO, 2019.

[82] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations,” in ICLR, 2019.

[83] D. Lee, S. Kang, and K. Choi, “ComPEND: Computation Pruning
through Early Negative Detection for ReLU in a deep neural network
accelerator,” in ICS, 2018.

[84] J. Lee, J. H. Ahn, and K. Choi, “Buffered Compares: Excavating the
Hidden Parallelism Inside DRAM Architectures with Lightweight
Logic,” in DATE, 2016.

[85] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
A 50.6 TOPS/W Unified Deep Neural Network Accelerator with
1b-to-16b Fully-Variable Weight Bit-Precision,” in ISSCC, 2018.

[86] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang, K. Sohn,
and N. S. Kim, “Hardware Architecture and Software Stack for PIM
Based on Commercial DRAM Technology: Industrial Product,” in
ISCA, 2021.

[87] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,
“DRISA: A DRAM-based Reconfigurable In-Situ Accelerator,” in
MICRO, 2017.

[88] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
Processing-in-Memory Architecture for Bulk Bitwise Operations in
Emerging Non-Volatile Memories,” in DAC, 2016.

[89] W. Li, P. Xu, Y. Zhao, H. Li, Y. Xie, and Y. Lin, “TIMELY: Pushing
Data Movements and Interfaces in PIM Accelerators towards Local
and in Time Domain,” in ISCA, 2020.

[90] Z. Li, S. Ghodrati, A. Yazdanbakhsh, H. Esmaeilzadeh, and M. Kang,
“Accelerating Attention through Gradient-Based Learned Runtime
Pruning,” in ISCA, 2022.

[91] Y. Lin, C. Sakr, Y. Kim, and N. Shanbhag, “PredictiveNet: An
Energy-Efficient Convolutional Neural Network via Zero Prediction,”
in ISCAS, 2017.

[92] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-
in-Memory for Energy-Efficient Neural Network Training: A
Heterogeneous Approach,” in MICRO, 2018.

[93] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser,
and N. Shazeer, “Generating Wikipedia by Summarizing Long
Sequences,” arXiv preprint arXiv:1801.10198, 2018.

[94] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An Instruction Set Architecture for Neural Networks,”
in ISCA, 2016.

[95] Q. Lou, W. Wen, and L. Jiang, “3DICT: A Reliable and QoS
Capable Mobile Process-in-Memory Architecture for Lookup-Based
CNNs in 3D XPoint ReRAMs,” in ICCAD, 2018.

[96] L. Lu, Y. Jin, H. Bi, Z. Luo, P. Li, T. Wang, and Y. Liang, “Sanger:
A Co-Design Framework for Enabling Sparse Attention using
Reconfigurable Architecture,” in MICRO, 2021.

[97] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
“Smart Memories: A Modular Reconfigurable Architecture,” in ISCA,
2000.

[98] H. Mao, M. Song, T. Li, Y. Dai, and J. Shu, “LerGAN: A Zero-free,
Low Data Movement and PIM-based GAN Architecture,” in MICRO,
2018.

[99] S. Merity, “The WikiText Long Term Dependency Language
Modeling Dataset,” https://blog.salesforceairesearch.com/the-
wikitext-long-term-dependency-language-modeling-dataset/, 2021,
accessed: 2021-11-08.

[100] P. Michel, O. Levy, and G. Neubig, “Are Sixteen Heads Really
Better than One?” arXiv preprint arXiv:1905.10650, 2019.

[101] S. Mittal, “A Survey of ReRAM-based Architectures for Processing-
In-Memory and Neural Networks,” Machine learning and knowledge
extraction, 2018.

[102] D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, “Design
Trade-Offs for High Density Cross-Point Resistive Memory,” in
ISLPED, 2012.

[103] A. Nowatzyk, F. Pong, and A. Saulsbury, “Missing the Memory
Wall: The Case for Processor/Memory Integration,” in ISCA, 1996.

[104] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
Accelerator for Compressed-sparse Convolutional Neural Networks,”
in ISCA, 2017.

[105] J. Park, H. Yoon, D. Ahn, J. Choi, and J.-J. Kim, “OPTIMUS:
OPTImized matrix MUltiplication Structure for Transformer neural
network accelerator,” in MLSys, 2020.

[106] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative
Style, High-Performance Deep Learning Library,” in NeurIPS, 2019.

[107] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A Case for Intelligent
RAM,” IEEE Micro, 1997.

[108] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the

17

https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/
https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/

Impact of 3D-Stacked Memory+Logic Devices on MapReduce
Workloads,” in ISPASS, 2014.

[109] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “SIGMA: A Sparse and Irregular GEMM
Accelerator with Flexible Interconnects for DNN Training,” in
HPCA, 2020.

[110] J. Qiu, H. Ma, O. Levy, S. W.-t. Yih, S. Wang, and J. Tang,
“Blockwise Self-Attention for Long Document Understanding,” arXiv
preprint arXiv:1911.02972, 2019.

[111] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language Models are Unsupervised Multitask Learners,” OpenAI
blog, 2019.

[112] J. W. Rae, A. Potapenko, S. M. Jayakumar, and T. P. Lillicrap,
“Compressive transformers for long-range sequence modelling,”
arXiv preprint arXiv:1911.05507, 2019.

[113] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQUAD: 100,000+
Questions for Machine Comprehension of Text,” arXiv preprint
arXiv:1606.05250, 2016.

[114] M. Ramezani, N. Elyasi, M. Arjomand, M. T. Kandemir, and
A. Sivasubramaniam, “Exploring the Impact of Memory Block
Permutation on Performance of a Crossbar ReRAM Main Memory,”
in IISWC, 2017, pp. 167–176.

[115] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva:
Enabling Low-Power, Highly-Accurate Deep Neural Network
Accelerators,” in ISCA, 2016.

[116] B. D. Rouhani, M. Samragh, M. Javaheripi, T. Javidi, and
F. Koushanfar, “DeepFense: Online Accelerated Defense against
Adversarial Deep Learning,” in ICCAD, 2018.

[117] A. Roy, M. Saffar, A. Vaswani, and D. Grangier, “Efficient Content-
based Sparse Attention with Routing Transformers,” Transactions
of the Association for Computational Linguistics, 2021.

[118] S. Ryu, H. Kim, W. Yi, and J.-J. Kim, “BitBlade: Area and
Energy-Efficient Precision-Scalable Neural Network Accelerator
with Bitwise Summation,” in DAC, 2019.

[119] M. Samragh, M. Javaheripi, and F. Koushanfar, “EncoDeep: Realizing
Bit-Flexible Encoding for Deep Neural Networks,” TECS, 2019.

[120] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “RowClone: Fast and Energy-Efficient In-DRAM
Bulk Data Copy and Initialization,” in MICRO, 2013.

[121] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry,
“Ambit: In-Memory Accelerator for Bulk Bitwise Operations using
Commodity DRAM Technology,” in MICRO. IEEE, 2017.

[122] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Gather-Scatter DRAM: In-DRAM
Address Translation to Improve the Spatial Locality of Non-unit
Strided Accesses,” in MICRO, 2015.

[123] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A
Convolutional Neural Network Accelerator with In-Situ Analog
Arithmetic in Crossbars,” in ISCA, 2016.

[124] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik,
N. Jiang, B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G.
Tell, Y. Zhang, W. J. Dally, J. Emer, C. T. Gray, B. Khailany,
and S. W. Keckler, “Simba: Scaling Deep-Learning Inference with
Multi-Chip-Module-Based Architecture,” in MICRO, 2019.

[125] S. Sharify, A. D. Lascorz, M. Mahmoud, M. Nikolic, K. Siu, D. M.
Stuart, Z. Poulos, and A. Moshovos, “Laconic Deep Learning
Inference Acceleration,” in ISCA, 2019.

[126] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos,
“Loom: Exploiting Weight and Activation Precisions to Accelerate
Convolutional Neural Networks,” in DAC, 2018.

[127] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. Kim, C. Shao,
A. Misra, and H. Esmaeilzadeh, “From High-Level Deep Neural
Models to FPGAs,” in MICRO, 2016.

[128] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and
H. Esmaeilzadeh, “Bit Fusion: Bit-Level Dynamically Composable
Architecture for Accelerating Deep Neural Networks,” in ISCA, 2018.

[129] H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, “McDRAM:
Low latency and energy-efficient matrix computations in DRAM,”
IEEE TCAD, 2018.

[130] G. Shomron, R. Banner, M. Shkolnik, and U. Weiser, “Thanks
for Nothing: Predicting Zero-valued Activations with Lightweight
Convolutional Neural Networks,” in ECCV, 2020.

[131] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A Pipelined
ReRAM-based Accelerator for Deep Learning,” in HPCA, 2017.

[132] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR:
Accelerating Graph Processing using ReRAM,” in HPCA, 2018.

[133] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites,
H. Esmaeilzadeh, A. Hassibi, L. Ceze, and D. Burger, “General-
Purpose Code Acceleration with Limited-Precision Analog
Computation,” in ISCA, 2014.

[134] J. A. Starzyk and Basawaraj, “Memristor Crossbar Architecture for
Synchronous Neural Networks,” IEEE Transactions on Circuits and
Systems I: Regular Papers, 2014.

[135] J. R. Stevens, R. Venkatesan, S. Dai, B. Khailany, and A. Raghunathan,
“Softermax: Hardware/Software Co-Design of an Efficient Softmax
for Transformers,” arXiv preprint arXiv:2103.09301, 2021.

[136] A. Stojcevski, H. P. Le, J. Singh, and A. Zayegh, “Flash ADC
architecture,” Electronics letters, vol. 39, no. 6, pp. 501–502, 2003.

[137] T. Tambe, C. Hooper, L. Pentecost, T. Jia, E.-Y. Yang, M. Donato,
V. Sanh, P. Whatmough, A. M. Rush, D. Brooks et al., “EdgeBERT:
Sentence-level Energy Optimizations for Latency-Aware Multi-Task
NLP Inference,” in MICRO, 2021.

[138] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao,
L. Yang, S. Ruder, and D. Metzler, “Long Range Arena: A Benchmark
for Efficient Transformers,” arXiv preprint arXiv:2011.04006, 2020.

[139] Transformers: Opening New Age of Artifical Intelligence Ahead,
“ADC performance survey 1997-2016,” https://www.analyticsinsight.
net/transformers-opening-new-age-of-artificial-intelligence-ahead/,
2021, accessed: 2022-04-21.

[140] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All You Need,”
in NeurIPS, 2017.

[141] W. Wan, R. Kubendran, S. B. Eryilmaz, W. Zhang, Y. Liao, D. Wu,
S. Deiss, B. Gao, P. Raina, S. Joshi, H. Wu, G. Cauwenberghs, and
H.-S. P. Wong, “A 74 TMACS/W CMOS-RRAM Neurosynaptic Core
with Dynamically Reconfigurable Dataflow and In-situ Transposable
Weights for Probabilistic Graphical Models,” in ISSCC, 2020.

[142] W. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang,
D. Wu, S. Deiss, P. Raina, H. Qian, B. Gao, S. Joshi, H. Wu, H. S. P.
Wong, and G. Cauwenberghs, “Edge AI without Compromise:
Efficient, Versatile and Accurate Neurocomputing in Resistive
Random-Access Memory,” arXiv preprint arXiv:2108.07879, 2021.

[143] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding,” arXiv preprint arXiv:1804.07461, 2018.

[144] H. Wang, Z. Zhang, and S. Han, “SpAtten: Efficient Sparse Attention
Architecture with Cascade Token and Head Pruning,” in HPCA, 2021.

[145] Y. Wang, Z. Zhu, F. Chen, M. Ma, G. Dai, Y. Wang, H. Li, and
Y. Chen, “Rerec: In-ReRAM Acceleration with Access-Aware
Mapping for Personalized Recommendation,” in ICCAD, 2021.

[146] Z. Wang, J. Wohlwend, and T. Lei, “Structured Pruning of Large
Language Models,” arXiv preprint arXiv:1910.04732, 2019.

[147] W. Wen, Y. He, S. Rajbhandari, M. Zhang, W. Wang, F. Liu, B. Hu,
Y. Chen, and H. Li, “Learning Intrinsic Sparse Structures within
Long Short-Term Memory,” arXiv preprint arXiv:1709.05027, 2017.

[148] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “HuggingFace’s
Transformers: State-of-the-Art Natural Language Processing,” arXiv
preprint arXiv:1910.03771, 2019.

[149] M.-C. Wu, W.-Y. Jang, C.-H. Lin, and T.-Y. Tseng, “A Study

18

https://www.analyticsinsight.net/transformers-opening-new-age-of-artificial-intelligence-ahead/
https://www.analyticsinsight.net/transformers-opening-new-age-of-artificial-intelligence-ahead/

on Low-Power, Nanosecond Operation and Multilevel Bipolar
Resistance Switching in Ti/ZrO2/Pt Nonvolatile Memory with 1T1R
Architecture,” Semiconductor Science and Technology - SEMICOND
SCI TECHNOL, 2012.

[150] T. Yang, D. Li, Y. Han, Y. Zhao, F. Liu, X. Liang, Z. He, and
L. Jiang, “PIMGCN: A ReRAM-Based PIM Design for Graph
Convolutional Network Acceleration,” in DAC, 2021.

[151] P. Yao, H. Wu, B. Gao, S. B. Eryilmaz, X. Huang, W. Zhang,
Q. Zhang, N. Deng, L. Shi, H.-S. P. Wong et al., “Face Classification
Using Electronic Synapses,” Nature communications, vol. 8, p.
15199, 2017.

[152] A. Yazdanbakhsh, M. Brzozowski, B. Khaleghi, S. Ghodrati,
K. Samadi, N. S. Kim, and H. Esmaeilzadeh, “FlexiGAN: An End-
to-End Solution for FPGA Acceleration of Generative Adversarial
Networks,” in FCCM, 2018.

[153] A. Yazdanbakhsh, H. Falahati, P. J. Wolfe, K. Samadi,
H. Esmaeilzadeh, and N. S. Kim, “GANAX: A Unified SIMD-MIMD
Acceleration for Generative Adversarial Network,” in ISCA, 2018.

[154] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and
H. Esmaeilzadeh, “Neural Acceleration for GPU Throughput
Processors,” in MICRO, 2015.

[155] A. Yazdanbakhsh, K. Seshadri, B. Akin, J. Laudon, and
R. Narayanaswami, “An Evaluation of Edge TPU Accelerators for
Convolutional Neural Networks,” arXiv preprint arXiv:2102.10423,
2021.

[156] A. Yazdanbakhsh, C. Song, J. Sacks, P. Lotfi-Kamran,
H. Esmaeilzadeh, and N. S. Kim, “In-DRAM Near-Data Approximate
Acceleration for GPUs,” in PACT, 2018.

[157] D. Ye, Y. Lin, Y. Huang, and M. Sun, “TR-BERT: Dynamic
Token Reduction for Accelerating BERT Inference,” arXiv preprint
arXiv:2105.11618, 2021.

[158] Z. Ye, Q. Guo, Q. Gan, X. Qiu, and Z. Zhang, “BP-Transformer:
Modelling Long-Range Context via Binary Partitioning,” arXiv
preprint arXiv:1911.04070, 2019.

[159] S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “XNOR-SRAM: In-Memory
Computing SRAM Macro for Binary/Ternary Deep Neural Networks,”
IEEE Journal of Solid-State Circuits, 2020.

[160] S. Yu, Y. Wu, and H.-S. P. Wong, “Investigating the Switching
Dynamics and Multilevel Capability of Bipolar Metal Oxide
Resistive Switching Memory,” Applied Physics Letters, 2011.

[161] G. Yuan, P. Behnam, Z. Li, A. Shafiee, S. Lin, X. Ma, H. Liu,
X. Qian, M. N. Bojnordi, Y. Wang, and C. Ding, “FORMS:
Fine-grained Polarized ReRAM-based In-situ Computation for
Mixed-signal DNN Accelerator,” in ISCA, 2021.

[162] A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos, “GOBO:
Quantizing Attention-based NLP Models for Low Latency and
Energy Efficient Inference,” in MICRO, 2020.

[163] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti,
S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed,
“Big Bird: Transformers for Longer Sequences,” in NeurIPS, 2020.

[164] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu,
and M. Ignatowski, “TOP-PIM: Throughput-Oriented Programmable
Processing in Memory,” in HPDC, 2014.

[165] L. Zhang, D. Strukov, H. Saadeldeen, D. Fan, M. Zhang, and
D. Franklin, “SpongeDirectory: Flexible Sparse Directories Utilizing
Multi-Level Memristors,” in PACT, 2014.

[166] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “GraphP: Reducing Communication for PIM-based
Graph Processing with Efficient Data Partition,” in HPCA, 2018.

[167] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,
and Y. Chen, “Cambricon-X: An Accelerator for Sparse Neural
Networks,” in MICRO, 2016.

[168] G. Zhao, J. Lin, Z. Zhang, X. Ren, Q. Su, and X. Sun, “Explicit
Sparse Transformer: Concentrated Attention through Explicit
Selection,” arXiv preprint arXiv:1912.11637, 2019.

[169] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“GraphQ: Scalable PIM-based Graph Processing,” in MICRO, 2019.

19

	I Introduction
	II Background and Motivation
	II-A Background
	II-B Motivation
	II-C Data Communication Optimization
	II-C1 In-memory Thresholding
	II-C2 Spatial Locality in Adjacent Queries
	II-C3 Futile Computations in Padded Regions

	III In-memory Thresholding
	III-A In-Memory Thresholding Challenges
	III-B Transposable ReRAM for Thresholding

	IV Overview of Sprint System
	V Sprint Memory Controller
	V-A Data Layout Organization
	V-B Memory Controller Microarchitecture
	V-C Memory Controller Execution Flow

	VI Sprint On-Chip Accelerator
	VII Methodology and Evaluation
	VII-A Accuracy and Performance

	VIII Related Work
	IX Conclusion

