
AgileWa�s: An Energy-E�cient CPU Core Idle-State
Architecture for Latency-Sensitive Server Applications

Jawad Haj Yahya1 Haris Volos2 Davide B. Bartolini1 Georgia Antoniou2

Jeremie S. Kim3 Zhe Wang1 Kleovoulos Kalaitzidis1 Tom Rollet1

Zhirui Chen1 Ye Geng1 Onur Mutlu3 Yiannakis Sazeides2

1Huawei Technologies 2University of Cyprus 3ETH Zurich

User-facing applications running in modern datacenters ex-
hibit irregular request patterns and are implemented using
a multitude of services with tight latency requirements (30–
250µs). These characteristics render existing energy-conserving
techniques ine�ective when processors are idle due to the long
transition time (order of 100µs) from a deep CPU core idle
power state (C-state). While prior works propose management
techniques to mitigate this ine�ciency, we tackle it at its root
with AgileWatts (AW): a new deep CPU core C-state architecture
optimized for datacenter server processors targeting latency-
sensitive applications.

AW drastically reduces the transition latency from deep CPU
core idle power states while retaining most of their power sav-
ings based on three key ideas. First, AW eliminates the latency
(several microseconds) of saving/restoring the core context when
powering-o�/-on the core in a deep idle state by i) implement-
ing medium-grained power-gates, carefully distributed across
the CPU core, and ii) retaining context in the power-ungated
domain. Second, AW eliminates the �ush latency (several tens
of microseconds) of the L1/L2 caches when entering a deep idle
state by keeping L1/L2 content power-ungated. A small control
logic also remains ungated to serve cache coherence tra�c. AW
implements cache sleep-mode and leakage reduction for the
power-ungated domain by lowering a core’s voltage to the min-
imum operational level. Third, using a state-of-the-art power
e�cient all-digital phase-locked loop (ADPLL) clock genera-
tor, AW keeps the PLL active and locked during the idle state,
cutting microseconds of wake-up latency at negligible power
cost.

Our evaluation with an accurate industrial-grade simula-
tor calibrated against an Intel Skylake server shows that AW
reduces the energy consumption of Memcached by up to 71%
(35% on average) with <1% end-to-end performance degra-
dation. We observe similar trends for other evaluated services
(MySQL and Kafka). AW’s new deep C-states C6A and C6AE
reduce transition-time by up to 900× as compared to the deep-
est existing idle state C6, while consuming only 7% and 5% of
the active state (C0) power, respectively.

? The �rst and fourth authors performed this work while a�liated with
the Computing Systems Lab, Huawei Zurich Research Center.

1. Introduction
Large datacenters running user facing applications are using
ine�ciently their servers due to the killer microseconds [1–
3]. Killer microseconds refer to microsecond-scale idleness
during CPU execution caused by a combination of two major
trends. First, various events (e.g., related to NVM storage,
faster datacenter networking, and main memory) with la-
tencies in the range of microseconds are prevalent [1, 4, 5].
Second, a new software architecture is deployed in datacen-
ters based on microservices, i.e., a large application composed
of numerous interconnected smaller services that explicitly
communicate with each other. Such applications exhibit ir-
regular request streams, and their services have very tight
(i.e., few tens to few hundreds of microseconds) latency re-
quirements [6].

Table 1 reports a typical hierarchy of core idle states (i.e.,
C-states: C0, C1, C1E, and C6)1 and our new proposed idle
states: C6A and C6AE (which replace C1 and C1E; see
Sec. 4). The Table shows for each state and two frequency
levels (base: P1, and minimum: Pn) the power consump-
tion of a modern server CPU core.2 Clearly, the C-state that
a CPU core resides in determines the core’s power. Transi-
tioning to a deeper (or shallower) C-state incurs a transition
latency during which the core cannot perform useful work.
Consequently, power management controllers only switch to
a deeper C-state if they predict that waking-up will not be
needed before a target residency time.

Under commonly-used C-state transition policies, servers
running latency-critical services rarely enter a deep idle
power state (e.g., C6) because: 1) residency time is hard to
guess, as the duration of busy/idle periods is irregular; and
2) stringent service latency requirements (30–250µs [4, 16])
cannot be met when transitioning out of a deep C-state re-
quires tens or hundreds of microseconds. As a result, idle
CPU cores only brie�y enter shallow C-states (e.g., C1), with

1C-states that further reduce idle power at the package-level (e.g., C8)
take longer to transition and require longer residency times [7–9].

2The microsecond-scale transition times in Table 1 represent the worst-
case software+hardware entry+exit latency (to start executing the �rst in-
struction) and not the actual hardware transition latency[10]. For example,
the hardware transition latency for the C1 C-state is only a few nanoseconds
(cycles) since C1 mainly performs clock-gating (Fig. 3(a))[11–14].

1

ar
X

iv
:2

20
3.

02
55

0v
2

 [
cs

.A
R

]
 4

 O
ct

 2
02

2

Table 1: C-states available on the Intel Skylake server (SKX)
core [15] and AW’s new C6A and C6AE C-States.

Core C-state Transition time2 Target residency time Power per core

C0 (P 1) N/A N/A ∼4W
C0 (P n) N/A N/A ∼1W
C1 (P 1) 2µs 2µs 1.44W
C6A (P 1) 2µs 2µs ∼0.3W
C1E (P n) 10µs 20µs 0.88W
C6AE (P n) 10µs 20µs ∼0.23W
C6 133µs 600µs ∼0.1W

limited power savings.
We claim that the ine�ciency of the C-state hierarchy with

respect to microsecond-latency events is not fundamental,
but a byproduct of being oriented for client systems. Major
server vendors often design a base microarchitecture upon
which both client and server CPUs are built. For example,
Intel CPU core design is a single development project where
client and server processors are based on the same master
design [17, 18]. Within such a project, energy optimizations
are mostly targeted towards client CPUs, which are used
in battery-operated devices, while server CPUs are mostly
optimized for performance. Therefore, features such as C-
states are designed for client applications (e.g., video playback,
conferencing, gaming [19, 20]), which, in contrast to latency-
critical microservices, typically present long and predictable
idle periods, allowing processors to exploit existing deep
package C-states (i.e., C7, C8, C9, and C10) [21–24] with
even larger transition latencies. For example, a client CPU
spends >80% of video streaming time in the C8 package
C-state [25].

Prior work (Sec. 8) proposes management techniques to en-
able datacenter processors to leverage existing deep C-states
e�ectively (without changing the C-state architecture). In
contrast, our goal is to directly address the root cause of
the ine�ciency, namely the high transition latency (tens or
hundreds of microseconds; see Table 1) to/from deep C-states.
We propose AgileWatts (AW), a new deep C-state architec-
ture optimized for processors in modern datacenters running
user-facing latency-sensitive workloads. AW markedly re-
duces the transition latency of deep idle power states, while
retaining most of their power savings, making deep C-states
usable in such datacenter services. AW redesigns the state-
of-the-art CPU core deep C-states based on three power
management techniques. First, instead of shutting o� the
core power when entering a deep C-state, AW uses medium-
grained power-gates distributed across the core and maintains
the core context in the power-ungated domain. This approach
shaves o� several microseconds by removing the need to save
and restore the context. Second, instead of shutting down pri-
vate caches (i.e., L1 and L2), which requires �ushing and adds
several microseconds to the transition latency, AW keeps
them power-ungated, along with a small control logic for
cache coherence. AW implements a sleep mode in caches
that helps reduce the core voltage to a minimum operational
level and limit leakage power of the power-ungated domain.

Third, instead of shutting down the clock distribution, AW
clock-gates the core components and clock distribution, while
keeping the power-e�cient all-digital phase-locked loop (AD-
PLL [26]) clock generator on and locked. Keeping the APLL
on shaves few more microseconds of transition latency at a
minimal extra idle power consumption.

While we demonstrate the potential of AgileWatts for Intel
server processors, which represent more than 80% of the
server processor market [27], our proposed techniques are
general and applicable to most server processor architectures.

This work makes the following contributions:
• To our knowledge, AgileWatts (AW) is the �rst practical

highly-e�cient core C-state architecture, directly targeting
the energy ine�ciency of killer microseconds for datacenter
servers running latency-critical applications.

• AW dramatically reduces the transition latency of deep idle
states while keeping almost all of their power savings.

• AW architecture employs medium-grained power gating
and voltage control to reduce the need for saving/restoring
the microarchitectural context and �ushing caches. As a
result, AW saves several tens of microseconds of transition
latency to/from a deep idle C-state.

• Our evaluation shows that AWsigni�cantly reduces (by up
to 71%) the energy consumption of the evaluated services.
AW’s new deep C-states have up to 900× faster transition
latency than that of the existing deepest idle core c-state
C6 while their power consumption is only 5%-7% of that
of the active state (C0).

2. Motivation

Before diving into details, we analyze the opportunity of a
new, agile deep idle state for datacenter processors.

It is well known that servers running latency-critical ap-
plications usually operate at low utilization 5%–25% [28, 29,
184–187] to keep tail latency under control. It is also un-
derstood that dynamic workload behavior prevents modern
cores from entering deep idle states during idle periods of
such application. Previous work shows that, for a key-value
store (e.g., Memcached [30]) workload, cores never enter a
C-state deeper than C1 (the shallowest C-state, see Table 1)
when running at 20% or higher load [28, 31] (our experiments
in Sec. 7 con�rm this). A search workload is slightly more
e�cient, with cores reaching deeper C-states 20% of the time
at 25% load, but only 5% of the time at 50% load, thus still
spending 55% and 45% of the time in C1, respectively [28].
These examples point to a large opportunity for a new C-state
that has a transition latency similar to C1 but much lower
idle power than the 1.44W of C1.

Since the deepest C-state is C6 (Table 1), we estimate an
upper bound of the average power (AvgP) savings for the
ideal case of a deep idle state with the latency of C1 (i.e., 2µs)

2

and the power of C6, i.e., 0.1W per core, using Eq. 1.

AvgPbaseline =
∑

i∈{0,1,6} (RCi
× PCi

)
AvgPsavings = RC1 × (PC1 − PC6)

AvgPsavings% = (AvgPsavings/AvgPbaseline) × 100 (1)

RCi
denotes the residency at power state Ci, i.e., the fraction

of time a CPU core spends in state Ci. PCi
denotes the

average CPU core power in state Ci (reported in Table 1).
Referring to our examples from prior work [28, 30,

31], given 1) the C-state residencies for the search work-
load at 50% and 25% loads (i.e., RC0 = 50%, RC1 = 45%,
RC6 = 5% and RC0 = 25%, RC1 = 55%, RC6 = 20%), and for
the key-value store at 20% load (i.e., RC0 = 20%, RC1 = 80%,
RC6 = 0%), and 2) C-states power from Table 1: then there is
potential for a 23%, 41%, and 55% reduction in core power
for the three loads, respectively. Lighter loads can have even
higher power savings.

The rest of the paper illustrates how AW can enable a large
part of this substantial power-saving opportunity by de�ning
a new low-latency deep idle state we call C6A (C6 Agile).

3. Background
We provide a brief overview of di�erent power management
components and techniques used in modern processors.
Server and Client Cores. Major server vendors have nearly
the same core microarchitecture for client and server CPUs.
For example, Intel CPU core design is a single development
project that has two derivatives, one for server and one for
client CPUs [17]. Fig. 1 shows the AVX and L2 extension of
the Intel Skylake server core over the client core [18].

AVX[255:128]

AVX3[383:256]AVX3[511:384]

AVX[127:0]

Ctl

Server
Extension

Server Extension

AVX-512
Power Gate

AVX-256
Power Gate

(Converged mesh stop)(Snoop
Filter)

Figure 1: An Intel Skylake server core slice [32]. The
core is bordered with green, and the AVX-512 and L2 exten-
sions [18] (unavailable in client CPU cores) are bordered in
pink. The 256-bit and 512-bit AVX units have separate power
gates [26, 33–35], as shown in the �gure.

Clock Distribution Network (CDN). A CDN distributes
the signals from a common point (e.g., clock generator) to all
the elements in the system that need it. Modern processors
use an all-digital phase-locked loop (ADPLL) to generate the
CPU core clock [36]. An ADPLL maintains high performance

with signi�cantly less power as compared to conventional
PLLs. For example, the power of an ADPLL in Skylake, shown
at the bottom right of Fig. 1, is only 7mW at 4GHz [26].
Power Delivery Network (PDN). The three commonly-
used PDNs in modern CPUs are: 1) integrated voltage
regulator (IVR) [36–39], 2) motherboard voltage regulator
(MBVR) [26, 40, 41], and 3) low dropout voltage regulator (LDO
VR) [42–46]. For example, recent Intel server CPUs imple-
ment a fully-integrated voltage regulator (FIVR) per core, as
shown at the bottom right of Fig. 1 [17, 26].
Staggered Power-gate Wake-up. Power-gating is a tech-
nique that is used to eliminate leakage of idle circuits [7, 8, 47,
48]. Typically, the wake-up latency from a power-gated state
requires a few to tens of cycles [7, 49]. However, to reduce the
worst-case peak in-rush current [50–53] and voltage-noise
in the PDN (e.g., di/dt noise [7, 8, 54]) when waking up a
power-gate, a power-gate controller uses a staggered wake-
up technique [50–52], shown in Fig. 2.

Power-gate
Controller

…

slp

slpin

slpout

slpin

slpout

slpin

slpout

ready

Power-gated Unit

Ungated Power Supply
power gating

switch

…

Figure 2: Staggered power-gate wake-up by daisy-chaining
the control signals of the power-gating switches.

The technique turns on di�erent power-gate switch cells
in a staggered manner, to limit the current spike from the
power supply. To do so, the input sleep (slpin) and output
sleep (slpout) signals of the switch cells are daisy-chained.
The controller issues a signal to the �rst slpin, and it receives
an acknowledgement (ready) from the last slpout, indicating
that the power-gate is fully conducting. An alternative wake-
up technique groups switch cells into multiple chains each in
a daisy-chain con�guration. Doing so allows the power-gate
controller to tune (e.g., post-silicon) a unit’s wake-up time by
controlling the assertion time for each chain. Modern CPUs
implement the staggering technique [49, 55, 56]; e.g., the Intel
Skylake core staggers the wake up of the AVX power-gates
over 15ns to reduce in-rush current [26][35, Sec. 5].
Core C-states. Power saving states enable cores to reduce
their power consumption during idle periods. Modern pro-
cessors support various C-states, for example, Intel’s Sky-
lake architecture o�ers the following four: C0, C1, C1E,
C6 [7, 8, 57]. Table 2 describes the state for various core
components for each existing core C-state as well as in our
proposed idle states: C6A and C6AE (which replace C1 and
C1E, Sec. 4). While C-states reduce power consumption,
during the entry-to and exit-from a C-state a core cannot be
used. For example, it is estimated that C6 requires 133µs of
transition time (Table 1). As a result, entry-exit latencies can
degrade the performance of services that have microsecond-
level processing latency requirements, such as in user-facing

3

applications [30].
Table 2: Skylake server core components’ states in core C-
states, including AW’s new C6A and C6AE C-States [58].
C-State Clocks ADPLL L1/L2 Cache Voltage Context

C0 Running On Coherent Active Maintained
C1 Stopped On Coherent Active Maintained
C6A Stopped On Coherent PG/Ret/Active In-place S/R
C1E Stopped On Coherent Min V/F Maintained
C6AE Stopped On Coherent PG/Ret/Min V/F In-place S/R
C6 Stopped O� Flushed Shut-o� S/R SRAM

Core C-state Entry and Exit Flows. The C1/C1E, and C6
entry and exit �ows are shown in Figs. 3(a) and 3(b), respec-
tively, and are discussed in detail in [11–14].

C0

Save

Context to

Save/

Restore (S/

R) SRAM

Enter

C6

Clock-gate

all

domains,

Turn-off

PLL

Turn-off

voltage

C6

Restore

Context

from S/R

SRAM

Turn-on

PLL,

clocks, and

reset core

units

Turn-on

voltage Exit C6

(Interrupt)

Flush L1/

L2

Resume

Microcode

C0

Clock-gate

all

domains,

Keep PLL

ON

C1/

C1E

Snoop
Clock-

ungate L1/

L2 &

controllers

Clock-gate

L1/L2 &

controllers

Clock-

ungate all

domains

Exit

C1/C1E

(Interrupt)

(a)

(b)

Enter

C1E

DVFS Transition to Pn

Enter

 C1/C1E

Handle the

snoop

requests

Figure 3: Entry and Exit Flows for (a) C1 and (b) C6.

Core C6 Entry/Exit Latency. We analyze theC6 entry/exit
latency based on an x86 implementation [11]. C6 entry la-
tency is dominated by the L1/L2 cache �ush time. This �ush
time varies depending on 1) the fraction of cache lines that
are dirty and 2) the core frequency, when entering C6; e.g.,
�ushing a 50% dirty cache at 800MHz takes ∼75µs. The time
to transfer core state to/from the save/restore (S/R) SRAM
depends on the core clock frequency; e.g., at 800MHz, the
latency is ∼9µs. Including control �ow overhead and the
power-gate controller latency, the overall CPU core C6 entry
time is ∼87µs.
C6 exit latency is signi�cantly faster, taking ∼30µs from

the wake-up interrupt to resuming core execution. This
latency includes ∼10µs for hardware wake-up, including
power-ungating, PLL relock, reset, and fuse propagation.
State and microcode restoration takes ∼20µs [11–14].

4. AgileWatts (AW) Architecture
AW introduces a new core deep idle power state, C6A (C6
Agile), with close to zero-Watt power consumption and
nanosecond-scale entry/exit latency. Thanks to its low la-
tency, servers running latency-critical applications can enter
C6A during short and irregular idle periods, unlocking sig-
ni�cant energy savings. Additionally, AW de�nes C6AE (C6A

Enhanced, analogous to C1E), a lower-power variant of C6A
that further reduces leakage power by lowering core voltage
to a minimum operational level. Our discussion focuses on
the C6A design and operation and points out C6AE di�er-
ences when relevant.

The C6A state is based on two key ideas: Units’ Fast Power-
Gating (UFPG) (discussed in Sec. 4.1) and a Cache Coherence
and Sleep Mode (CCSM) (discussed in Sec. 4.2). The new
power management �ow that coordinates the UFPG and the
CCSM at nanosecond granularity is presented in Sec. 4.3.

4.1. Units’ Fast Power-Gating (UFPG)

AW UFPG is a low-latency power-gating (PG) architecture
that shuts o� most of the core units while retaining the con-
text in place, thus, enabling a transition latency of tens of
nanoseconds. Conventional context retention techniques (see
C6 C-state �ow in Fig. 3(b)) sequentially saves/restores the
context to/from external SRAM before/after power-gating/un-
gating [11, 24, 26, 35]. This process adds several (e.g., 5–10µs)
microseconds to the entry/exit latency. Instead, AW retains
the context in place, completely removing that overhead at a
very small additional idle power cost.

AW enables in-place context retention with a medium-
grain PG approach. This is in contrast to the coarse-grain
PG used in Skylake client cores, where the entire core is
under the same power gate [26, 40, 59, 60] and context is
saved/restored externally. Our approach leverages the same
ideas used by the PG for the AVX-256 and AVX-512 core
units [26, 33–35] in recent server and client cores (see Fig. 1).
These PG techniques require only 10 to 20 nanoseconds to
power-gate/un-gate a unit [26] [35, Sec. 5] because they
power and retain the unit’s context in place and avoid having
to save and restore it externally.

AW’s medium-grain power gating applies to the majority
of the core units (shaded red in Fig. 4) and excludes the L1
and L2 and their controllers (handled separately in Sec. 4.2).

AVX[255:128]

AVX3[383:256]AVX3[511:384]

AVX[127:0]

Ctl

Units Fast Power
Gating (UFPG)

AVX power-
gating (baseline)

Power-ungated
units & caches
in sleep-mode

Figure 4: Medium-grain PG for the majority (area shaded in
red) of the core units, excluding the L1 and L2 caches and
their controllers.

Within the medium-grain PG region, AW leverages mul-
tiple techniques to retain the context in place, and enable
fast (several-nanosecond) transition latency. The context of

4

a modern CPU core is ∼8kB3 (estimated as the amount of
state that C6 saves) [61, 62] and falls into two categories: i)
registers, such as con�guration and status registers (CSRs)
or fuse registers, and ii) SRAMs, such as �rmware persistent
data and patches [11, 24]. We discuss next three techniques
AW uses to e�ciently retain the context during C6A; the �rst
two apply to registers and the third to SRAM.

4.1.1. Placing Unit Context in the Ungated Domain.
One option to retain the context of a power-gated unit is
to place its registers outside the power-gated region, i.e., in
the core’s ungated domain, as shown in Fig. 5(a). This is suit-
able for units with small context (e.g., execution units); Intel
likely uses this technique for the AVX execution units [33, 63].
AW uses this technique for all core units that require only
a local context to be retained, i.e., this is not applicable to
a unit with a distributed context that is impractical to relo-
cate to a centralized un-gated region. The following units
satisfy this requirement: 1) all execution units (besides AVX),
2) execution ports, and 3) the out-of-order engine.

D

Clock

Ret

VDD VRET

Pwr

VSS

SRPG
Cell

Pwr Context Switch

Unit

Switch
...

Ungated power supply Ungated power supply Ungated power supply

SRAM with
Context

(c)(b)(a)

Unit

VSS

VDD

VSS

VDD

Ret

Pwr

Save
context

Power-
gate

Power-
ungate

Restore
context

Figure 5: Context retention techniquesAWuseswhen power-
gating a unit: (a) Placing context in the core ungated power
domain; (b) placing SRAM with context (e.g., microcode
patch) in the core ungated power-domain; (c) using SRPG
cells for distributed context.

4.1.2. State Retention Power Gates (SRPGs). Moving dis-
tributed or large context to a separate un-gated area is im-
practical (e.g., due to timing and wiring constraints). For this
reason, AW employs a di�erent retention technique – SRPGs
– for units that contain such context. As Fig. 5(c) illustrates,
SRPG (i.e., a retention �ip-�op) is a special �ip-�op fed with
two supplies: power-gated and power-ungated. Such a �ip-
�op typically contains a shadow �ip-�op to retain its state
when the unit it resides in is power-gated [63–65]. For exam-
ple, Intel uses this technique in the chipset to retain the state
of autonomously power-gated units [33].

4.1.3. Place SRAM Context in Ungated Power Supply.
Part of the CPU core context is located in SRAMs [24].
While the microcode �rmware is stored in read-only memory,
known as microcode sequencer ROM (MS-ROM), microcode
patches and data are stored in a ∼2KB SRAM [66, 67]. This
SRAM is initialized at boot time and should be retained

3[24] shows that the context saved/restored for an entire Skylake client
mobile SoC is ∼200KB. This includes the context of four cores, an integrated
GPU, the uncore, and the system agent. We estimate the single-core context
based on a core’s relative die area, showing ∼8kB context, similar to previous
Intel references [61, 62].

when power-gating the microcode unit. The C6 exit �ow
re-initializes the content of this SRAM from core’s S/R SRAM
in a separate un-gated uncore domain; this process is sequen-
tial and can take several microseconds [11, 24]. AW avoids
the need to re-initialize the microcode patch SRAM by pow-
ering it with a separate core un-gated supply, as shown in
Fig. 5(b).

4.2. Cache Coherence and Sleep Mode (CCSM)
To avoid the high latency (tens of microseconds) to �ush
private caches (i.e., L1D and L2) in order to power-gate them,
AW instead keeps them power-ungated (see Fig. 4) when
transitioning to C6A. This has two design implications: �rst,
AW needs to employ other power-saving techniques to reduce
the power of the cache domain; and second, a core in C6A
state still needs to serve coherence requests (i.e., snoops)
[68, 69].

AW employs two key techniques to reduce the power con-
sumption of the power-ungated private cache domain. First,
unless a coherence request is being served, AW keeps this
domain clock-gated to save its dynamic power. Second, AW
leverages the cache sleep-mode technique [70–74], which adds
sleep transistors to the SRAM arrays of private caches. These
sleep transistors reduce the SRAM array’s supply voltage
to the lowest level that can safely retain the SRAM content
while signi�cantly reducing leakage power.

Since private caches are not �ushed when a core enters
C6A, AW must allow the core to respond to snoop requests
[7, 8, 40]. AW keeps the logic required to handle cache snoops
in the power-ungated (but clock-gated) domain together with
the private caches. It also uses minimal logic (same logic used
in C1) to detect incoming snoop requests in an always-active
(i.e., neither power-gated nor clock-gated) domain. As soon
as this logic detects incoming snoop tra�c, it temporarily in-
creases the SRAM array voltage through the sleep transistors
and reactivates the clock of the private caches for the time
required to respond to snoop requests.

4.3. C6A Power Management Flow
AW implements the C6A �ow within the core power manage-
ment agent (PMA) [75]. This �ow, shown in Fig. 6, orches-
trates the transitioning between the C0 and C6A C-states and
handles coherence tra�c while in the C6A state.

C0

Clock-gate

UFPG

units. Keep

PLL ON

Save

context &

power-

gate UFPG

units

L1/L2

enter

sleep-

mode &

Clock-gate

1 2 3

C6A/

C6AE

Snoop

Clock-

ungate

L1/L2 and

Exit

sleep-

mode

Handle the

snoop

requests

L1/L2

enter

sleep-

mode and

Clock-gate

Clock-

ungate

UFPG

units

Power-

ungate

UFPG

units &

restore

context

Clock-

ungate

L1/L2 &

Exit

sleep-

mode6 5 4

Exit

C6A/

C6AE

a

b

c

DVFS Transition to Pn
Enter

C6AE

Enter

C6A/

C6AE

Figure 6: Power management �ows for the C6A/C6AE states.

5

Similar to other C-states, the operating system triggers
C6A entry by executing the MWAIT instruction [7, 8]. The
�rst step 1 in the entry �ow clock-gates the UFPG domain
(Sec. 4.1), while keeping the core phase-locked loop (PLL)
powered-on. When entering C6AE, the PMA additionally
initiates a non-blocking transition to Pn – the P-state with
lowest frequency and voltage. Subsequently 2 , the �ow saves
(in place) the UFPG domain context and shuts down its power.
Finally 3 , the �ow sets the private caches into sleep mode
(Sec. 4.2) and shuts down their clock. After these three steps,
the core is in C6A (or C6AE) state.

When a snoop request arrives while the core is in the C6A
(orC6AE), the PMA temporarily activates the private caches
to respond. First, a the �ow clock-ungates the private cache
domain and adjusts its supply voltage to exit sleep mode. At
this point b , the caches can handle the snoop requests. Fi-
nally c , when all outstanding snoop requests are serviced,
PMA rolls back the changes in reverse order and brings the
core back into the full C6A (or C6AE) state.

When an interrupt occurs, the core exits from C6A (or
C6AE) and goes back into C0 (active) state. The exit �ow
is simply the reverse process of the entry �ow. First 4 , the
�ow clock-ungates L1/L2 and exits sleep-mode. Next 5 , it
power-ungates the UFPG units and triggers the restore signal
to the SRPG �ops (Fig. 5(c)). Finally 6 , the �ow clock-ungates
UFPG units, bringing the core to the C0 active state.

5. AW Implementation and Hardware Cost
As discussed in Sec. 4, AW requires in each CPU core: 1) the
UFPG subsystem, 2) the CCSM subsystem, and 3) the C6A
controller. This section discusses the implementation of each
component, its power-performance-area (PPA) cost, and the
resulting transition latency for the new C6A and C6AE states.

5.1. PPA Modeling Methodology
Fig. 7 describes at a high level AW’s PPA modeling method-
ology. In this section, we describe each of the modeling
components in detail. Table 3 summarizes the total area over-
head and power consumption of AW’s C6A/C6AE C-states.
Our power and performance model (described in Sec. 6.2)
uses C6A/C6AE power and AW performance overheads to
estimate the average power consumption and performance
impact of AW for a given workload.
5.1.1. Units’ Fast Power-Gating (UFPG). As discussed in
Sec. 4.1, AW’s UFPG places the majority of the core units
behind power-gates that are similar to the ones used for the
AVX units in recent Intel cores. AW uses power-gates for
∼70% of the core area (measured on the die photo in Fig. 4).
Power overhead. The AVX power-gates and the new UFPG,
shut-o� all the units in the core front-end and execution
domains; however, power-gates only eliminate 95 – 97% of
the leakage power [76, 77, 191], thus the UFPG domain has
residual idle power while in C6A. Using the Intel core-power-
breakdown tool [78], we derive the leakage power contri-

bution of the power-gated units starting from the leakage
power of the entire core.4 Our estimation shows that the new
power-gated units contribute to approximately 70% of the
core leakage (i.e., ∼70% of C1 power). Hence, the power
overhead of UFPG (i.e., 3–5% of the gated leakage power)
is ∼30–50mW at base frequency (P1), or ∼18–30mW at
minimum frequency (Pn).

The three UFPG techniques combined retain ∼8KB con-
text [66, 67], which consume 0.2mW at retention voltage [24].
To estimate the retention power at base (P1) and minimum
(Pn) frequencies, we conservatively multiply the retention-
level power by 10× and 5×, respectively. Therefore, our esti-
mate for context retention power is ∼2mW (P1) to ∼1mW
(Pn).
Performance overhead. In an active CPU core, simultane-
ous operations in memory or/and logic circuits demand high
current �ow, which creates fast transient voltage droops [79–
88]. One power-gating design challenge is the resistive volt-
age (IR) drop across a power gate, which exacerbates volt-
age droops [41, 89–93]. The worst-case voltage droop can
limit the maximum attainable frequency at a given voltage
since it requires additional voltage (droop) margin above the
nominal voltage to enable the CPU core to run at the target
frequency [79, 89, 90]. An x86 implementation of CPU core
power-gate leads to <1% frequency loss [93]. Our AW ana-
lytical model (Sec. 6.2) assumes 1% frequency degradation due
to the additional CPU core power-gates (i.e., due to UFPG).
Area overhead. A power gate adds 2 – 6% extra area to the
gated logic (i.e., UFPG, covering ∼70% of core area). We con-
servatively use the wide overhead range (i.e., 2 – 6%) since the
exact overhead depends on the speci�c implementation, the
exact size of the gated area, the number of required isolation-
cells,5 and technology[76, 77, 94–96]. The area overhead for
the in-place context retention techniques of the ∼8kB core
context [61, 62] is as follows: First, moving the context of a
unit to ungated-power typically requires <1% of the context
area, mainly due to the isolation cells [50]. Second, the use of
SRPGs for components with too large or distributed context
is a mature technique already used in products, e.g., the Intel
Skylake [33]. E�cient SRPG designs, which use selective con-
text retention, require less than 1% additional area relative to
the power-gated area they control [65, 97]. Finally, including
an SRAM into the ungated domain requires isolation cells
that add overhead <1% of the SRAM area [50].

5.1.2. CacheCoherence and SleepMode (CCSM). AW im-
plements sleep-mode for private caches similarly to the sleep-
mode used for L3 caches in multiple server products [70, 72–
74]. Cache sleep-mode implements P-type sleep transis-
tors [70, 72] with seven programmable settings and local

4The leakage of the entire core is approximately equal to the C1 power
(Table 1), which removes only dynamic power by applying clock-gating.

5Isolation-cells isolate the always-on units from the �oating values of
the power-gated units. They are typically placed on the outputs of the
power-gated domains during the physical placement stage [50].

6

Units’ Fast Power-Gating (UFPG)

AgileWatts Modeling

Measure core
leakage power (~C1

power)

The model
considers

the
performance

penalty
(~1%

frequency
degradation)

due to
power gates

Scale UFPG
baseline area
based on the
area increase

when
implementing
power-gates
(2%-6% area

increase)

Estimate the
remaining leakage
after power gating
UFPG (power gates
only eliminate 95-
97% of the power-

gated area’s leakage
power)

 We measure the baseline UFPG area as
~70% of core area using die photo (Fig. 4)

UFPG

Obtain save/
restore

context size
(~8KB)

Conservatively
estimate the

power of
~8KB context

in 14nm

Power

Context

Performance Area

UFPG

Obtain
Context

Size
(~8KB)

Conservatively
estimate the

area of 8KB in
14nm

Context

Caches Coherency and Sleep Mode (CCSM)

Obtain the
leakage power

of a cache
SRAM that

implements
sleep-mode in

22nm

No performance
impact because we
place only the cache
data array in sleep-

mode, while the
other control arrays

(e.g., tag, state)
operate at nominal

voltage, which allows
hiding the data array

wake-up latency
during the control
arrays access time

Scale L1/L2 array
(~90% of cache
size) baseline
area based on

the area
increase when
implementing

sleep-transistors
(2%-6% area

increase, similar
to power-gates)

Scale to 14nm
technology

node used for
Skylake

We measure the baseline CCSM area
as ~30% of core area using die photo (Fig. 4)

L1/L2 arrays

Power Performance Area

L1/L2 arrays

Similar
to

baseline

Rest of CCSM

Similar
to

baseline

Rest of CCSM

Power Management Control Flow

Based on a comparable
power-management flow

implemented in 14nm,
we conservatively

estimate that the C6A
controller adds ~5mW to

the PMA power

No impact
on core’s

performance

Based on a
comparable power
management flow

implemented in
14nm, we

conservatively
estimate the area
to implement the
C6A controller to
be up to ~5% of
the core’s PMA

area

Power Performance Area

FIVR and PLL

Obtain the
PLL’s power

from a
Skylake
(14nm)

implementat
ion (~7mW

per PLL)

PLL

Power

Calculate
core’s
power

conversion
losses due

to FIVR
inefficiency

(~80%
efficiency +

static
losses)

FIVR

Performance
/Area

No
overhead

Figure 7: AgileWatts Power-Performance-Area (PPA) Modeling Methodology.

bit-line �oat to reduce SRAM cell leakage in the data array;
it also employs word-line sleep to reduce leakage further.
Power overhead. CCSM implements sleep-mode using
sleep-transistors in the L1/L2 SRAM data array; this tech-
nique is already used for e�cient design of the L3 cache in
multiple server processors in the market [70, 72–74]. We esti-
mate the leakage of the L1/L2 SRAM data array when in sleep-
mode, starting from the leakage of a 2.5MB SRAM L3 cache
with sleep-mode that Intel implemented at 22nm [72, 98].
Based on established methodology [99], we scale6 this power
to the cumulative L1 and L2 capacity (∼1.1MB and 14nm
technology node used for Skylake). The resulting leakage
power estimation for the L1/L2 caches is ∼55mW. We use
the same method to estimate the power for the rest of the
power-ungated units (controllers and tags), resulting in an
additional 55mW at P1 (i.e., in C6A) voltage level. Reducing
the core voltage to Pn (i.e., in C6AE) level increases the sleep
transistor e�ciency and reduces leakage power at Pn voltage
to 40mW . This is because a sleep transistor is e�ectively a
linear voltage regulator (LVR). The LVR power-conversion
e�ciency is the ratio of the desired output voltage and the in-
put voltage; hence, the closer the input voltage to the output,
the higher the power-conversion e�ciency [91, 100, 101].
Performance overhead. In AW, only the data array (which
accounts for more than 90% of the L1/L2 cache size) is placed
in sleep-mode, while the other control arrays (e.g., tag, state)
operate at nominal voltage. Doing so allows hiding the data
array wake-up latency during the control array access time,
thereby eliminating any performance degradation compared
to operation without the sleep mode.
Area overhead. Implementing sleep-mode using sleep tran-
sistors for the SRAM data array of the private caches requires
additional area similar to power-gates (i.e., 2–6% of the SRAM
area) [71, 76, 77, 94, 95]); a recent implementation reports a
2% area overhead [96].

6Sec. III of [99] explains how leakage power scales with technology node
size. For a dimensional scaling factor of α (i.e., ∼0.7× when transitioning
from 22nm to 14nm) and voltage scaling factor of β (varies between ∼0.7×
to a 1.0×; we conservatively assume no voltage scaling, i.e., β = 1.0), the
leakage power scales as αβ (i.e., ∼0.7× in our case).

5.1.3. AW Power Management Control Flow. The main
implementation consideration to realize the C6A �ow in Fig. 6
is a mechanism to control in-rush current [26, 102]. This
needs to support staggered wake-up, so as to ensure PDN
stability [26, 35, 49, 55, 56, 102]. We further discuss this in
Sec. 5.3. The remaining capabilities, such as clock-gating,
event detection (interrupts, snoops) are all commonly sup-
ported in state-of-the-art SoCs. The C6A controller is imple-
mented using a simple �nite-state-machine (FSM) within the
core’s PMA, which resides in the uncore [75] and controls
clock gating/un-gating, save/restore signals, and L1/L2 entry-
to/exit-from sleep-mode. The C6A snoop �ow reuses the
existing snoop handling mechanisms of the C1 state (shown
in Fig. 3).
Power overhead. AW implements the C6A controller as
an FSM within the PMA. Based on a comparable power-
management �ow implemented in [24], we estimate that the
C6A controller adds approximately 5mW to the PMA power.
Performance overhead. The additional control circuit we
add to the PMA has no direct impact on CPU core’s per-
formance. The performance overhead is mainly due to the
new features the PMA controls (described in Sec. 5.1.1 and
Sec. 5.1.2).
Area overhead. Based on a comparable power-management
�ow implemented in [24], we estimate the additional area
to implement the C6A controller to be up to 5% of the core
PMA area.

5.1.4. Core PLL and FIVR. AW keeps the PLL and FIVR
powered on in C6A/C6AE states. Next we describe only the
power overhead of the PLL and FIVR as there is no additional
performance or area overhead as compared to the baseline.
Power overhead. We estimate the C6A idle power needed
by AW to keep the PLL on and locked while accounting for
voltage regulator ine�ciencies. The Skylake core uses an AD-
PLL and a FIVR [17, 26]. The ADPLL consumes 7mW (�xed
across core voltage/frequency levels [26]). The FIVR presents
dynamic e�ciency loss due to conduction and switching
ine�ciency [103], and static e�ciency loss due to power con-
sumption of the control and feedback circuits [38, 91, 103].

7

The static loss still applies when the FIVR output is 0V . The
FIVR static loss accounts for ∼100mW per core [41, 91, 104].
The FIVR e�ciency at light load is about 80% (excluding the
static power looses) [41, 90, 91].

5.2. C6A and C6AE Latency
We estimate the overall transition time (i.e., entry followed by
direct exit) for the C6A and C6AE states of AW to be <100ns.
This is three orders of magnitude faster than the >100µs
latency of C6. Next, we explain in detail this estimation by
referring to the �ow in Fig. 6.
5.2.1. C6A and C6AE Entry Latency. Clock-gating all do-
mains and keeping the PLL ON (1 in Fig. 6) typically takes 1 –
2 cycles in an optimized clock distribution system [105, 106].
Transitioning to Pn (required for C6AE) happens with a
non-blocking parallel DVFS (i.e., P-state) �ow that can take
few tens of microseconds, depending on the power manage-
ment architecture [107]. Since AW keeps the context in-place;
saving the context to power-gate the core units 2 only re-
quires asserting the Ret signal followed by deasserting the
Pwr signal, as shown in Fig. 5(c). We estimate this process to
take 3–4 cycles. Finally, placing the L1/L2 caches in sleep-
mode and clock-gating them 3 takes 1–3 cycles. Hence, the
overall entry �ow takes < 10 cycles, i.e., less than < 20ns
with a power management controller clocked at 500MHz.7

5.2.2. C6A and C6AE Exit Latency. Clock-ungating the
L1/L2 caches and exiting sleep-mode 4 takes 2 cycles [70].
Power-ungating the core units 5 takes <70ns (discussed in
Sec. 5.3) and restoring the core context (i.e., deasserting the
Ret signal after restoring power) takes 1 cycle. Finally, clock-
ungating all domains 6 typically takes 1–2 cycles. Hence, the
overall exit �ow takes ∼5 clock cycles + <70ns, equivalent
to <80ns when using a 500MHz clock.
5.2.3. C6A andC6AE SnoopHandling. Snoop handling la-
tency in C6A(C6AE) is similar to that in C1(C1E). Speci�cally,
clock-ungating the L1/L2 caches and exiting sleep-mode a
takes 2 cycles. In the �rst cycle, the �ow ungates the clock; in
the second cycle, the snoop requests simultaneously 1) access
the cache tags (power-ungated), and 2) wake-up the cache
data array [70, 72–74]. Placing the L1/L2 in sleep-mode and
clock-gating L1/L2 caches c after servicing the snoop tra�c
b takes 1 – 3 cycles.

5.3. Staggered Unit Wake-up
As discussed in Sec. 3, rapid wake-up of a power-gated domain
can result in a sudden increase in current demand (in-rush
current) [50–53], which can damage a chip. Intel Skylake
core’s AVX power-gating mitigates this by staggering the AVX
un-gating over ∼15ns [26][35, Sec. 5]. AW can exacerbate in-
rush current e�ects, since during C6A / C6AE exit it wakes up

7Typically, a power management controller of a modern SoC operates
at a frequency of several hundred MHz (e.g., 500MHz [108]) to handle
nanosecond-scale events, such as di/dt noise[26][35, Sec. 5].

a power-gated domain (i.e., UFPG, the red shaded area in Fig.
4) that has approximately 4.5× the area and capacitance of the
AVX units [78]. We avoid this issue by dividing the UFPG area
into �ve zones, each with a local power-gate controller (as
in Fig. 2). Each of the �ve controllers has a zone sleep signal
(SlpZonei) that is controlled by the core PMA. The PMA
sequentially wakes up the �ve domains using the SlpZonei

signals. Since each of the �ve zones has a smaller area than
the AVX power-gated units, staggering the wake up of each
zone over ≤15ns (i.e., same as AVX units) keeps the in-rush
current within limits [50, 52, 102]. Hence, waking up all �ve
domains, which have ∼4.5× the area and capacitance of the
AVX units, takes approximately <70ns (67.5 = 4.5 × 15ns).

Several prior works propose nanosecond-scale staggered
power-gate wake-up for di�erent units, including the entire
core. Table 4 summarizes some of these works.

5.4. Design Complexity and E�ort
AW techniques involve non-negligible front-end and back-
end design complexity and e�ort. Even though medium-
grained power-gates of UFPG are less invasive than �ne-
grained power-gating, they still require signi�cant back-end
(e.g., power-delivery, �oor-planning, place and route) e�ort.
Moreover, the CCSM and the C6A/C6AE control �ows require
careful pre-silicon veri�cation to ensure that all the hard-
ware �ows (Fig. 6) operate according to the architectural
speci�cation. The complexity and e�ort can be even worse
if a processor vendor chooses to have two separate designs
for client and server to remove AW’s overhead from client
systems.

Nonetheless, AW complexity and e�ort are comparable to
recent techniques implemented in modern CPUs to increase
energy-e�ciency, such as hybrid cores [112, 113]. There-
fore, once there is a strong demand from customers and/or
pressure from competitors, CPU vendors can implement an
architecture similar to AW to signi�cantly increase server
energy e�ciency.

5.5. AW Bene�ts to AMD Processors
Despite having a hierarchical design, which uses chiplet dies
(CCDs) and clusters of CPU cores (CCXs) within each CCD
[197], AMD’s modern server processors still su�er from the
same issues that we pointed out in Sec. 2. Since the latency
to enter/exit a CPU core deep idle state is tens or hundreds of
microseconds [197], server vendors recommend disabling the
deep idle C-state (Global C-State Control in BIOS) in AMD
EPYC Rome/Milan-based servers to reduce performance im-
pact [198–200]. Therefore, despite the capability to place
individual idle cores (or even a cluster of cores) in a deep
low-power state, this capability is typically disabled in AMD
servers running latency-critical applications, which signif-
icantly increases the energy consumption of these servers
[198]. AW can mitigate this issue by providing a low-power
C-state with nanosecond-scale transition latency.

8

Table 3: Area and power requirements to implement AW in an Intel Skylake-like core.

Component Sub-Component Area Requirement C6A Power C6AE Power

Units’ Fast
Power-Gating
(UFPG)

Unit power-gates (∼70% of the core) 2 – 6% of power-gated area ∼30 – 50mWα ∼18 – 30mW α

Ungated context registers <1% of ungated context registers
∼2mWβ ∼1mWβState retention power-gates (SRPG) <1% of gated unit area

Ungated context SRAM <1% of SRAM area

Cache Coherence &
Sleep Mode (CCSM)

L1/L2 caches in sleep-mode 2 – 6% of private cache area 55mWγ 40mWγ δ

The rest of the memory subsystem <1% of the ungated units 55mWγ 33mWγ

PMA Flow Implemented in the uncore [75] <5% of core PMA [24] 5mW ε 5mW ε

Core ADPLL & FIVR
ADPLL 0% 7mW [26] 7mW [26]
Core FIVR ine�ciency 0% 36mW – 41mWζ 23mW – 27mWζ

FIVR static losses 0% 100mWη 100mWη

Overall 3 – 7% of the core area 290 –315mW 227 –243mW

αAssuming 3 – 5% [76] of leakage power ≈ C1 power. βPower of the ∼8KB context [24]. γL1+L2 size is ∼1.1MB; power from [98]
in 22nm scaled to 14nm based on [99]. δHigher sleep-transistor e�ciency at Vmin (C6AE) [91, 100, 101]. εBased on scaled wake-up
logic power from [24]. ζAssuming 80% FIVR e�ciency in light load [41, 90, 91]. ηFIVR static losses [41, 91, 104] in C6 state are
∼100mW [38].

Table 4: Comparison of Core Power-gating Schemes

Technique Core Type Power-gating Trigger Power-gated Blocks Wake-up Overhead

[109] In-order CPU Cache miss Register �le 5 cycles
[102] In-order CPU Cache miss Core 10ns
[47] OoO CPU Execution unit idle Execution units 9 cycles
[110] OoO CPU Register �le bank idle Register �le bank 17 cycles
[111] GPU Register subarray unused Register subarray 10 cycles
[35] OoO CPU AVX execution unit idle Intel AVX execution unit ∼10-15ns
AW (This work) OoO CPU Core idle Most of core units ∼70ns

6. Experimental Methodology

6.1. Workloads and Experimental Setup
We evaluate AW using three latency-critical applications:
Memcached, Apache Kafka, and MySQL. Memcached [114] is
a lightweight key-value store that is widely deployed as a
distributed caching service to accelerate user-facing applica-
tions with stringent latency requirements [115–117]. Mem-
cached has been the focus of numerous studies [3, 118–122],
including e�orts to provide low microsecond-scale tail la-
tency [104, 115, 123–132]. Kafka [133] is a real-time event
streaming platform that is used to power event-driven mi-
croservices and stream processing applications. MySQL [188]
is a widely-used relational database management system.

Our baseline server is equipped with two Intel Xeon Sil-
ver 4114 [134] Skylake-based processors running at a base
frequency of 2.2 GHz (minimum frequency of 0.8 GHz and
maximum Turbo Boost frequency of 3 GHz), with 10 phys-
ical cores for a total of 20 hyper-threads, and with 192 GB
DDR4 DRAM. We use a cluster of six server machines to
run the Memcached, Kafka, and MySQL services and corre-
sponding workload clients. For evaluating Memcached, we
run a single Memcached server process on one of the server
machines and run a modi�ed version of the Mutilate load
generator [122] for Memcached on the remaining �ve server

machines. We con�gure the load generator to recreate the
ETC workload from Facebook [135], using one master and
four workload-generator clients, each running on a separate
server machine. For evaluating Apache Kafka, we run a single
Kafka server process on one server machine and run the Con-
sumerPerformance and ProducerPerformance Kafka tools on
another server machine. For evaluating MySQL, we run a
single MySQL server process on one server machine and run
the sysbench benchmarking tool with the OLTP test pro�le
on another server machine. In all cases, we pin the processes
to speci�c cores to minimize the impact of the OS scheduler.

6.2. Power and Performance Model

We model the average power of a core using the fraction
of time spent at each unique C-state and its corresponding
power consumption. Similar to prior works [4, 16, 28, 31, 104,
136–139], we focus on CPU power which is the single largest
contributor to server power [140, 141]. Next, we describe our
models for the baseline and AW.
Modeling the Baseline CPU Core. Our analytical power
model estimates the average CPU core power (AvgP) for a
workload, assuming P-states/Turbo are disabled, as follows:

AvgP =
∑

i∈{0,1,1E,6} PCi ×RCi (2)

9

PCi denotes the core power in state Ci (reported in Table
1). RCi

denotes the residency at Ci, i.e., the percentage of
the total time the system spends at state Ci. We obtain C-
state residency and number of transitions using processor’s
residency reporting counters [142]. When executing our
workloads, we use the RAPL interface [143] to measure power
consumption.
Modeling the AW CPU Core. We model the power con-
sumption of the CPU core enhanced with the two new C-
states of AW (i.e., C6A and C6AE) using 1) measured data
from our baseline power model; C-state residency is scaled
using our performance model (more details below), and 2)
estimated power of the C6A and C6AE, as summarized in
Table 3. C6A and C6AE C-states of AW replace the C1 and
C1E, respectively, as follows:

AvgP =
∑

i∈{0,6A,6AE,6} PCi ×RCi (3)

Therefore, for a given workload, we perform the following
steps. 1) We obtain the power and residency of each core
C-state from the baseline. We scale the C-state residency tak-
ing into account i) how the small core frequency degradation
incurred due to the power-gates (Sec. 5.1.1) a�ects perfor-
mance by considering a workload’s frequency scalability8

and ii) the higher C6A/C6AE transition latency (i.e., 100ns;
Sec. 5.2) compared to C1/C1E. 2) We replace C1/C1E C-
state residency (i.e., RC1 /RC1E

) with C6A/C6AE C-state
residency (i.e.,RC6A

/RC6AE
). 3) We replace C1/C1E power

consumption (i.e., PC1 /PC1E
) with C6A/C6AE estimated

power consumption (i.e., PC6A
/PC6AE

, in Table 3). We plug
in the new values to estimate the average AW CPU core
power.

To estimate AW’s average power for workloads with Turbo
enabled (and P-state disabled), we use the following Equation:

AvgPsavings = RC1 × (PC1 − PC6A
) +RC1E

× (PC1E
− PC6AE

)

AvgPsavings% = (AvgPsavings/AvgPbaseline) × 100 (4)

where we measureAvgPbaseline using RAPL. Doing so allows
our model to take into account power consumption variation
during C0 active state due to Turbo transitions.

6.3. Power Model Validation
The power consumption at each processor C-state and fre-
quency step (i.e., P1 and Pn) is collected from measurements
of real systems based on the Intel Skylake CPU [36], which
is shown in Table 1. To validate our model, we run four
representative server workloads: SPECpower [147], Nginx
[148], Spark [189], and Hive [190] at multiple CPU utiliza-
tion levels. We measure average power consumption and
collect core C-states residencies and transitions for each run.
We use our analytical power model to estimate the average
power consumption of these workloads. Then, we compare

8We de�ne the frequency scalability of a workload as the change in its
performance with unit change in frequency, as in [107, 144–146].

the measured vs. estimated average power. We �nd that the
accuracy of our model is 96.1% / 95.2% / 94.4% / 94.9% for
SPECpower / Nginx / Spark / Hive workloads, respectively.

7. Evaluation
We �rst evaluate AW using the Memcached [114] workload.
In Sec. 7.4 we evaluate AW with two more workloads.

7.1. Power Savings and Overhead at Varying Load
Levels

Fig. 8 shows how AW a�ects power consumption and request
latency against the baseline with P-states disabled (i.e., fre-
quency is set to base frequency, P1) and C-states and Turbo
enabled. We expect AW to achieve signi�cant power sav-
ings, thanks to the lower power of C6A/C6AE compared
to C1/C1E, while having a small impact on request latency
because of the larger transition time (∼100ns) and the ∼1%
frequency loss (Sec. 5.1.1). While the larger transition time
impacts each C-state transition, the impact of the frequency
loss depends on the sensitivity of the workload to the core
frequency reduction.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

10 50 100 200 300 400 500

Pe
rf

. d
eg

ra
d

at
io

n
 (

%
)

Request Rate (KQPS)

Worst case end-to-end

Worst case server side

Expected case end-to-end

Expected case server side

0%

10%

20%

30%

40%

50%

60%

10 50 100 200 300 400 500

Pe
rf

. S
ca

la
b

ili
ty

 (
%

)

Request Rate (KQPS)

0%

20%

40%

60%

80%

100%

10 50 10
0

20
0

30
0

40
0

50
0C
-s

ta
te

 R
es

id
en

cy
 (

%
)

Request Rate (KQPS)

C0 C1 C1E C6

23.…

0.5…

0.8…

0.0%

0.5%

1.0%

0%

10%

20%

30%

40%

10 50 10
0

20
0

30
0

40
0

50
0

A
vg Pe

rf
. d

eg
ra

d
at

io
n

 (
%

)

A
vg

P
 R

ed
u

ct
io

n
 (

%
)

Request Rate (KQPS)

Power Avg Lat. Tail Lat.

(a) (b)

(c) (d)

Figure 8: Comparison of AW against the baseline con�gura-
tion (P-state disabled, Turbo enabled, C-state enabled) with
varying request rates. (a) Residency of the baseline system
at di�erent C-states. (b) AW core average power (AvgP) re-
duction and average/tail latency degradation when replac-
ing C1/C1E with C6A/C6AE. (c) Average response time
degradation. (d) Performance scalability when increasing
frequency from 2GHz to 2.2GHz.

Fig. 8(a) shows the residency of the system in each C-state:
as expected, idle time progressively reduces as load (queries
per second – QPS) increases. Therefore, we expect AW to
have larger power savings and lower impact on performance
at low load. Indeed, Fig. 8(b) shows that AW reduces the
average power consumption by up to 38% at low load, with
less than 1% impact on both average and tail latency. At high
load, AW still provides 10% power savings, with less than
1.3% impact on tail latency. For reference, Fig. 8(d) shows
the performance scalability of Memcached to increasing core
frequency from 2 GHz to 2.2 GHz (Sec. 6.2).

10

Fig. 8(c) further analyzes the impact of AW on average
response time. We consider end-to-end (including network
latency measured at 117us) and server-side response time
for two cases: the worst case, where we assume a C-state
transition for each query and the expected case, with the ac-
tual C-state transitions observed in the baseline. As expected,
the gap between the worst and the expected case is larger at
high load, since multiple queries are serviced within the same
active period. We also observe that the degradation of the
end-to-end response time (i.e., by client) is negligible because
the (non-changing) network latency dominates the overall
response time.

Google states in their paper that discusses latency-critical
applications [28]: “Modern servers are not energy propor-
tional: they operate at peak energy e�ciency when they are
fully utilized, but have much lower e�ciencies at lower uti-
lizations”. The utilization of servers running latency-critical
applications is only 5%–25% to meet target tail latency re-
quirements, as reported by multiple works from academia
and industry [28, 184–187]. For example, recently, Alibaba re-
ported that the utilization of servers running latency-critical
applications is typically 10% [187]. Therefore, our AW pro-
posal addresses the more ine�cient aspect of modern servers:
running latency-critical microservice-based applications at
low utilization.

We conclude that AW signi�cantly reduces core average
power consumption of the Memcached service across vari-
ous load levels with minimal performance overhead over the
baseline when disabling P-states and enabling Turbo.

7.2. Commonly-Used Con�gurations

Server vendors provide recommended system con�gura-
tions [149–151], such as disabling certain C-states to increase
system performance or disabling Turbo Boost [75, 152] to
reduce power consumption. We analyze three common con-
�gurations by modifying our baseline (which has P-states
disabled and Turbo and C-states enabled) by successively
disabling Turbo, C6, and C1E. Before analyzing the impact
of AW on these three tuned con�gurations, we study them
individually.

Fig. 9 reports latency (average and tail), package power con-
sumption, and C-state residency for the three tuned con�g-
urations. We observe that NT_No_C6,No_C1E has the lowest
average and tail latency, but also the highest average power
across the entire range of request rates. At 500 KQPS, this
con�guration has ∼5% and ∼27% lower average and tail la-
tency, respectively, but also has ∼7% higher average package
power than the other two con�gurations. Latency improves
because disabling C1E reduces the long transition overhead
of C1E (i.e., 10µs, shown in Table 1), in contrast to the other
two con�gurations that spend signi�cant time in C1E, as

200.0

400.0

0 100 200 300 400 500

Ti
m

e
(u

s)

Request Rate (KQPS)

NT_Baseline NT_No_C6 NT_No_C1E,No_C6

174.8 168.7

154.7
160.5

125

150

175

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

La
te

n
cy

 (
u

s)

Request Rate (KQPS)

326.2
507.4

253.2
370.1

200

300

400

500

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

La
te

n
cy

 (
u

s)

Request Rate (KQPS)

57.1

69.8
62.0

74.3

55

65

75

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

Po
w

er
 (

W
)

Request Rate (KQPS)

0%
20%
40%
60%
80%

100%

N
T_

B
as

el
in

e
N

T_
N

o
_C

6
N
T_

N
o
_C

1
E,
N
o
…

N
T_

B
as

el
in

e
N

T_
N

o
_C

6
N
T_

N
o
_C

1
E,
N
o
…

N
T_

B
as

el
in

e
N

T_
N

o
_C

6
N
T_

N
o
_C

1
E,
N
o
…

N
T_

B
as

el
in

e
N

T_
N

o
_C

6
N
T_

N
o
_C

1
E,
N
o
…

N
T_

B
as

el
in

e
N

T_
N

o
_C

6
N
T_

N
o
_C

1
E,
N
o
…

N
T_

B
as

el
in

e
N

T_
N

o
_C

6
N
T_

N
o
_C

1
E,
N
o
…

N
T_

B
as

el
in

e
N

T_
N

o
_C

6
N
T_

N
o
_C

1
E,
N
o
…

10 50 100 200 300 400 500

C
-s

ta
te

 R
es

id
e

n
cy

 (
%

)

Request Rate (KQPS)

C0 C1 C1E C6

Avg Lat. Tail Lat. Pkg Power

(a) (b) (c)

(d)

Figure 9: Analysis of three variants of the baseline con�gu-
ration (NT_Baseline disables Turbo, NT_No_C6 disables Turbo
and C6, NT_No_C6,No_C1E) disables, Turbo, C6, and C1E) on
(a) Average latency, (b) Tail latency, (c) Package power con-
sumption, (d) C-state residency at increasing load level. All
con�gurations have P-states disabled.

shown in Fig. 9(d).9 However, disabling C1E also increases
average power consumption because, as shown in Fig. 9(d),
the core now spends more time in C1 (the shallower C-state),
which has ∼63% higher power than C1E, as shown in Table
1. This analysis shows that a new C-state that consumes
similar (or lower) power to C1E but with a transition time
that is close to C1 can provide a low average and tail latency
with reduced power consumption. Next, we show that our
newly proposed C-state, C6A, achieves this balance.

Fig. 10 shows the power reduction and performance (tail
and average latency) improvement of AW over the three
tuned con�gurations. We observe that AW signi�cantly re-
duces power consumption against all three tuned con�gura-
tions. The reason is that, in these workloads AW replaces
the time that other con�gurations spend in C1/C1E with
the C6A/C6AE C-states, which have much lower power.
Second, AW reduces average/tail latency by up to 5%/26%
and 4%/24% compared to NT_Baseline and NT_No_C6, re-
spectively, while only degrading performance by less than
1% compared to NT_No_C6,No_C1E. Based on this analysis,
we conclude that AW provides average and tail latencies
comparable to or better than the tuned con�gurations, while
reducing power consumption signi�cantly.

7.3. Analysis of Turbo Performance Improvement
To maximize performance, server vendors recommend to en-
able Turbo for better burst performance and disable C6 and

9We explain the irregular performance trends in Fig. 9 with the following
observations: at low load, the cores enter C6 state, which increases the
query response latency by the latency overhead required to transition from
C6 to the C0 active state. As the load increases, two phenomena occur: 1)
fewer transitions to C6 state and 2) queueing e�ects. In the mid-range load,
there are fewer queueing e�ects and fewer transitions to C6 and that’s why
the latency is lowest, whereas at high load, even though the transitions to
C6 are the lowest, the latency is dominated by queueing e�ects.

11

23.5%

28.6%

35.3%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

0%

10%

20%

30%

40%

50%

60%

70%

80%

1
0

5
0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

A
vg

La
te

n
cy

 R
ed

u
ct

io
n

 (
%

)

A
ve

ra
ge

 P
o

w
er

 R
ed

u
ct

io
n

 (
%

)

Request Rate (KQPS)

NT_Baseline AvgP. NT_No_C6 AvgP. NT_No_C1E,No_C6 AvgP.
NT_Baseline Avg Lat. NT_Baseline Tail Lat. NT_No_C6 Avg Lat.
NT_No_C6 Tail Lat. NT_No_C1E,No_C6 Avg Lat. NT_No_C1E,No_C6 Tail Lat.

Figure 10: Power reduction and average/tail latency re-
duction of AW over baseline (P-state disabled, C-state en-
abled) with Turbo disabled (NT_Baseline), Turbo and C6
disabled (NT_No_C6), and Turbo, C6 and C1E disabled
(NT_No_C6,No_C1E) across di�erent request rates (QPS).

C1E to avoid their transition latency [149–151]. However,
server vendors also note that disabling C1E can hamper per-
formance since the processor is kept at high power, thereby
not gaining enough thermal capacitance needed during Turbo
Boost periods [40, 75, 151–153]. Therefore, current C-state ar-
chitectures cannot bene�t from removing theC1E transition
overhead and enabling Turbo. In this section, we demonstrate
that AW achieves high Turbo performance while eliminating
the C1E performance overhead.

Fig. 11 shows the average and tail request latency for four
con�gurations that combine enabling/disabling Turbo and
the C1E and C6 C-states and highlight the e�ect of C-states
on Turbo performance, compared to AW’s C6A state with
and without Turbo.

We make three key observations. First, Fig. 11(a,c) show
that the con�guration with only Turbo and C6 disabled (i.e.,
NT_No_C6) increases the average/tail latency performance by
up to 4%/31% over the con�guration with all of Turbo, C6,
and C1E disabled (i.e., NT_No_C6,No_C1E). Second, compar-
ing Figs. 11(c) and (d) shows that enabling Turbo while dis-
abling C1E (i.e., T_No_C6,No_C1E) does not improve perfor-
mance over the same con�guration with Turbo disabled (i.e.,
NT_No_C6,No_C1E). Third, Figs. 11(b,d) show that with Turbo
enabled, only disablingC6 (i.e., T_No_C6) has the same perfor-
mance as additionally disabling C1E (i.e., T_No_C6,No_C1E).
The reason is that in the T_No_C6 con�guration, the tran-
sition overhead of C1E on average/tail latency o�sets any
thermal capacitance gains and ensuing performance gains
from Turbo.

We conclude that in a con�guration where both C6 and
C1E are disabled while Turbo is enabled, large performance
bene�ts can be obtained by enabling C6A instead of C1,
i.e., T_C6A,No_C6,No_C1E. Doing so provides larger thermal
capacitance to Turbo compared to enablingC1E, and reduces
the long transition latency overhead of C-states (i.e., C6 and
C1E). We illustrate the potential bene�ts of Turbo with AW
in Figs. 11(b,d) (dashed green line).

0

100

200

300

400

500

0 200 400 600

T_C6A,No_C6,No_C1E

T_No_C6

T_No_C1E,No_C6

100

110

120

130

140

150

160

170

0 200 400 600

NT_C6A,No_C6,No_C1E

NT_No_C6

NT_No_C1E,No_C6

200

250

300

350

400

450

500

0 100 200 300 400 500

Ti
m

e
(u

s)

Request Rate (KQPS)

No Turbo - Tail Latency

31%

125

130

135

140

145

150

155

160

165

170

0 100 200 300 400 500

Ti
m

e
(u

s)

Request Rate (KQPS)

No Turbo - Avg Latency

4%

125

130

135

140

145

150

155

160

165

170

0 100 200 300 400 500

Ti
m

e
(u

s)

Request Rate (KQPS)

Turbo - Avg Latency

4%

200

250

300

350

400

450

500

0 100 200 300 400 500

Ti
m

e
(u

s)

Request Rate (KQPS)

Turbo - Tail Latency

31%

(a) (b)

(c) (d)

Figure 11: Average and tail latency at di�erent request rates
(QPS) for four con�gurations that show the e�ect of idle
power state on Turbo performance: Turbo/No-Turbo & C6
disabled (T_No_C6/NT_No_C6), Turbo/No-Turbo & C6 & C1E
disabled (T_No_C6,No_C1E/NT_No_C6,No_C1E), compared with
AW: Turbo/No-Turbo & C6A enabled & C6 & C1E disabled
(T_C6A,No_C6,No_C1E/NT_C6A,No_C6,No_C1E).

7.4. Analysis of Additional Workloads

Fig. 12 shows the evaluation of MySQL [188], a latency-critical
workload, for three request rates (low, mid, and high). Fig.
12(a) and 12(b) show the C-state residency of the baseline
con�guration (P-states disabled,C1 andC6 C-states enabled)
and baseline with C6 disabled, respectively.

0%

50%

100%

lo
w

m
id

h
ig

h

C
-s

ta
te

 R
es

id
en

cy
 (

%
)

Request Rate

C0 C1 C6

0%
20%
40%
60%
80%

100%

low mid high

C
-s

ta
te

 R
es

id
en

cy
 (

%
)

Request Rate

0%

20%

40%

60%

80%

100%

lo
w

m
id

h
ig

h

C
-s

ta
te

 R
es

id
en

cy
 (

%
)

Request Rate

0%
10%
20%
30%
40%
50%
60%

lo
w

m
id

h
ig

hA
vg

P
 R

ed
u

ct
io

n
 (

%
)

Request Rate

0%

5%

10%
lo

w

m
id

h
ig

h

La
te

n
cy

 R
ed

u
ct

io
n

 (
%

)

Request Rate

Tail Lat. Avg Lat.

(a) (b) (c) (d)

Figure 12: Evaluation of MySQL [188] for low, mid and high
request rates. (a) C-state residency of baseline and (b) with
disabled C6 (c) Tail and average latency reduction with C6
disabled (d) average power reduction with AW’s C6A as com-
pared to C6 disabled.

While for all request rates the baseline has ≥40% C6 res-
idency, Fig. 12(c) shows that the tail and average latency
is signi�cantly (4%–10%) improved when we disable C6.
Therefore, the recommended con�guration is to disable C6
(Fig. 12(b)) to avoid its high transition latency. Fig. 12(d)
shows signi�cant (22%–%56) average power reduction from
AW’s C6A as compared to a C6-disabled con�guration (i.e.,
C1 residency in Fig. 12(b) mapped to C6A).

Fig. 13 shows the evaluation of Kafka [133], another
latency-critical workload for two request rates (low and high).

12

Fig. 13(a) and 13(b) show the C-state residency of the baseline
con�guration (P-state disabled, C1 and C6 C-state enabled)
and baseline with C6 state disabled, respectively.

0%

50%

100%
lo

w

m
id

h
ig

h

C
-s

ta
te

 R
es

id
en

cy
 (

%
)

Request Rate

C0 C1 C6

0%

20%

40%

60%

80%

100%

Lo
w

H
ig

h

C
-s

ta
te

 R
es

id
en

cy
 (

%
)

Request Rate

0%

20%

40%

60%

80%

100%

Lo
w

H
ig

h

C
-s

ta
te

 R
es

id
en

cy
 (

%
)

Request Rate

0%

5%

10%

lo
w

h
ig

h

La
te

n
cy

 R
ed

u
ct

io
n

 (
%

)

Request Rate

Tail Lat. Avg Lat.

0%
10%
20%
30%
40%
50%
60%

low high

A
vg

P
 R

ed
u

ct
io

n
 (

%
)

Request Rate

(a) (b) (c) (d)

Figure 13: Evaluation of Kafka [133] for low and high request
rates. (a) C-state residency of baseline and (b) disabled C6
(c) Tail and average performance improvement with disabled
C6 (d) average power reduction with AW’s C6A as compared
to C6 disabled.

At a low request rate, the baseline has>60%C6 residency.
As shown in Fig. 13, disabling the C6 state improves the
tail and average latency by 4%–5%. The high request rate
point does not show a performance improvement since at
high rates Kafka workload does not enter the C6 state. Fig.
13(d) shows>56% average power reduction, for both request
rates, by using AW’s C6A (i.e., C1 residency is mapped to
C6A) compared to having C6 disabled (shown in Fig. 13(b)).

We conclude that AW with disabled P-states and enabled
Turbo signi�cantly improves core average power for the
MySQL and Kafka workloads as compared to the baseline.

7.5. Impact of High Snoop Tra�c

To understand the impact of high snoop rate on AW power
savings, we analyze the power consumption di�erence be-
tween baseline and AW while handling snoops. If a snoop
arrives in baseline, then the system clock-ungates the L1/L2
subsystem (additional ∼50mW to coreC1 state) and handles
the snoops. In AW, L1/L2 exit the sleep mode and handle
the snoops. The power di�erence, therefore, is mainly the
L1/L2 exit from sleep mode (additional ∼120mW to C6A).
To calculate an upper bound on power savings opportunity
of AW compared to baseline with and without snoops, we
assume a 100% idle core where the C1 (C6A) state is the
only state that is enabled (i.e., RC1 = RC6A = 100%). If the
core does not handle any snoop then AW power savings are
(PC1 − PC6A)/PC1 = 1.44 − 0.3)/1.44 = 79%. In case the
core is handling snoops all the time during C1 (C6A) AW
power savings are (1.49 − 0.470)/1.49 = 68%. Therefore,
in the worst case we lose an 11% power savings opportunity
in case of high snoop tra�c.

7.6. Data Center Cost Savings Analysis

AW enables signi�cant power reduction even during short
bursts of core idleness that are infeasible using existing core C-
states. In a data-center context, all else being equal, AW power
savings translate to lower operational cost since less energy

is consumed during periods that cores enter the AW idle C-
states as compared to residing in the shallower legacy C-states.
AW does not reduce cooling capital expenses since it does not
reduce the TDP of a CPU, which can be reached during times
where a CPU has high utilization and cores do not enter idle
states. As a result, a data-center that employs servers with
CPUs supporting AW will need to provision for the worst-
case cooling needs as with CPUs with only legacy C-states.
Table 5 shows AW cost savings10 from operating a CPU during
a year at di�erent load levels, assuming the CPU is running
a Memcached workload. The savings range between 0.33 to
0.59 million dollars per year per 100K servers. These savings
grow proportionally to the data-center PUE [195]. Besides
CPU energy savings, AW’s lower idle power translates to
lower time-averaged power and lower temperature that can
extend a server’s lifetime (by slowing down aging) and lower
maintenance costs [195]. A more detailed analysis of these
aspects is beyond the scope of this work.
Table 5: AW Yearly Cost Savings (in $M) per 100K Servers

QPS 10K 50K 100K 200K 300K 400K 500K
Savings ($M/100K Servers) 0.33 0.59 0.58 0.53 0.47 0.41 0.34

8. Related Work
As far as we know, this is the �rst work to introduce a very
low power processor core power-state (i.e., deep idle C-state)
that provides both low transition latency and low power con-
sumption. While low server e�ciency for latency-critical
workloads has been studied before, previous work proposed
management and scheduling techniques to mitigate the prob-
lem, rather than addressing it directly (i.e., with a fast yet
low-power processor core power state).
Modern Cloud Applications. Interactive latency-sensitive
cloud applications are gradually shifting to a modular ar-
chitecture based on loosely-coupled microservices to meet
their software maintenance, scalability, and availability re-
quirements [192–194]. However, the decoupled nature of
microservices exacerbates the strict tail latency requirements
of such applications.

Recent work [187] that characterizes large-scale deploy-
ments of microservices at Alibaba clusters shows that servic-
ing a single user request may involve tens or even hundreds of
microservices. With each microservice contributing a small
amount of service time, together these can add up to a signi�-
cant end-to-end service latency. Memcached appears in a sig-
ni�cant fraction of microservices’ call graphs due to its ability
to reduce the time to retrieve hot data from databases, mak-
ing Memcached an important and latency critical component.
The same Alibaba study also reveals that to meet the stringent
tail latency requirements of microservices, Alibaba servers
running latency-sensitive microservices typically operate at
10% utilization. This follows previous reports from industry

10The cost savings per server are calculated as (Average_Baseline_Power
– Average_AW_Power) x Seconds_in_Year x Cost_per_Joule (assuming
$0.125/KWh [196]).

13

and academia that the utilization of servers running latency-
sensitive applications is typically 5%–20% [28, 154, 184–187].
Servers at low utilization, however, have traditionally su�ered
from poor energy e�ciency, partly because servers running
latency-sensitive tasks at low utilization also disable deep C-
states to avoid the tens or hundreds of microseconds penalty
of transitioning out of such deep C-states [149, 150]. This
emphasizes the need for deep C-states with low transition
latency and high power savings.
Fine-grained, Latency-Aware DVFS Management. Be-
sides C-states, the other major power-management feature of
modern processors is dynamic voltage and frequency scaling
(DVFS). Previous work proposes �ne-grained DVFS control
to save power, while avoiding excessive latency degradation.
Rubik [136] scales core frequency at sub-millisecond scale
based on a statistical performance model to save power, while
meeting a target tail latency. Swan [155] extends this idea
to computational sprinting [156–159] (e.g., Intel Turbo Boost
[40, 75, 152]): requests are initially served on a core operating
at low frequency and, depending on the load, Swan scales
up the frequency (including sprinting levels) to catch up and
meet latency requirements. NMAP [160] focuses on the net-
work stack and leverages transitions between polling and
interrupt modes as a signal to drive DVFS management. The
new C6A state of AW facilitates the e�ective use of idle states
and could make a simple race-to-halt approach [8, 161–165]
more attractive than complex DVFS management techniques.
Workload-Aware Idle State Management. Various pro-
posals exist for techniques that pro�le incoming request
streams and use that pro�le information to improve power
management. SleepScale [166] is a runtime power manage-
ment technique that selects the most e�cient C-state and
DVFS setting for a given QoS constraint based on work-
load pro�ling information. WASP [167] proposes a two-level
power management framework; the �rst level tries to steer
bursty request streams to a subset of servers, such that other
machines can leverage deeper, longer-latency idle states; the
second level adjusts local power management decisions based
on workload characteristics such as job size, arrival pattern
and utilization. Similarly, CARB [16] packs requests into a
subset of cores, while limiting latency degradation, so that
the other cores have longer quiet times and can transition
to deeper C-states. The idea of packing requests into a sub-
set of active cores, to extend idle periods on other cores is
explored by work focusing on both C-state and DVFS man-
agement [4, 31, 104]. These proposals are orthogonal to AW:
while C6A can provide most of the bene�ts of a deep idle
state at a much lower latency, advanced and workload-aware
sleep management techniques can still bring extra power
savings by enabling cores and/or system to enter traditional
deeper, higher-latency C-states [9, 29, 168–170]. Memory
power management techniques [23, 171–183] have also been
proposed to reduce system energy consumption and they are
complementary to our work.

9. Conclusion
To our knowledge, AgileWatts (AW) is the �rst deep idle
core power-state architecture that directly reduces the transi-
tion latency to/from very low power states, with the goal of
improving the energy e�ciency of servers running latency-
critical datacenter workloads. Our evaluation reveals that
AW realizes power savings of up to 71% per core with <1%
end-to-end performance degradation. These results support
the adoption of AW in future datacenter server CPUs running
latency-critical applications and calls for further research into
lowering the latency of deep idle states.

Acknowledgments
We thank the anonymous reviewers of ISCA 2022 and MICRO
2022 for their constructive critique and feedback. We thank
the SAFARI Research Group members for valuable feedback
and the stimulating intellectual environment they provide.

References
[1] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan,

“Attack of the killer microseconds,” Communications of
the ACM, 2017.

[2] L. A. Barroso, U. Hölzle, and P. Ranganathan, “The
Datacenter as a Computer: Designing Warehouse-scale
Machines,” Synthesis Lectures on Computer Architecture,
vol. 13, no. 3, pp. i–189, 2018.

[3] G. Prekas, M. Kogias, and E. Bugnion, “Zygos: Achiev-
ing low tail latency for microsecond-scale networked
tasks,” in SOSP, 2017.

[4] C.-H. Chou, L. N. Bhuyan, and D. Wong, “µDPM: Dy-
namic Power Management for the Microsecond Era,”
in HPCA, 2019.

[5] S. Cho, A. Suresh, T. Palit, M. Ferdman, and N. Hon-
armand, “Taming the Killer Microsecond,” in MICRO,
2018.

[6] N. Dmitry and S.-S. Manfred, “On Micro-Services Ar-
chitecture,” INJOIT, 2014.

[7] C. Gough, I. Steiner, and W. Saunders, “CPU Power
Management,” in Energy E�cient Servers: Blueprints for
Data Center Optimization, 2015.

[8] J. Haj-Yahya, A. Mendelson, Y. B. Asher, and A. Chat-
topadhyay, “Power Management of Modern Proces-
sors,” in EEHPC, 2018.

[9] G. Antoniou, H. Volos, D. B. Bartolini, T. Rollet, Y. Sazei-
des, and J. H. Yahya, “AgilePkgC: An Agile System Idle
State Architecture for Energy Proportional Datacenter
Servers,” arXiv preprint arXiv:2204.10466, 2022.

14

[10] Intel Corporation, “CPU Idle Time Management.” ac-
cessed Feb 2022, https://bit.ly/3Lz1SM3.

[11] A. Rogers, D. Kaplan, E. Quinnell, and B. Kwan, “The
Core-C6 (CC6) Sleep State of the AMD Bobcat x86
Microprocessor,” in ISLPED, 2012.

[12] R. Schöne, D. Molka, and M. Werner, “Wake-up Laten-
cies for Processor Idle States on Current x86 Processors,”
Computer Science-Research and Development, 2015.

[13] R. Schöne, T. Ilsche, M. Bielert, A. Gocht, and
D. Hackenberg, “Energy E�ciency Features of the In-
tel Skylake-SP Processor and Their Impact on Perfor-
mance,” in HPCS, 2019.

[14] Intel, “Intel Atom Processors Z5xx Series,” 2010,
https://intel.ly/3bw9qP3.

[15] Intel Corporation, “Intel Idle driver for Linux.” accessed
Feb 2022, https://bit.ly/3GKRJbK.

[16] X. Zhan, R. Azimi, S. Kanev, D. Brooks, and S. Reda,
“CARB: A C-state Power Management Arbiter for
Latency-critical Workloads,” CAL, 2016.

[17] Wikichip, “Skylake (server) - Microarchitectures - In-
tel,” online, accessed November 2021 https://bit.ly/
2MHEWkj.

[18] A. Kumar and M. Trivedi, “Intel Xeon Scalable Proces-
sor Architecture Deep Dive,” in Intel Press Workshops,
2017, https://bit.ly/3w0cTyU.

[19] Anandtech, “The Microsoft Surface Pro (2017) Review:
Evaluation,” 2020, https://bit.ly/2WCB3yZ.

[20] BAPCo, “MobileMark 2014,” Mar 2019,
https://bapco.com/products/mobilemark-2018.

[21] N. Kurd, M. Chowdhury, E. Burton, T. P. Thomas,
C. Mozak, B. Boswell, P. Mosalikanti, M. Neidengard,
A. Deval, A. Khanna, N. Chowdhury, R. Rajwar, T. M.
Wilson, and R. Kumar, “Haswell: A Family of IA 22 nm
Processors,” JSSC, 2014.

[22] C. C. Chi, M. Alvarez-Mesa, and B. Juurlink, “Low-
power high-e�ciency video decoding using general-
purpose processors,” TACO, 2015.

[23] J. Haj-Yahya, M. Alser, J. Kim, A. G. Yağlıkçı, N. Vijayku-
mar, E. Rotem, and O. Mutlu, “SysScale: Exploiting
Multi-domain Dynamic Voltage and Frequency Scaling
for Energy E�cient Mobile Processors.” ISCA, 2020.

[24] J. Haj-Yahya, Y. Sazeides, M. Alser, E. Rotem, and
O. Mutlu, “Techniques for Reducing the Connected-
Standby Energy Consumption of Mobile Devices,” in
HPCA, 2020.

[25] J. Haj-Yahya, J. Park, R. Bera, J. Gómez Luna, E. Rotem,
T. Shahroodi, J. Kim, and O. Mutlu, “BurstLink: Tech-
niques for Energy-E�cient Video Display for Conven-
tional and Virtual Reality Systems,” in MICRO, 2021.

[26] E. Fayneh, M. Yu�e, E. Knoll, M. Zelikson, M. Abozaed,
Y. Talker, Z. Shmuely, and S. A. Rahme, “4.1 14nm
6th-generation Core Processor SoC with Low Power
Consumption and Improved Performance,” in ISSCC,
2016.

[27] CPUbenchmark, “AMD vs Intel Market Share,” ac-
cessed Nov 2020, https://bit.ly/3kV6kWY.

[28] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis, “Towards Energy Proportionality for
Large-scale Latency-critical Workloads,” in ISCA, 2014.

[29] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap:
Eliminating Server Idle Power,” ASPLOS, 2009.

[30] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang,
M. Wasi-ur Rahman, N. S. Islam, X. Ouyang, H. Wang,
S. Sur, and K. D. Panda, “Memcached Design on High
Performance RDMA Capable Interconnects,” in ICPP,
2011.

[31] C.-H. Chou, D. Wong, and L. N. Bhuyan, “Dynsleep:
Fine-grained Power Management for a Latency-critical
Data Center Application,” in ISLPED, 2016.

[32] Intel, “Diagram for Skylake-SP core,” 2019,
https://intel.ly/3Ctjwfr.

[33] J. Mandelblat, “Technology Insight: Intel’s Next Gener-
ation Microarchitecture Code Name Skylake,” in Intel
Developer Forum, San Francisco, 2015.

[34] J. Reinders, “Intel AVX-512 Instructions,” Intel Software
Developer Zone, Jun, 2017.

[35] J. Haj-Yahya, J. S. Kim, A. G. Yaglikci, I. Puddu, L. Orosa,
J. G. Luna, M. Alser, and O. Mutlu, “IChannels: Ex-
ploiting Current Management Mechanisms to Create
Covert Channels in Modern Processors,” ISCA, 2021.

[36] S. M. Tam, H. Muljono, M. Huang, S. Iyer, K. Roy-
neogi, N. Satti, R. Qureshi, W. Chen, T. Wang, H. Hsieh,
S. Vora, and E. Wang, “SkyLake-SP: A 14nm 28-Core
Xeon® Processor,” in ISSCC, 2018.

[37] E. A. Burton, G. Schrom, F. Paillet, J. Douglas, W. J.
Lambert, K. Radhakrishnan, and M. J. Hill, “FIVR -
Fully integrated voltage regulators on 4th generation
Intel® Core™ SoCs,” in APEC, 2014.

[38] A. Nalamalpu, N. Kurd, A. Deval, C. Mozak, J. Douglas,
A. Khanna, F. Paillet, G. Schrom, and B. Phelps, “Broad-
well: A Family of IA 14nm Processors,” in VLSI Circuits,
2015.

15

https://bit.ly/2MHEWkj
https://bit.ly/2MHEWkj

[39] Intel, “Icelake, 10th Generation Intel®Core™Processor
Families,” July 2019, https://intel.ly/3frvxpK.

[40] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan,
and E. Weissmann, “Power Management Architecture
of the 2nd Generation Intel® Core Microarchitecture,
Formerly Codenamed Sandy Bridge,” in HotChips, 2011.

[41] J. Haj-Yahya, E. Rotem, A. Mendelson, and A. Chat-
topadhyay, “A Comprehensive Evaluation of Power De-
livery Schemes for Modern Microprocessors,” in ISQED,
2019.

[42] T. Singh, S. Rangarajan, D. John, C. Henrion,
S. Southard, H. McIntyre, A. Novak, S. Kosonocky,
R. Jotwani, A. Schaefer, E. Chang, J. Bell, and M. Co,
“3.2 Zen: A Next-generation High-performance× 86
Core,” in ISSCC, 2017.

[43] T. Singh, A. Schaefer, S. Rangarajan, D. John, C. Hen-
rion, R. Schreiber, M. Rodriguez, S. Kosonocky, S. Naf-
fziger, and A. Novak, “Zen: An Energy-E�cient High-
Performance −x86 Core,” JSSC, 2018.

[44] T. Burd, N. Beck, S. White, M. Paraschou, N. Kalyana-
sundharam, G. Donley, A. Smith, L. Hewitt, and S. Naf-
fziger, “Zeppelin: An SoC for Multichip Architectures,”
JSSC, 2019.

[45] N. Beck, S. White, M. Paraschou, and S. Na�ziger, “Zep-
pelin: An SoC for multichip architectures,” in ISSCC,
2018.

[46] Z. Toprak-Deniz, M. Sperling, J. Bulzacchelli, G. Still,
R. Kruse, S. Kim, D. Boerstler, T. Gloekler, R. Robertazzi,
K. Stawiasz, T. Diemoz, G. English, D. Hui, P. Muench,
and J. Friedrich, “5.2 distributed system of digitally
controlled microregulators enabling per-core DVFS for
the POWER8 TM microprocessor,” in ISSCC, 2014.

[47] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban,
H. Jacobson, and P. Bose, “Microarchitectural Tech-
niques for Power Gating of Execution Units,” in ISLPED,
2004.

[48] J. H. Yahya, J. S. Kim, A. G. Yağlıkçı, J. Park, E. Rotem,
Y. Sazeides, and O. Mutlu, “DarkGates: A Hybrid
Power-Gating Architecture to Mitigate the Perfor-
mance Impact of Dark-Silicon in High Performance
Processors,” in HPCA, 2022.

[49] A. B. Kahng, S. Kang, T. S. Rosing, and R. Strong, “Many-
Core Token-Based Adaptive Power Gating,” TCAD,
2013.

[50] R. Chadha and J. Bhasker, “Architectural Techniques
for Low Power,” in An ASIC Low Power Primer.
Springer, 2013.

[51] K. Usami, T. Shirai, T. Hashida, H. Masuda, S. Takeda,
M. Nakata, N. Seki, H. Amano, M. Namiki, M. Imai,
M. Kondo, and H. Nakamura, “Design and Implementa-
tion of Fine-grain Power Gating with Ground Bounce
Suppression,” in VLSI Design, 2009.

[52] K. Agarwal, H. Deogun, D. Sylvester, and K. Nowka,
“Power Gating With Multiple Sleep Modes,” in ISQED,
2006.

[53] A. Abba and K. Amarender, “Improved Power Gating
Technique for Leakage Power Reduction,” IJES, 2014.

[54] P. Larsson, “di/dt Noise in CMOS Integrated Circuits,”
in Analog Design Issues in Digital VLSI Circuits and
Systems. Springer, 1997.

[55] C. J. Akl, R. A. Ayoubi, and M. A. Bayoumi, “An Ef-
fective Staggered-Phase Damping Technique for Sup-
pressing Power-Gating Resonance Noise During Mode
Transition,” in ISQED, 2009.

[56] A. B. Kahng, S. Kang, T. Rosing, and R. Strong, “TAP:
Token-based Adaptive Power Gating,” in ISLPED, 2012.

[57] J. Haj-Yahya, A. Mendelson, Y. B. Asher, and A. Chat-
topadhyay, Energy E�cient High Performance Proces-
sors: Recent Approaches for Designing Green High Per-
formance Computing. Springer, 2018.

[58] D.-V. One, “Intel® xeon® processor e7-8800/4800/2800
v2 product family,” 2014, https://intel.ly/2ZGA9FJ.

[59] S. Jahagirdar, V. George, I. Sodhi, and R. Wells, “Power
management of the third generation Intel Core mi-
cro architecture formerly codenamed Ivy Bridge,” in
HotChips, 2012.

[60] B. Howse and R. Smith, “Tick tock on the rocks: Intel
delays 10nm, adds 3rd gen 14nm core product kaby
lake,” 2015.

[61] G. Gerosa, S. Curtis, M. D’Addeo, B. Jiang, B. Kuttanna,
F. Merchant, B. Patel, M. H. Tau�que, and H. Samarchi,
“A sub-2 W low power IA processor for Mobile Internet
Devices in 45 nm High-k Metal Gate CMOS,” JSSC,
2008.

[62] S. Jahagirdar, V. George, J. B. Conrad, R. Milstrey, S. A.
Fischer, A. Naveh, and S. Rotem, “Method and Appara-
tus for a Zero Voltage Processor Sleep State,” Mar. 22
2012, uS Patent App. 13/220,413.

[63] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout,
S. W. Gould, and J. M. Cohn, “Managing Power and Per-
formance for System-on-chip Designs Using Voltage
Islands,” in ICCAD, 2002.

16

[64] H. Mahmoodi-Meimand and K. Roy, “Data-retention
Flip-�ops for Power-down Applications,” in ISCAS,
2004.

[65] J. Rabinowicz and S. Greenberg, “A New Physical De-
sign Flow for a Selective State Retention Based Ap-
proach,” JLPEA, 2021.

[66] L. Gwennap, “P6 Microcode can be Patched,” Micropro-
cessor Report, 1997.

[67] M. Ermolov, D. Sklyarov, and M. Goryachy, “Undocu-
mented X86 Instructions to Control The CPU at the
Microarchitecture Level in Modern Intel Processors,”
2021.

[68] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller,
“Memory Performance and Cache Coherency E�ects
on an Intel Nehalem Multiprocessor System,” in PACT,
2009.

[69] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing
Cache Architectures and Coherency Protocols on x86-
64 Multicore SMP Systems,” in MICRO, 2009.

[70] M. Huang, M. Mehalel, R. Arvapalli, and S. He, “An
Energy E�cient 32-nm 20-MB Shared on-die L3 cache
for Intel® Xeon® processor E5 family,” JSSC, 2013.

[71] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and
T. Mudge, “Drowsy Caches: Simple Techniques for
Reducing Leakage Power,” ISCA, 2002.

[72] W. Chen, S.-L. Chen, S. Chiu, R. Ganesan, V. Lukka,
W. W. Mar, and S. Rusu, “A 22nm 2.5 MB Slice on-die
L3 Cache for the Next Generation Xeon® Processor,”
in VLSI Circuits, 2013.

[73] S. Rusu, H. Muljono, D. Ayers, S. Tam, W. Chen, A. Mar-
tin, S. Li, S. Vora, R. Varada, and E. Wang, “5.4 Ivytown:
A 22nm 15-core Enterprise Xeon® Processor Family,”
in ISSCC, 2014.

[74] S. Rusu, H. Muljono, D. Ayers, S. Tam, W. Chen, A. Mar-
tin, S. Li, S. Vora, R. Varada, and E. Wang, “A 22 nm 15-
core Enterprise Xeon® Processor Family,” JSSC, 2014.

[75] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weiss-
mann, and D. Rajwan, “Power-management Architec-
ture of the Intel Microarchitecture Code-named Sandy
Bridge,” IEEE Micro, 2012.

[76] D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low
Power Methodology Manual: for System-on-chip Design.
Springer Science & Business Media, 2007.

[77] P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A.
Shoemaker, “Flicker: A Dynamically Adaptive Archi-
tecture for Power Limited Multicore Systems,” in ISCA,
2013.

[78] J. Haj-Yihia, A. Yasin, Y. B. Asher, and A. Mendelson,
“Fine-grain Power Breakdown of Modern Out-of-order
Cores and its Implications on Skylake-based Systems,”
TACO, 2016.

[79] M. Cho, S. T. Kim, C. Tokunaga, C. Augustine, J. P.
Kulkarni, K. Ravichandran, J. W. Tschanz, M. M. Khel-
lah, and V. De, “Postsilicon Voltage Guard-band Re-
duction in a 22 nm Graphics Execution Core using
Adaptive Voltage Scaling and Dynamic Power Gating,”
JSSC, 2016.

[80] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D.
Smith, G.-Y. Wei, and D. Brooks, “Voltage Smoothing:
Characterizing and Mitigating Voltage Noise in Produc-
tion Processors Via Software-guided Thread schedul-
ing,” in MICRO, 2010.

[81] R. Thomas, K. Barber, N. Sedaghati, L. Zhou, and
R. Teodorescu, “Core Tunneling: Variation-aware Volt-
age Noise Mitigation in GPUs,” in HPCA, 2016.

[82] M. Shevgoor, J.-S. Kim, N. Chatterjee, R. Balasubra-
monian, A. Davis, and A. N. Udipi, “Quantifying the
Relationship Between the Power Delivery Network and
Architectural Policies in a 3D-stacked Memory Device,”
in MICRO, 2013.

[83] E. Grochowski, D. Ayers, and V. Tiwari, “Microarchitec-
tural Simulation and Control of di/dt-induced Power
Supply Voltage Variation,” in HPCA, 2002.

[84] M. S. Gupta, K. K. Rangan, M. D. Smith, G.-Y. Wei, and
D. Brooks, “DeCoR: A Delayed Commit and Rollback
Mechanism for Handling Inductive Noise in Proces-
sors,” in HPCA, 2008.

[85] J. Haj-Yihia, Y. B. Asher, E. Rotem, A. Yasin, and R. Gi-
nosar, “Compiler-directed Power Management for Su-
perscalars,” TACO, 2015.

[86] J. Leng, Y. Zu, and V. J. Reddi, “GPU Voltage Noise:
Characterization and Hierarchical Smoothing of Spa-
tial and Temporal Voltage Noise Interference in GPU
Architectures,” in HPCA, 2015.

[87] V. J. Reddi, M. S. Gupta, G. Holloway, G.-Y. Wei, M. D.
Smith, and D. Brooks, “Voltage Emergency Prediction:
Using Signatures to Reduce Operating Margins,” in
HPCA, 2009.

[88] T. N. Miller, R. Thomas, X. Pan, and R. Teodor-
escu, “VRSync: Characterizing and Eliminating
Synchronization-induced Voltage Emergencies in
Many-core Processors,” in ISCA, 2012.

[89] S. Nithin, G. Shanmugam, and S. Chandrasekar, “Dy-
namic Voltage (IR) Drop Analysis and Design Closure:
Issues and Challenges,” in ISQED, 2010.

17

[90] K. Radhakrishnan, M. Swaminathan, and B. K. Bhat-
tacharyya, “Power Delivery for High-Performance
Microprocessors—Challenges, Solutions, and Future
Trends,” IEEE Transactions on Components, Packaging
and Manufacturing Technology, 2021.

[91] J. Haj-Yahya, M. Alser, J. S. Kim, L. Orosa, E. Rotem,
A. Mendelson, A. Chattopadhyay, and O. Mutlu,
“FlexWatts: A Power-and Workload-Aware Hybrid
Power Delivery Network for Energy-E�cient Micro-
processors,” in MICRO, 2020.

[92] S. Shekhar, A. K. Jain, and N. Winer, “Power Delivery
Impedance Impact of Power Gating Schemes,” in SPI,
2016.

[93] R. Jotwani, S. Sundaram, S. Kosonocky, A. Schaefer,
V. Andrade, G. Constant, A. Novak, and S. Na�ziger,
“An x86-64 core implemented in 32nm SOI CMOS,” in
ISSCC, 2010.

[94] D. DiTomaso, A. Sikder, A. Kodi, and A. Louri, “Ma-
chine Learning Enabled Power-aware Network-on-
chip Design,” in DATE, 2017.

[95] A. Rahman, S. Das, T. Tuan, and S. Trimberger, “De-
termination of Power Gating Granularity for FPGA
Fabric,” in CICC, 2006.

[96] B. Zimmer, P.-F. Chiu, B. Nikolić, and K. Asanović,
“Reprogrammable Redundancy for SRAM-Based Cache
Vmin Reduction in a 28-nm RISC-V Processor,” JSSC,
2017.

[97] G. Hyun and T. Kim, “Allocation of State Retention
Registers Boosting Practical Applicability to Power
Gated Circuits,” in ICCAD, 2019.

[98] W. Chen, S.-L. Chen, S. Chiu, R. Ganesan, V. Lukka,
W. W. Mar, and S. Rusu, “Presentation of: A 22nm
2.5MB slice on-die L3 cache for the next generation
Xeon® Processor,” 2013, https://bit.ly/3bYXDJe.

[99] G. G. Shahidi, “Chip Power Scaling in Recent CMOS
Technology Nodes,” IEEE Access, 2018.

[100] K. Luria, J. Shor, M. Zelikson, and A. Lyakhov, “Dual-
Mode Low-Drop-Out Regulator/Power Gate With Lin-
ear and On–O� Conduction for Microprocessor Core
On-Die Supply Voltages in 14 nm,” JSSC, 2016.

[101] M. Huang, Y. Lu, S.-W. Sin, U. Seng-Pan, and
R. P. Martins, “A Fully Integrated Digital LDO
With Coarse–Fine-Tuning and Burst-Mode Operation,”
TCAS II, 2016.

[102] K. Jeong, A. B. Kahng, S. Kang, T. S. Rosing, and
R. Strong, “MAPG: Memory Access Power Gating,” in
DATE, 2012.

[103] G. Lakkas, “MOSFET Power Losses and How They
A�ect Power-supply E�ciency,” Analog Applications
Journal, 2016.

[104] E. Asyabi, A. Bestavros, E. Sharafzadeh, and T. Zhu,
“Peafowl: In-application CPU Scheduling to Reduce
Power Consumption of In-memory Key-value Stores,”
in SoCC, 2020.

[105] A. M. El-Husseini and M. Morrise, “Clocking Design
Automation in Intel’s Core i7 and Future Designs,” in
ICCAD, 2011.

[106] G. Shamanna, N. Kurd, J. Douglas, and M. Morrise,
“Scalable, sub-1W, sub-10ps Clock Skew, Global Clock
Distribution Architecture for Intel® Core™ i7/i5/i3 Mi-
croprocessors,” in VLSI Circuits, 2010.

[107] A. Gendler, E. Knoll, and Y. Sazeides, “I-DVFS: Instan-
taneous Frequency Switch During Dynamic Voltage
and Frequency Scaling,” IEEE Micro, 2021.

[108] D. Peterson and O. Bringmann, “Fully-automated Syn-
thesis of Power Management controllers from UPF,” in
ASP-DAC, 2019.

[109] S. Roy, N. Ranganathan, and S. Katkoori, “State-
retentive Power Gating of Register Files in Multicore
Processors Featuring Multithreaded In-order Cores,”
IEEE TC, 2010.

[110] S. Battle, A. D. Hilton, M. Hempstead, and A. Roth,
“Flexible Register Management Using Reference Count-
ing,” in HPCA, 2012.

[111] H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram, “GPU
Register File Virtualization,” in MICRO, 2015.

[112] Wikipedia, “Apple M1,” online, accessed August 2022,
https://en.wikipedia.org/wiki/Apple_M1.

[113] E. Rotem, Y. Mandelblat, V. Basin, E. Weissmann, A. Gi-
hon, R. Chabukswar, R. Fenger, and M. Gupta, “Alder
Lake Architecture,” in HotChips, 2021.

[114] “Memcached: A Distributed Memory Object Caching
System,” online, accessed November 2021 https://
memcached.org/.

[115] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Sta�ord, T. Tung, and V. Venkataramani,
“Scaling Memcache at Facebook,” in NSDI, 2013.

[116] J. Yang, Y. Yue, and K. V. Rashmi, “A large scale analysis
of hundreds of in-memory cache clusters at twitter,” in
OSDI, 2020.

18

https://en.wikipedia.org/wiki/Apple_M1
https://memcached.org/
https://memcached.org/

[117] Pinterest, “Pymemcache: A Comprehensive, Fast, Pure-
Python Memcached Client.” online, accessed June 2022
https://github.com/pinterest/pymemcache.

[118] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou,
“Sage: Practical and Scalable ML-driven Performance
Debugging in Microservices,” in ASPLOS, 2021.

[119] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang,
P. Ranganathan, and T. F. Wenisch, “System-level Im-
plications of Disaggregated Memory,” in HPCA, 2012.

[120] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F.
Wenisch, “Thin Servers with Smart Pipes: Designing
SoC Accelerators for Memcached,” in ISCA, 2013.

[121] Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Char-
acterizing Facebook’s Memcached Workload,” IEEE In-
ternet Computing, 2014.

[122] J. Leverich, “Mutilate: High-performance Memcached
Load Generator,” 2014.

[123] A. Mirhosseini, B. L. West, G. W. Blake, and T. F.
Wenisch, “Q-zilla: A Scheduling Framework and Core
Microarchitecture for Tail-tolerant Microservices,” in
HPCA, 2020.

[124] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F.
Wenisch, “The Mystery Machine: End-to-end Perfor-
mance Analysis of Large-Scale Internet Services,” in
OSDI, 2014.

[125] R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell,
“Hipster: Hybrid Task Manager for Latency-Critical
Cloud Workloads,” in HPCA, 2017.

[126] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and
E. Bugnion, “Energy Proportionality and Workload
Consolidation for Latency-Critical Applications,” in
SoCC, 2015.

[127] A. Mirhosseini, B. L. West, G. W. Blake, and T. F.
Wenisch, “Express-lane Scheduling and Multithread-
ing to Minimize the Tail Latency of Microservices,” in
ICAC, 2019.

[128] A. Sriraman and T. F. Wenisch, “µTune: Auto-Tuned
Threading for OLDI Microservices,” in OSDI, 2018.

[129] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner,
T. Wenisch, R. G. Dreslinski, J. Mars, and L. Tang, “Rein-
ing in Long Tails in Warehouse-Scale Computers with
Quick Voltage Boosting Using Adrenaline,” TOCS, 2017.

[130] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner,
T. Wenisch, J. Mars, L. Tang, and R. G. Dreslinski,
“Adrenaline: Pinpointing and Reining in Tail Queries
with Quick Voltage Boosting,” in HPCA, 2015.

[131] A. Sriraman and T. F. Wenisch, “µSuite: a Benchmark
Suite for Microservices,” in IISWC, 2018.

[132] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble,
“Tales of the Tail: Hardware, OS, and Application-Level
Sources of Tail Latency,” in SOCC, 2014.

[133] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A Distributed
messaging system for log processing,” in NetDB, 2011.

[134] Intel, “Intel Xeon Silver 4114 Processor,” online, ac-
cessed November 2021 https://intel.ly/3x7rx7N.

[135] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny, “Workload Analysis of a Large-scale Key-
value Store,” in SIGMETRICS, 2012.

[136] H. Kasture, D. B. Bartolini, N. Beckmann, and
D. Sanchez, “Rubik: Fast Analytical Power Manage-
ment for Latency-critical Systems,” in MICRO, 2015.

[137] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks,
“Tradeo�s Between Power Management and Tail La-
tency in Warehouse-scale Applications,” in IISWC,
2014.

[138] X. Fan, W.-D. Weber, and L. A. Barroso, “Power Provi-
sioning for a Warehouse-sized Computer,” ISCA, 2007.

[139] A. Mirhosseini, A. Sriraman, and T. F. Wenisch, “En-
hancing Server E�ciency in the Face of Killer Microsec-
onds,” in HPCA, 2019.

[140] C. Jin, X. Bai, C. Yang, W. Mao, and X. Xu, “A Review
of Power Consumption Models of Servers in Data Cen-
ters,” Applied Energy, 2020.

[141] T. L. Vasques, P. Moura, and A. de Almeida, “A Review
on Energy E�ciency and Demand Response with Focus
on Small and Medium Data Centers,” Energy E�ciency,
2019.

[142] Intel, “6th Generation Intel® Processor for U/Y-
Platforms Datasheet,” 2020, https://intel.ly/37rtnU7.

[143] Intel, “Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 3A, 3B, and 3C,” online, accessed
July 2019, https://intel.ly/3gVj2Fy.

[144] A. Yasin, N. Rosenzweig, E. Weissmann, and E. Rotem,
“Performance Scalability Prediction,” Nov. 28 2017, US
Patent 9,829,957.

[145] J. Haj-Yihia, A. Yasin, and Y. Ben-Asher, “DOEE: Dy-
namic Optimization Framework for Better Energy E�-
ciency,” in HiPC, 2015.

[146] A. Yasin, J. Haj-Yahya, Y. Ben-Asher, and A. Mendelson,
“A Metric-guided Method for Discovering Impactful
Features and Architectural Insights for Skylake-based
Processors,” TACO, 2019.

19

https://github.com/pinterest/pymemcache
https://intel.ly/3x7rx7N

[147] K.-D. Lange, “Identifying Shades of Green: The
SPECpower Benchmarks,” Computer, 2009.

[148] Nginx, “Nginx O�cial Website,” online, accessed
November 2021, http://nginx.org.

[149] Cisco, “Performance Tuning Guide for Cisco UCS
M5 Servers - White Paper,” accessed Nov 2021,
https://bit.ly/3nEq4CY.

[150] Dell, “BIOS Performance and Power Tuning Guidelines
for Dell PowerEdge 12th Generation Servers,” accessed
Nov 2021, https://bit.ly/3llqoFh.

[151] Lenovo, “Tuning UEFI Settings for Performance and
Energy E�ciency on Intel Xeon Scalable Processor-
Based ThinkSystem Servers,” accessed Nov 2021,
https://lenovopress.com/lp1477.pdf.

[152] E. Rotem, R. Ginosar, A. Mendelson, and U. C. Weiser,
“Power and Thermal Constraints of Modern System-
on-a-Chip Computer,” in THERMINIC, 2013.

[153] E. Rotem, “Intel Architecture, Code Name Skylake
Deep Dive: A New Architecture to Manage Power
Performance and Energy E�ciency,” in IDF, 2015.

[154] M. Jalili, I. Manousakis, Í. Goiri, P. A. Misra, A. Rani-
wala, H. Alissa, B. Ramakrishnan, P. Tuma, C. Be-
lady, M. Fontoura et al., “Cost-e�cient Overclocking
in Immersion-cooled Datacenters,” in ISCA, 2021.

[155] L. Zhou, L. N. Bhuyan, and K. Ramakrishnan, “Swan:
a two-step power management for distributed search
engines,” in ISLPED, 2020.

[156] A. Raghavan, Y. Luo, A. Chandawalla, M. Pa-
paefthymiou, K. P. Pipe, T. F. Wenisch, and M. M. Mar-
tin, “Computational sprinting,” in HPCA, 2012.

[157] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou,
K. P. Pipe, T. F. Wenisch, and M. M. Martin, “Compu-
tational Sprinting on a Hardware/Software Testbed,”
ASPLOS, 2013.

[158] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou,
K. P. Pipe, T. F. Wenisch, and M. M. Martin, “Utiliz-
ing Dark Silicon to Save Energy with Computational
Sprinting,” IEEE Micro, 2013.

[159] A. Raghavan, Y. Luo, A. Chandawalla, M. Pa-
paefthymiou, K. P. Pipe, T. F. Wenisch, and M. M.
Martin, “Designing for Responsiveness with Computa-
tional Sprinting,” IEEE Micro, 2013.

[160] K.-D. Kang, G. Park, H. Kim, M. Alian, N. S. Kim, and
D. Kim, “NMAP: Power Management Based on Net-
work Packet Processing Mode Transition for Latency-
Critical Workloads,” in MICRO, 2021.

[161] D. H. Kim, C. Imes, and H. Ho�mann, “Racing and
Pacing to Idle: Theoretical and Empirical Analysis of
Energy Optimization Heuristics,” in ICCPS, 2015.

[162] S. Albers and A. Antoniadis, “Race to Idle: New Al-
gorithms for Speed Scaling with a Sleep State,” TALG,
2014.

[163] M. A. Awan and S. M. Petters, “Enhanced Race-to-Halt:
A Leakage-aware Energy Management Approach for
Dynamic Priority Systems,” in ECRTS, 2011.

[164] E. Rotem, R. Ginosar, C. Weiser, and A. Mendelson, “En-
ergy Aware Race to Halt: A Down to EARtH Approach
for Platform energy management,” CAL, 2012.

[165] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Ra-
hatekar, L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz,
“Inside 6th-generation intel core: New microarchitec-
ture code-named skylake,” IEEE Micro, vol. 37, no. 2,
pp. 52–62, 2017.

[166] Y. Liu, S. C. Draper, and N. S. Kim, “SleepScale: Runtime
Joint Speed Scaling and Sleep States Management for
Power E�cient Data Centers,” in ISCA, 2014.

[167] F. Yao, J. Wu, S. Subramaniam, and G. Venkataramani,
“WASP: Workload Adaptive Energy-latency Optimiza-
tion in Server Farms Using Server Low-power States,”
in CLOUD, 2017.

[168] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber,
and T. F. Wenisch, “Power Management of Online Data-
Intensive Services,” in ISCA, 2011.

[169] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder,
“Understanding and Abstracting Total Data Center
Power,” in WEED, 2009.

[170] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang,
and X. Zhu, “No "Power" Struggles: Coordinated Multi-
level Power Management for the Data Center,” in ASP-
LOS, 2008.

[171] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vi-
jaykrishnan, and M. J. Irwin, “Scheduler-based DRAM
Energy Management,” in DAC, 2002.

[172] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasub-
ramaniam, and M. J. Irwin, “DRAM Energy Manage-
ment Using Software and Hardware Directed Power
Mode Control,” in HPCA, 2001.

[173] B. Diniz, D. Guedes, W. Meira Jr, and R. Bianchini,
“Limiting the Power Consumption of Main Memory,”
in ISCA, 2007.

20

[174] K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal,
N. Chatterjee, A. Kashyap, D. Lee, M. O’Connor, H. Has-
san, and O. Mutlu, “Understanding Reduced-voltage
Operation in Modern DRAM Devices: Experimental
Characterization, Analysis, and Mechanisms,” SIGMET-
RICS, 2017.

[175] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and
O. Mutlu, “Memory Power Management via Dynamic
Voltage/Frequency Scaling,” in ICAC, 2011.

[176] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and
R. Bianchini, “MemScale: Active Low-power Modes
for Main Memory,” in ASPLOS, 2011.

[177] J. Chen and L. K. John, “Predictive Coordination of
Multiple On-chip Resources for Chip Multiprocessors,”
in ICS, 2011.

[178] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch,
and R. Bianchini, “Coscale: Coordinating CPU and
Memory System DVFS in Server Systems,” in MICRO,
2012.

[179] W. Felter, K. Rajamani, T. Keller, and C. Rusu, “A Perfor-
mance Conserving Approach for Reducing Peak Power
Consumption in Server Systems,” in ICS, 2005.

[180] X. Li, R. Gupta, S. V. Adve, and Y. Zhou, “Cross-
Component Energy Management: Joint Adaptation
of Processor and Memory,” TACO, 2007.

[181] H. Zhang and H. Ho�mann, “Maximizing Performance
Under a Power Cap: A Comparison of Hardware, Soft-
ware, and Hybrid Techniques,” in ASPLOS, 2016.

[182] C. Imes, H. Zhang, K. Zhao, and H. Ho�mann, “Hand-
ing DVFS to hardware: Using Power Capping to Con-
trol Software Performance,” Technical Report, 2018.

[183] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch,
and R. Bianchini, “MultiScale: memory system DVFS
with multiple memory controllers,” in ISLPED, 2012.

[184] Barroso, Luiz André, Je�rey Dean, and Urs Holzle.
“Web search for a planet: The Google cluster archi-
tecture.” IEEE Micro 2003.

[185] Jeon, M., He, Y., Elnikety, S., Cox, A. and Rixner, S.
“Adaptive parallelism for web search”. EuroSys 2013.

[186] D. Wong and M. Annavaram. “Knightshift: Scaling
the Energy Proportionality Wall Through Server-level
Heterogeneity”. In MICRO, 2012.

[187] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding,
J. He, and C. Xu. “Characterizing Microservice Depen-
dency and Performance: Alibaba Trace Analysis”. In
SoCC, 2021.

[188] Oracle, “MySQL Workbench”, online, accessed August
2022, https://www.mysql.com/products/workbench/ .

[189] Github, “Spark-Bench”, online, accessed August 2022,
https://codait.github.io/spark-bench/

[190] Apache , “Apache Hive”, online, accessed August 2022,
https://hive.apache.org/

[191] Jiang, Hailin, Malgorzata Marek-Sadowska, and Sani R.
Nassif. “Bene�ts and Costs of Power-gating Technique.”
ICCD, 2005.

[192] James Lewis and Martin Fowler. “Microservices.” on-
line, accessed June 2022 https://martinfowler.com/
articles/microservices.html

[193] Twitter. “Decomposing Twitter: Adventures in
Service Oriented Architecture.” online, accessed
June 2022 https://www.slideshare.net/InfoQ/
decomposing-twitter-adventures-in-serviceoriented-architecture

[194] Rob Brigham. “DevOps at Amazon: A Look at Our
Tools and Processes.” online, accessed June 2022
https://www.slideshare.net/AmazonWebServices/
devops-at-amazon-a-look-at-our-tools-and-processes

[195] Jalili, Majid, et al. “Cost-e�cient overclocking in
immersion-cooled datacenters.” ISCA 2021.

[196] Global Petrol Prices, Electricity prices for households,
September 2021 https://www.globalpetrolprices.com/
electricity_prices/

[197] Schöne, Robert, et al. "Energy e�ciency aspects of the
AMD Zen 2 architecture." CLUSTER 2021.

[198] AMD EPYC 7313P Energy Consumption Test, https://
metebalci.com/blog/epyc-energy-consumption-test/

[199] Tuning UEFI Settings for Performance and Energy E�-
ciency on AMD Processor-Based ThinkSystem Servers
https://lenovopress.lenovo.com/lp1267.pdf

[200] Performance Tuning for Cisco UCS C225 M6
and C245 M6 Rack Servers with 3rd Gen
AMD EPYC https://www.cisco.com/c/en/us/
products/collateral/servers-uni�ed-computing/
ucs-c-series-rack-servers/performance-tuning-wp.
html

21

https://www.mysql.com/products/workbench/
https://codait.github.io/spark-bench/
https://hive.apache.org/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/AmazonWebServices/devops-at-amazon-a-look-at-our-tools-and-processes
https://www.slideshare.net/AmazonWebServices/devops-at-amazon-a-look-at-our-tools-and-processes
https://www.globalpetrolprices.com/electricity_prices/
https://www.globalpetrolprices.com/electricity_prices/
https://metebalci.com/blog/epyc-energy-consumption-test/
https://metebalci.com/blog/epyc-energy-consumption-test/
https://lenovopress.lenovo.com/lp1267.pdf
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/performance-tuning-wp.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/performance-tuning-wp.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/performance-tuning-wp.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/performance-tuning-wp.html

	1 Introduction
	2 Motivation
	3 Background
	4 AgileWatts (AW) Architecture
	4.1 Units' Fast Power-Gating (UFPG)
	4.1.1 Placing Unit Context in the Ungated Domain
	4.1.2 State Retention Power Gates (SRPGs)
	4.1.3 Place SRAM Context in Ungated Power Supply

	4.2 Cache Coherence and Sleep Mode (CCSM)
	4.3 C6A Power Management Flow

	5 AW Implementation and blackHardware Cost
	5.1 PPA Modeling Methodology
	5.1.1 Units' Fast Power-Gating (UFPG)
	5.1.2 Cache Coherence and Sleep Mode (CCSM)
	5.1.3 AW Power Management Control Flow
	5.1.4 Core PLL and FIVR

	5.2 C6A and C6AE Latency
	5.2.1 C6A and C6AE Entry Latency
	5.2.2 C6A and C6AE Exit Latency
	5.2.3 C6A and C6AE Snoop Handling

	5.3 Staggered Unit Wake-up
	5.4 Design Complexity and Effort
	5.5 AW Benefits to AMD Processors

	6 Experimental Methodology
	6.1 Workloads and Experimental Setup
	6.2 Power and Performance Model
	6.3 Power Model Validation

	7 Evaluation
	7.1 Power Savings and Overhead at Varying Load Levels
	7.2 Commonly-Used Configurations
	7.3 Analysis of Turbo Performance Improvement
	7.4 Analysis of Additional Workloads
	7.5 Impact of High Snoop Traffic
	7.6 Data Center Cost Savings Analysis

	8 Related Work
	9 Conclusion

