
AutoComm: A Framework for Enabling Efficient
Communication in Distributed Quantum Programs

Anbang Wu
Department of Computer Science

University of California, Santa Barbara
anbang@ucsb.edu

Hezi Zhang
Department of Computer Science

University of California, Santa Barbara
hezi@ucsb.edu

Gushu Li
Department of Electrical & Computer Engineering

University of California, Santa Barbara
gushuli@ece.ucsb.edu

Alireza Shabani
Cisco Research

Los Angeles, California
ashabani@cisco.com

Yuan Xie
Department of Electrical & Computer Engineering

University of California, Santa Barbara
yuanxie@ucsb.edu

Yufei Ding
Department of Computer Science

University of California, Santa Barbara
yufeiding@cs.ucsb.edu

ABSTRACT
Distributed quantum computing (DQC) is a promising ap-
proach to extending the computational power of near-term
quantum devices. However, the non-local quantum communi-
cation between quantum devices is much more expensive and
error-prone than the local quantum communication within
each quantum device. Previous work on the DQC communi-
cation optimization focus on optimizing the communication
protocol for each individual non-local gate and then adopt
quantum compilation designs which are designed for local
multi-qubit gates (such as controlled-x or CX gates) in a
single quantum computer. The communication patterns in
distributed quantum programs are not yet well studied, lead-
ing to a far-from-optimal communication cost. In this paper,
we identify burst communication, a specific qubit-node com-
munication pattern that widely exists in many distributed
programs and can be leveraged to guide communication over-
head optimization. We then propose AutoComm, an auto-
matic compiler framework to first extract the burst communi-
cation patterns from the input programs, and then optimize
the communication steps of burst communication discovered.
Experimental results show that our proposed AutoComm can
reduce the communication resource consumption and the pro-
gram latency by 75.6% and 71.4% on average, respectively.

1 Introduction
Quantum computing is promising with its great potential of
providing significant speedup to many problems, such as
large-number factorization with an exponential speedup [1]
and unordered database search with a quadratic speedup [2].
A large number of qubits is required in order to solve prac-
tical problems with quantum advantage and the qubit count
requirement is even higher after taking quantum error correc-
tion [3] into consideration. However, it has turned out that
extending the number of qubits on a single quantum processor

is exceedingly difficult due to various hardware-level chal-
lenges such as crosstalk errors [4, 5], qubit addressability [6],
fabrication difficulty [7], etc. The challenges usually increase
with the size of quantum hardware and may limit the number
of qubits accommodated by a single quantum processor.

Rather than relying on the advancement of a single quan-
tum processor, an alternative way of increasing scalability is
by distributed quantum computing (DQC), which integrates
the computing resources of multiple modular quantum pro-
cessors. For example, recent experiments have demonstrated
an entanglement-based quantum network of three quantum
processors [8]. Companies such as IBM also envision in their
roadmap [9] a future of creating a large-scale quantum com-
puter with quantum interconnects that link superconducting
quantum processors. Similarly, the ion trap-based quantum
computer also requires an optical network of multiple traps
each with tens of qubits in-order to scale up, making DQC a
path to realizing large-scale quantum computers [10].

In DQC, remote communication involving qubits in dif-
ferent computing nodes is essential yet far more expensive
than the local communication on qubits within the same node
(e.g., 5-100x time consumption and up to 40x accuracy degra-
dation [11, 12]). There are two major schemes for remote
quantum communication: one built upon the cat-entangler
and cat-disentangler protocol [13], and the other based on the
quantum teleportation [3]. In this paper, we denote the former
scheme as Cat-Comm and the latter one as TP-Comm. Both
schemes consume EPR pairs [14], which are pre-distributed
entangled qubit pairs, as a resource to establish quantum
communication. Cat-Comm can implement the remote CX
gate [3] with only one EPR pair, but for general two-qubit
gates like the SWAP gate [3], Cat-Comm requires up to three
EPR pairs [15]. In contrast, TP-Comm conducts any remote
two-qubit gate with two EPR pairs [14], making it more ef-
ficient for the SWAP gate. For a distributed program, more

1

ar
X

iv
:2

20
7.

11
67

4v
2

 [
qu

an
t-

ph
]

 2
1

O
ct

 2
02

2

Distributed Quantum Program Compiling Flow Integration

Other Passes

Existing Flow
Qubit Mapping

Gate Unrolling

AutoComm Design and Optimzations

ScheduleAssignmentAggregation

Burst identify

Linear merge

Pattern inspect

Cat&TP-Comm

Pattern inspect

Parallel&Fusion
Sparse

Communication Burst Communication

Figure 1: AutoComm Overview.

complex remote operations or more information getting trans-
ferred per EPR pair would lead to less communication cost.

The overall compiling flow for DQC is similar to that of
single-node quantum programs, except with more empha-
sis on remote communication overhead. Ferrari et al. [15]
propose a compiler design similar to single-node compil-
ers [16, 17, 18, 19, 20] using Cat-Comm for each remote CX
gate and TP-Comm for each remote SWAP gate. Unsatisfied
with the low information of the remote CX gate, Baker et
al. [11] eliminate all remote CX gates by using the remote
SWAP gate, which only requires two EPR pairs for imple-
mentation but contains the information of three CX gates.
Unfortunately, bounded by the information of a single two-
qubit gate, these compilers cannot achieve higher throughput
of information per EPR pair.

Eisert et al. [14] suggest higher throughput could be achieved
by considering multi-qubit gates. Diadamo et al. [21] pro-
pose a specialized compiler for distributed VQE that uses Cat-
Comm to implement controlled-unitary-unitary and controlled-
controlled-unitary gates. However, their work can only opti-
mize the gate written in the controlled-unitary form and thus
cannot work with decomposed circuits. Moreover, their work
cannot optimize programs lacking controlled-unitary blocks.

Besides increasing the ‘height’ (number of qubits) of re-
mote operations, we observe that the throughput of informa-
tion per EPR pair can also be significantly boosted up by
expanding the ‘width’ (number of gates) of each remote com-
munication. Specifically, we discover that a large amount of
remote two-qubit gates in distributed quantum programs can
be implemented collectively through one or two communi-
cation invocations. On top of the observation, we propose
to optimize the communication overhead based on the burst
communication, which denotes a group of continuous remote
two-qubit gates between one qubit and one node. Burst com-
munication is powerful as it is more information-intensive
than single two-qubit gate and contains but not limited to
controlled-unitary blocks. Burst communication is also flexi-
ble for optimization as it does not require specialized circuit
representation and is available in decomposed circuits.

To this end, we develop the first burst-communication-
centric optimization framework, AutoComm as shown in Fig-
ure 1. In contrast to existing compiling flows [11, 15, 16, 17,
18, 19, 20], where each remote CX gate is implemented inde-
pendently (i.e., sparse communication), AutoComm greatly
mitigates the communication bottleneck with burst communi-
cation and can be easily integrated into these existing compil-
ing flows. Our framework consists of three key stages. Firstly,
we perform a communication aggregation pass to group re-

mote gates and extract burst communication blocks. Due to
the broad availability of burst communication in distributed
quantum programs, this pass could generate a large amount
of burst communication blocks for following optimizations.
Secondly, we propose a hybrid communication scheme which
examines the patterns of each burst communication block and
assigns the optimal communication scheme for each block.
The insight for this step is that, TP-Comm and Cat-Comm
is more resource-efficient for different type of burst commu-
nications and considering only one communication scheme
would incur extra resource consumption. Finally, we propose
an adaptive communication schedule for burst communica-
tion blocks of different patterns to squeeze out the parallelism
between them and thus reduce overall program latency. There
are two critical observations for this optimization: it is pos-
sible to execute burst communication with shared qubits or
nodes in parallel, and we can fuse some burst communication
blocks to cut down the communication footprint.

Our contributions are summarized as follows:

• We identify the burst communication feature in dis-
tributed quantum computing and promote its impor-
tance in optimizing distributed quantum programs. We
further propose the first communication optimization
framework based on the burst communication.

• We propose a communication aggregation pass to ex-
pose burst communications of distributed quantum pro-
grams and then design a hybrid communication scheme,
using both Cat-Comm and TP-Comm to accommodate
different communication patterns.

• We propose an efficient communication scheduling
method to optimize the latency adaptively squeezing
out the parallelism of various patterns.

• Compared to the state-of-the-art baseline method [15],
AutoComm significantly reduces the communication re-
source consumption and the program latency by 75.6%
and 71.4% on average, respectively.

2 Background
In this section, we introduce necessary background to under-
stand the distributed quantum computing and its communica-
tion. We do not cover the basic quantum computing concepts
(e.g., qubit, gate, measurement) and recommend [3] for more
details.

2.1 EPR Pair and Entanglement
EPR entanglement To establish quantum communication
in a distributed quantum computer, we first need to generate a
pair of qubits whose state is 1√

2
(|00〉+ |11〉), EPR entangled

state. The two qubits such state is called EPR entanglement
pair (Abbrev., EPR pair) [3]. The two qubits of an EPR pair
can be distributed on different quantum devices, formulating
a remote EPR pair [14]. The preparation of the remote EPR
pair includes two stages: generation and purification. The
generation stage generates and distributes EPR pairs but is
very noisy, making the purification stage indispensable [22].

2

2.2 Distributed Quantum Computing
The development of quantum communication [8,23,24,25,26,
27,28,29,30,31,32,33] enables distributed computing over a
series of quantum devices. As in classical distributed com-
puting, remote communication between computing nodes is
also the bottleneck of distributed quantum computing (DQC)
and should be carefully optimized.

Different from the classical distributed computing system,
quantum data cannot be easily shared across quantum nodes
due to the no-cloning theorem [3]. The workaround is to ex-
ploit different communication schemes (e.g., Cat-Comm [14]
and TP-Comm [3]) based on remote EPR entanglement, one
of the key information resources in quantum processing. Fig-
ure 2 illustrates how to use these two schemes to implement
one remote CX gate, with the control qubit q1 residing in
quantum nodes A and the target qubit q′1 in node B. Qubits
in Figure 2 fall into two categories. The first category of
qubits is used to store quantum information and is called
data qubits, e.g., q1 and q′1. The second category of qubits,
called communication qubits, is used to hold the remote EPR
entanglement required for quantum communication, e.g. q0
and q′0 in Figure 2.

As shown in Figure 2(a), the first communication scheme
Cat-Comm utilizes cat-entangler to transfer the state of the
control qubit q1 to node B, execute the target CX gate, and
then use cat-disentangler to transfer the state back to node
A. While TP-Comm, the second communication scheme in
Figure 2(b), employs quantum teleportation [3] to transfer the
state of q1, and then execute the target CX gate. Though Cat-
Comm and TP-Comm both require one EPR pair and two bits
of classical communication, Cat-Comm is more widely-used
than TP-Comm in DQC compilers [15, 21]. This is mainly
due to the dirty side-effect of TP-Comm. We would need
another invocation of TP-Comm to release the occupation
of the communication qubit (e.g., q′0 in Figure 2(b)), which
would be later used for other quantum communications. As
a result, two EPR pairs are actually required to implement
a single remote CX gate by TP-Comm, with one pair for
handling the dirty side-effect.

H

M

M

 Z

N
od

e
A

Cat-entangler Cat-disentangler

Target CX

N
od

e
B

H

Z

M

Teleportation

M

Target CX

N
od

e
A

N
od

e
B

(a) (b)

Figure 2: The implementation of one remote CX. (a) The
Cat-Comm version. (b) The TP-Comm version. Each
wavy line denotes an EPR pair between qubits, and each
dashed line denotes one bit of classical communication.
M denotes measurement.

In Figure 2, we only show how to implement one individual
CX gate. To implement complex remote interactions between
quantum nodes, one simple strategy is to first decompose the
remote interaction into several remote CX gates and imple-
ment each remote CX gate as in Figure 2. However, this strat-

H

U1

M

M

 Z

N
od

e
A

N
od

e
B

U2

Controlled-
unitary block

H

Z

M

M

N
od

e
A

N
od

e
B

U1

U2

Controlled-
unitary block

(a) (b)

Figure 3: The optimized implementation of the
controlled-unitary block C −U1 −U2. (a) The Cat-
Comm version. (b) The TP-Comm version.

Figure 4: Program snippet extracted from quantum
arithmetic circuits [36].

egy may incur heavy communication costs. Prior work [13]
spots a more efficient way to implement a controlled-unitary
block between two quantum nodes. Figure 3 provides the op-
timized implementation of the controlled-block C−U1−U2,
where U1 and U2 are some unitary quantum operations. The
implementation in Figure 3 only requires one EPR pair, fewer
than implementing each remote two-qubit gate independently.

Besides the controlled-unitary block, we discover that
plenty of quantum communications in distributed quantum
programs can be transformed into a group of remote interac-
tions between one qubit and one quantum node. We name
such a group of remote interactions burst communication.
Different from the single CX case, Cat-Comm and TP-Comm
each has its own advantage for burst communication of vari-
ous patterns. Unfortunately, existing DQC compilers [11, 34]
either do not take advantage of the burst communication or
only consider the basic controlled-unitary case [21].

In later sections, we would use one remote EPR pair and
one remote communication interchangeably, because for ei-
ther Cat-Comm or TP-Comm, one invocation just requires
one remote EPR pair.

3 Problem and Motivation
In this section, we first introduce the communication problem
in distributed quantum programs and then identify the opti-
mization opportunities by considering burst communication.

For the rest of the discussions, we assume quantum com-
munication can be established between any two quantum
nodes, a typical assumption in data-center distributed com-
puting [35]. We also assume that each quantum node has only
two communication qubits, which is realistic for near-term
DQC [15].

3.1 Communication Problem
The example distributed program in Figure 4 is modified
from quantum arithmetic circuits [36]. This program con-
tains many remote CX gates whose control qubit and target

3

qubit reside in different quantum nodes, e.g., CX q1,q3. Re-
mote CX gates are inevitable in DQC especially when the
program’s qubit number is substantially larger than each quan-
tum node’s. To make the distributed program executable, we
should transfer the states of qubits in remote CX gates to
make them locally executable temporarily. The state trans-
fer involves remote communication between quantum nodes,
which can be accomplished by Cat-Comm or TP-Comm. Due
to the noisy nature of quantum communication, remote op-
erations are far more error-prone than local quantum gates.
The long runtime of quantum communication would also
lead to the decoherence of quantum states. As a result, to
produce high fidelity outcome, we hope the number of remote
communication to be as small as possible, so is the latency
induced.

As indicated in Section 2, one remote CX gate requires at
least one remote communication. While there is little room
for optimizing the communication cost of one remote CX
gate, there is a large optimization space when considering
burst communication, which involves a group of remote CX
gates. For example, we can execute the first two CX gates on
q1,q3 in Figure 4 collectively, with only one communication
by using the circuit in Figure 3(a). From the perspective of
information theory, burst communication is more informative
than the communication with only one remote CX. The over-
all communication cost and latency would be considerably
lowered if handling all remote CX gates in this burst manner.

Fortunately, as we see in the next section, burst communi-
cation is prevalent in diverse distributed quantum programs.
3.2 Burst Communication in DQC
Aside from the arithmetic program shown in Figure 4, we
also see burst communication in a variety of quantum pro-
grams. As examples, we examine the burst communication
of the Quantum Fourier Transform (QFT) program [3] and the
Quantum Approximate Optimization Algorithm (QAOA) [37]
by hand. These two represent different categories of quantum
programs: QAOA is one of the most important applications in
near-term quantum computing whereas QFT is the building
block circuit of quantum algorithms.

We first give a formal definition of the burst communica-
tion in DQC. In this paper, we refer to a group of continuous
remote two-qubit gates between one qubit q and one node as
burst communication. For two remote two-qubit gates g1 and
g2, the continuity of these two gates means there are no other
remote gates between g1 and g2.

To characterize the burst communication of a distributed
program d prog, for a remote gate g in d prog, we define
function ε(g) to be the largest burst communication block
that contains g. The gate order of d prog may affect the burst
communication block found. ε(g) is defined to be the largest
over all functional-equivalent gate order of d prog. We then
define len(ε(g)) to be the number of remote CX gates in ε(g)
if compiled to the CX+U3 basis [17]. Finally, we are ready
to define the inverse-burst distribution as follows:

P(x) =
|{g|len(ε(g))< x}|

#g
. (1)

A lower P(x) suggests more burst communication.
We begin by examining the QFT program using the afore-

mentioned definition. We assume the total qubit number is

Figure 5: (a) QFT program with two nodes and two
qubits per node. (b) The layout for the maximal P4. Pa-
rameters omitted for simplicity. For demonstration, we
do not combine CRZ43 and CRZ32 to form a 4-REM-CX
block.

n, the quantum node number is k, and qubits are evenly dis-
tributed across all nodes, with t = n

k qubits per node. Figure 5
shows the QFT program with k = 2 and t = 2. For the QFT
program, as shown in Figure 5, each qi is controlled by all
qubits q j (through the CRZ gate) that satisfies j > i [3]. First,
we have P(2) = 0 because each CRZ gate in QFT is compiled
into two CX gates, as illustrated in Figure 5(a). Now, we con-
sider P(4). For the i-th qubit satisfies i≤ n−k, the number of
j s.t. ε(CRZ ji)< 4 is at most b i−1

t−1c because for one node, if
at least two of its qubits have subscripts > i, this node would
have at least two qubits being interacted by qubit i. Since
CRZ gates are commutable with each other, we could form a
communication block with at least 4 CX gates. On the other
hand, if i > n− k, then the i-th qubit is at most interacted
with n− i qubits, thus the number of j s.t. ε(CRZ ji)< 4 is
at most n− i. Therefore, we have

P(4)≤
∑

n−k
i=1 b

i−1
t−1c+∑

n
i=n−k+1(n− k)

∑
n
i=1(n− i)− k ∑

t
l=1(t− l)

=
1
t
.

This indicates there are 1−P(4) = 1− 1
t remote gates within

a communication block that possesses more than 4 CX gates.
Generally, we can prove that P(2m)≤ m−1

t . This upper bound
is quite promising when t is large and it is actually loose. For
Figure 5(b) which corresponds to the upper bound of P(4),
there may be 1

t of remote CRZ gates, i.e., CRZ43 and CRZ32
not in a block with 4 remote CX gates at the first glance.
But we can actually combine CRZ43 and CRZ32 to form
a 4-REM-CX block since there are no other remote gates
between them. This indicates that QFT has more abundant
burst communication than the upper bound suggests.

Similarly, for the QAOA program, we assume k nodes
and t qubits per node. We also suppose r remote ZZ inter-
actions between any two nodes. Figure 6 shows the QAOA
program with k = 2 and t = 3. Likewise, P(2) = 0 since each
ZZ interaction is compiled into two CX gates, as shown in
Figure 6(a). For every two nodes, the qubit layout to min-
imize len(ε(ZZ)) for each ZZ interaction is to make every
two ZZ interactions have no shared qubits, i.e., not adjacent.
However, this layout at most accommodates t ZZ interactions.
If r > t, the number of ZZ interactions s.t. len(ε(ZZ)) < 4
is at most t− 2(r mod t) by examining the gate adjacency.

4

Figure 6: QAOA program with two nodes and three
qubits per node. Parameters omitted for simplicity. (a)
inter-node communication number r = 3. (b) r = 4.

Thus, P(4)≤ t−2(r mod t)
r . For example in Figure 6(b), only

t−2(r mod t)
r = 1

4 of remote ZZ interactions are not in a 4-
REM-CX block. Generally, if r > st for some integer s,
P(2(s+1))≤ t−2(r mod t)

r < 1
s . This study reveals that burst

communication is broadly available in the QAOA program.
We could derive a similar analysis for other programs. Fur-

ther numerical evidence for the richness of burst communica-
tion in various programs is shown in Figure 15. The next step
is to figure out how to utilize the abundant burst communica-
tion in distributed programs to optimize the communication
overhead, as discussed in the next section.
3.3 Optimization Opportunities
To exploit burst communication in distributed quantum pro-
grams, we need to answer three key questions:

How to unveil the burst communication? The burst com-
munication is high-level program information and cannot
be deduced simply from the low-level circuit language, es-
pecially when the remote interactions between multiple nodes
are all mixed together. For example in Figure 4, gate CX q2;q4
between node A and node B is followed by CX q1;q6, which
is the interaction between node A and node C. To maximize
the benefits of burst communication, we need to discover
groups of remote gates in disordered quantum circuits.

How to select the best communication scheme? Burst
communication comes in various forms. Cat-Comm may not
always be better than TP-Comm for burst communication,
unlike the single CX case. For example in Figure 4, if we
use Cat-Comm to implement the last three remote CX gates
between q3 and node A, three EPR pairs are needed. However,
with TP-Comm to teleport q3 to node A, at most two EPR
pairs are needed. Thus, to reduce the communication cost,
we should examine the pattern of burst communication and
choose the communication scheme wisely.

How to schedule burst communication? Finally, we need
to schedule the execution of burst communication blocks.
If we arrange all burst communication in a sequential way,
the large time overhead would impose non-negligible deco-
herence errors on quantum states. As a result, we should

X P = P† X H RX = RZ H

RX
=

RX
RZ

=
RZ

= =

H H
=

X
=

X

X

Figure 7: Phase gates P includes Z,RZ,S,T , etc. X-
rotation-centered rules for gate commutation.

maximize the parallelism in burst communication to gener-
ate high-fidelity output. To achieve this goal, we must first
identify the relationships between communication blocks and
then reduce the gaps caused by them adaptively.

4 AutoComm Framework
In this section, we first give an overview of the AutoComm
framework and then introduce each component in detail.

4.1 Design overview
We propose the AutoComm framework as shown in Figure 1.
AutoComm focuses on the communication optimization of
distributed quantum programs and serves as the back-end
of front compiling flows like mapping qubits to quantum
nodes. We would adopt existing technologies for these front
compiling stages, as we would see in Section 5.

To optimize the communication overhead in distributed
programs, AutoComm comes with three stages to utilize the
burst communication. First, it aggregates remote two-qubit
gates by gate commutation. Gate commutation is quite com-
mon in quantum programs [38]. Commutable gates, on the
one hand, may be ordered arbitrarily and hide the burst com-
munication. On the other hand, we could also utilize gate
commutation to uncover burst communication blocks. In this
stage, a pre-processing step is used to identify burst commu-
nication, and a linear merge step is employed to combine
isolated burst communication blocks.

Second, it assigns an optimal communication scheme for
each burst communication. We observe that the pattern of
burst communication impacts the efficiency of communica-
tion schemes. Cat-Comm is less expensive for some patterns,
while TP-Comm may be more cost-effective for others. It is
thus important to examine the communication patterns and
consider both Cat-Comm and TP-Comm for hybrid commu-
nication, rather than focusing on one scheme.

Third, it performs a block-level schedule of burst commu-
nication. It is possible to run communication blocks with
shared nodes or qubits concurrently or shorten the quantum
state transfer path across quantum nodes for specified com-
munication patterns. Combined with these optimizations, a
greedy schedule is effective for burst communication blocks.

4.2 Communication Aggregating
Burst communication is prevalent in distributed programs,
but may not be immediately available due to two factors: CX
gates may be scattered across the program, and whether CX
gates are remote depends on the qubit mapping to quantum

5

Algorithm 1: Linear merge procedure
Input: An array of communication blocks blk_list
Output: Merged communication blocks blk_list_merge

1 blk_list_merge = [];
2 blk = blk_list[0] ;
3 while there are blocks in blk_list not visited do
4 non_commute_gates = [];
5 for blk_next in unvisited blocks of blk_list do

// Attempt merge blk to blk_next
6 for gate between blk and blk_next do
7 if gate is single-qubit and not commutes with

blk then
8 non_commute_gates.append(gate);
9 if gate is two-qubit then

10 check if gate is commutable with
non_commute_gates and blk;

11 if not commutable then
12 if gate is in-node two-qubit then
13 non_commute_gates.append(gate);
14 else
15 break;

16 end
17 blk =merge blk, non_commute_gates and

blk_next;
18 end
19 if the above merge failed then
20 Try to merge blk_next to blk similarly;
21 if succeeds then
22 blk =merge blk, non_commute_gates and

blk_next;
23 else
24 blk = blk_next;
25 end
26 output the merged blocks and adjust the order of

commutable gates;

nodes. To uncover hidden burst communications, we need to
rewrite the circuit and aggregate remote CX gates.

Figure 7 summarizes the X-rotation-centered rewriting
rules used for gate commutation. Rules for other rotation
axes can be obtained by similar transformation. Below are
the main steps to aggregate remote gates based on these rules.

Preprocessing: The first step is to identify the qubit-node
pair of burst communication. We start with the qubit-node
pair associated with the most remote gates as it would likely
lead to a large burst communication block. For example
in Figure 4, the chosen qubit-node pair is (q3, node A) as
it is associated with 5 remote CX gates. We then search
for consecutive remote CX gates related to this qubit-node
pair. This step would result in many isolated communication
blocks, for example in Figure 8(a), we obtain four small
blocks.

Linear merge: The next step is to merge isolated small
communication blocks obtained in the preprocessing. As
illustrated in Algorithm 1, we merge related communication
blocks in a linear and greedy manner. For communication
blocks 1©, 2©, 3©, 4© in Figure 8(a), we can easily merge
block 1© and 2© since only single-qubit gates exist between
those two blocks. However, we can not merge block 2© and
block 3© because gate CX q5,q3 is commutable with neither
block 2© nor block 3©. Finally, as shown in Figure 8(b), we
obtain two larger communication blocks.

1 2
3

4

1 2

1 2

3

4

5
6

7

Figure 8: Communication aggregation for the example
program in Figure 4. (a) Preprocessing. (b) Linear
merge. (c) Iterative refinement.

Iterative refinement: Then we merge communication blocks
of other qubit-node pairs in descending order of their number
of remote gates until no improvement is made. The final
result of communication aggregation is shown in Figure 8(c).

4.3 Communication Assignment
With burst communication blocks, the next optimization is
to find the best way to execute them. We address this prob-
lem by first examining the pros and cons of Cat-Comm and
TP-Comm, and then assigning the optimal communication
scheme based on the pattern analysis of burst communication
blocks. Since we assume only two communication qubits in
each quantum node, the communication patterns discussed
here center on interactions between one qubit and one node.
Extending burst communication to the node-to-node situation
is promising when communication qubits are plentiful. We
leave it for future work.

Cat-Comm vs. TP-Comm: Suppose we have a burst com-
munication block between a qubit q1 in node A and several
qubits in node B, with a total of n remote CX gates in the
block. If the block can be executed by a single call to Cat-
Comm, the savings on EPR pairs would be up to n times,
compared to executing each remote CX gate individually.
However, as discussed below, not all communication blocks
can be cheaply executed via Cat-Comm. Compared to Cat-
Comm, the savings on ERP pairs with TP-Comm is at most
n
2 times as TP-Comm requires two EPR pairs to execute any
burst communication block: one to teleport q1 to node B, the
other to release the occupancy of q1 on the communication
qubit in node B. For simplicity, we use the other EPR pair
to teleport q1 back to node A. We postpone to Section 4.4 to
handle the case that teleporting q1 to some other node is better
than moving back. Overall, Cat-Comm provides higher ERP
pair savings for specific burst communication blocks, while

6

Figure 9: Two primitive communication patterns (a)(b)
and the variant (c).

(a) (b)

Figure 10: The transformation between communication
patterns by using Hadamard gates.

TP-Comm can handle an arbitrary communication block with
up to two EPR pairs.

Pattern analysis: Figure 9(a)(b) shows two primitive pat-
terns for qubit-to-node burst communication. For the unidi-
rectional communication pattern in Figure 9(a) where one
qubit (i.e., q1) always serves as the control qubit, the com-
munication block can be implemented by Cat-Comm with
only one EPR pair if no single-qubit gate on the control qubit
separates two-qubit gates [13]. For example, one call of Cat-
Comm can handle the gate sequence CX q1,q′1; CX q1,q′2 , but
cannot address CX q1,q′1; H q1; CX q1,q′2 due to the middle
H gate. To optimize this communication pattern with Cat-
Comm, we should remove single-qubit gates on the control
qubit. When they are not removable, we resort to TP-Comm.

A varied unidirectional pattern in which q1 always serves
as the target qubit, as shown in Figure 9(c), also occurs fre-
quently in distributed quantum programs. This pattern can
be transformed into the pattern in Figure 9(a) by applying a
series of Hadamard gates, as shown in Figure 10(a).

In contrast to unidirectional patterns, Figure 9(b) shows
a bidirectional pattern in which q1 serves as both control
qubit and target qubit. A block in this pattern cannot be
executed by a single call of Cat-Comm as Cat-Comm cannot
transfer the state of target qubits. Even if we transform it
to the unidirectional pattern in Figure 10(b) with Hadamard
gates, single-qubit gates on the control qubit still prevent a
cheap implementation by Cat-Comm. In fact, for the block in
Figure 10(b), TP-Comm is more efficient as it only requires
two EPR pairs, while Cat-Comm requires three EPR pairs.

To summarize, for unidirectional patterns in Figure 9(a)(c),
we will try Cat-Comm first, while for the bidirectional pattern
in Figure 9(b), TP-Comm is preferred.

Communication assignment: Now, we are ready to assign
an optimal communication scheme, either Cat-Comm or TP-
Comm, to each burst communication block. Considering
Figure 8(c) as an example, we assign Cat-Comm to unidi-
rectional blocks 1©, 6© and 7©, and assign TP-Comm to
bidirectional blocks 2©, 4© and 5©. For 3©, although being
unidirectional, it cannot be executed by one call of Cat-Comm

as there is a T † gate on the control qubit between two CX
gates. Since executing it with either Cat-Comm or TP-Comm
requires two EPR pairs, we set the TP-Comm assignment as
default. The finalized assignment is shown in Figure 11(a).
4.4 Communication Scheduling
After optimizing the count of remote communications, we
then schedule the execution of burst communication blocks to
reduce the total execution time of the distributed program and
reduce the impact of decoherence. Based on the quantitative
data shown in Table 1, the preparation of remote EPR pairs
is the most time-consuming one among various operations
and hence should be carefully optimized to hide its latency.
While the quantitative data may vary across quantum devices,
the schedule design in this section should be also effective.

Operation Variable Name Latency
Single-qubit gates t1q ∼ 0.1 CX
CX and CZ gates t2q 1 CX
Measure tms 5 CX
EPR preparation tep ∼ 12 CX
One-bit classical comm tcb ∼ 1 CX

Table 1: The quantitative latency data of operations in
distributed quantum programs, extracted from [22, 39].
All latencies are normalized to CX counts.

The designs here aim to maximize block-level parallelism
and shorten the latency of sequential execution by fusion.

More block-level parallelism: The essence of scheduling
is to maximize the parallelism in a circuit. For burst com-
munication blocks without nodes or qubits in common, they
can be concurrently executed in nature. For blocks with
shared nodes or qubits, their parallelism is limited by their
commutability, as well as the communication resources each
node holds. With the constraint that each node can establish
only two communications in parallel, there is little room for
lazy operations, and we adopt a greedy strategy to execute
commutable blocks, i.e., execute as many blocks as possible
simultaneously, as soon as EPR pairs are prepared.

For Cat-Comm blocks, we can execute two commutable
blocks in parallel at most if they share nodes, as shown in
Figure 12. For TP-Comm blocks, the situation is complex as
each TP-Comm blocks require two EPR pairs. For two com-
mutable TP-blocks, rather than prioritizing the completion of
one TP-comm as in Figure 13(a), we observe that parallelism
can be enabled by communication alignment, as shown in
Figure 13(b). Compared to Figure 13(a), Figure 13(b) aligns
the qubit teleportation of the two blocks, leading to a latency
saving of tblock +2ttele. This TP-Comm alignment technique
can be generalized to the case of n commutable TP-Comm
blocks (any two blocks may share common nodes). With
TP-Comm alignment, the total latency saving can be up to
(n−1)(tblock +2ttele) (e.g., if those TP-Comm blocks are on
nodes {A1,A2},{A2,A3}, · · · ,{An,An+1} respectively).

Fusion of sequential blocks: Sometimes communication
blocks have to be executed in sequence. However, if the
teleported qubits in TP-Comm blocks are the same, we can
optimize their executions by fusing the teleportations, as
shown in Figure 14. Figure 14(a) shows a simple schedule
where each TP-Comm is executed independently. As each

7

Cat-Comm
Blocks

TP-Comm
Blocks Teleport Teleport Teleport Teleport Teleport

EPR
Prep

Figure 11: (a) The result of the communication assignment pass. (b) The result of the communication schedule pass.

EPR
prepare

Figure 12: The schedule optimization for commutable
Cat-Comm blocks, with shared qubit or node.

EPR
prepare

Teleport TeleportTeleportTeleport

TeleportTeleport EPR
prepare

Figure 13: The schedule optimization for TP-Comm
blocks. Aligned qubit teleportation in (b) is better than
the independent qubit teleportation in (a).

node has only two communication qubits, we need to wait for
tep before executing the next TP-Comm block. In contrast,
Figure 14(b) fuses the teleportations between quantum nodes,
forming a cycle: A→ B→C→ A. With fusion, the number
of teleportations is reduced by one and the overall execution
time is reduced by tep + ttele, where ttele is the time to tele-
port one qubit (about 8 CX time as shown in Figure 2(b)).
Generally, if we have n TP-Comm blocks with the same
teleported qubit, the total number of teleportation would be
reduced by n−1, and the saving of overall latency would be
(n−1)(tep + ttele).

From another view, the fusion also optimizes the token
passing problem in classical distributed computing [35], which
also appears in Section 4.3, about whether to move the tele-
ported qubit in TP-Comm back or to another node.

With the designs above, the communication schedule pass
should apply block-level commutation analysis to unveil the
patterns discussed above and then apply corresponding opti-
mizations. We omit the details since this procedure is very
similar to the communication aggregation except working at
the block level. With all those optimizations applied, Fig-
ure 11(b) shows the optimized communication schedule for
the program in Figure 4. In total, 2.4x latency saving is

EPR
prepare

Teleport Teleport

Teleport TeleportTeleportTeleport

Teleport

Figure 14: The schedule optimization for TP-Comm
blocks. Cyclic qubit teleportation in (b) is better than
the SWAP-style qubit teleportation in (a).

achieved compared to executing each remote CX gate inde-
pendently.

5 Evaluation
In this section, we first compare the performance of Auto-
Comm to the baseline method and then evaluate the effect
of each optimization pass in AutoComm. We finally per-
form a sensitivity analysis on AutoComm to study how its
performance evolves as the program configuration changes.

5.1 Experiment Setup
Metric The first metric we considered is the number of is-
sued remote communications. Each remote communication
would consume one remote EPR pair for both Cat-Comm
and TP-Comm. To avoid the ambiguity on the cost of TP-
Comm, we say TP-Comm needs two communications (i.e.,
two EPR pairs) to execute one burst communication block,
with one of the communications handling its dirty side-effect.
The number of remote communications models the resource
overhead of executing distributed programs and a lower value
is favored.

The second metric is the maximum number of remote
two-qubit gates executed through one communication. For
TP-Comm blocks, this number is averaged on two communi-
cations. We denote this metric by ‘Peak # REM CX’. This
metric models the communication throughput of information
and a higher value is preferred.

Finally, we consider two metrics that model the relative
performance, in communication cost and program latency
respectively, of AutoComm to baselines. The first one is
‘improv. factor’, which is defined to be ‘total communication
by baseline/total communication # by AutoComm’. The
second one is ‘LAT-DEC factor’ and is defined to be ‘program

8

Type Name # qubit # node # gate # CX # REM CX

Build-
ing
Blocks

Multi-
Controlled
Gate
(MCTR)

100 10 10640 4560 1680

200 20 21840 9360 3568

300 30 33040 14160 5632
Ripple-
Carry
Adder
(RCA)

100 10 1569 785 220

200 20 3169 1585 662

300 30 4769 2385 820
Quantum
Fourier
Transform
(QFT)

100 10 40100 20000 9000

200 20 160200 80000 38000

300 30 360300 180000 87000

Real
World
Appli-
cations

Bernstein
Vazirani
(BV)

100 10 265 65 56

200 20 535 135 126

300 30 803 203 194

QAOA
100 10 6000 4000 3144

200 20 24000 16000 14076

300 30 54000 36000 32896

UCCSD
8 4 3129 1420 900

12 6 40659 19142 15136

16 8 129829 64956 53426

Table 2: Benchmark programs. The qubits are evenly
distributed across quantum nodes. The number of re-
mote CX gates (# REM CX) is computed on the qubit
mapping by ‘Static Overall Extreme Exchange’ [11].

latency by baseline/program latency by AutoComm’. We
hope these two metrics to be as large as possible.

Baseline For the baseline method, we implement the com-
piler [15] which only exploits the Cat-Comm scheme for
remote CX gates and does not consider burst communication.
To reduce the program latency, the baseline adopts a greedy
scheduling method, i.e., executing operations as soon as pos-
sible. For both the baseline and AutoComm, we map qubits
to distributed quantum nodes by the ‘Static Overall Extreme
Exchange’ strategy studied in [11].

Platforms We perform all experiments on a Ubuntu 18.04
server with a 6-core Intel E5-2603v4 CPU and 32GB RAM.
Other software includes Python 3.8.3 and Qiskit 0.18.3 [17].

Benchmark programs We consider two categories of bench-
mark programs, as shown in Table 2. The first category
of benchmarks are function-specific, i.e., they focus on im-
plementing specific elementary functions, e.g., arithmetic
operations and Fourier transformation. These quantum pro-
grams are often used as the building blocks of large quan-
tum applications. The second category of benchmarks are
application-driven. These programs usually target at solving
real-world problems, e.g., Bernstein-Vazirani (BV) algorithm,
Quantum Approximate Optimization algorithm (QAOA), and
Unitary Coupled Cluster ansatzes (UCCSD). Specifically, we
choose the graph maxcut problem for the QAOA test pro-
grams, and for the UCCSD programs, we select molecules
LiH,BeH2, and CH4 which correspond to 8, 12, and 16 par-
ticles (thus qubits), respectively. All benchmark programs
used in the evaluation are collected from IBM Qiskit [17] and
RevLib [36].
5.2 Compared to Baseline
We evaluate both AutoComm and the baseline method on
benchmark programs in Table 2. The results of AutoComm
and its relative performance to the baseline are shown in
Table 3.

1 3 5 7 9 11 13 15 17 19
Executed # REM CX in one Comm

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

MCTR
RCA
QFT

2 4 6 8 10
Executed # REM CX in one Comm

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

BV
QAOA
UCCSD

(a) (b)

Figure 15: Burst communications by AutoComm: Pr[X]
= Pr[one communication carries >= X REM-CXs].

Burst communication statistics: Figure 15 shows the dis-
tribution of burst communications assembled by AutoComm.
This distribution is closely related to the inverse-burst dis-
tribution discussed in Section 3.2 but is easier to compute.
We can see that burst communications exist widely in var-
ious distributed quantum programs, no matter in building-
block circuits (Figure 15(a)) or in real-world applications
(Figure 15(b)). Moreover, Figure 15 demonstrates the effec-
tiveness of AutoComm in unveiling burst communications. In
Figure 15, the communications that each carries ≥ 2 remote
CX gates account for 76.8% of the total remote communica-
tions, on average.

Communication cost: AutoComm achieves significant com-
munication cost reduction on the benchmark programs. Com-
pared to the baseline method, AutoComm reduces the number
of remote communications by a factor of 4.1x on average,
up to 9.2x. The peak communication throughput (i.e., ‘Peak
REM CX’) by AutoComm is 8.8x on average and up to 18x
of that by the baseline. These improvements indicate that
AutoComm can efficiently discover and utilize burst com-
munications in distributed quantum programs, transferring
more information in each communication than the baseline
method.

The good communication performance of AutoComm comes
from two factors: the aggregation of remote CX gates and
the hybrid implementation of burst communications by using
both Cat-Comm and TP-Comm. We will further elaborate on
this point in Section 5.4.

Latency: AutoComm also achieves significant latency re-
duction on benchmark programs. Compared to the baseline
method, AutoComm reduces the program execution time by
a factor of 3.5x on average, up to 7.1x, as shown in Table 3.
The trend of latency reduction is closely related to the trend
of communication cost reduction. This is as expected because
AutoComm keeps the local parallelism in the program when
aggregating remote interactions.

5.3 Compared to GP-based Compiler
We further compare AutoComm to the graph-partition-based
(GP-based) compiler [11]. A GP-based compiler converts
remote interactions to local interactions by swapping qubits
with a strategy derived from graph partition algorithms. To
reduce the communication cost and program latency of the
GP-based compiler, we utilize TP-Comm for swapping qubits
since TP-Comm requires only two communications for one
remote SWAP gate, one communication less than using Cat-

9

Name Tot Comm TP-Comm
Peak #
REM CX

Improv.
factor

LAT-DEC
factor

MCTR-100-10 533 220 10 3.15 3.27
MCTR-200-20 972 418 10 3.67 3.83
MCTR-300-30 2044 1112 10 2.76 2.88
RCA-100-10 79 54 5.5 2.78 3.34
RCA-200-20 469 224 5.5 1.41 2.10
RCA-300-30 410 204 5.5 2.00 3.30
QFT-100-10 2068 1784 18 8.70 6.53
QFT-200-20 8351 7566 18 9.10 6.98
QFT-300-30 18835 17348 18 9.24 7.13
BV-100-10 9 0 8 6.22 4.33
BV-200-20 19 0 8 6.63 4.63
BV-300-30 29 0 8 6.69 4.69
QAOA-100-10 1448 266 6 2.17 1.83
QAOA-200-20 6787 728 8 2.07 1.79
QAOA-300-30 16053 1138 6 2.05 1.69
UCCSD-8-4 464 0 4 1.94 1.74
UCCSD-12-6 8973 0 4 1.69 1.55
UCCSD-16-8 33303 0 5 1.60 1.50

Table 3: The results of AutoComm and its relative perfor-
mance to the baseline. The name column are acronyms
of test programs in Table 2.

RCA QAOA MCTR UCCSD QFT BV0
1

3

5

7

9

11

13

15

GP
-T

P
/ A

ut
oC

om
m

1.3 1.6
2.8 3.3

5.3

12.9

2.7 2.4
3.9 3.5

6.6

10.3

Relative performance compared to GP-TP
Improv. factor
LAT-DEC factor

Figure 16: Compared to GP-TP. Results are averaged
over different configurations of # qubit and # node in Ta-
ble 2.

Comm. We denote this version of the GP-based compiler
by GP-TP. Once again, for GP-TP, we adopt the as-soon-as-
possible schedule strategy in [15].

As shown in Figure 16, AutoComm achieves significant
reduction in both communication cost and program latency,
compared to GP-TP. Specifically, AutoComm reduces the
communication cost by a factor of 3.3x on average, up to
12.9x. It also reduces the program execution time by a factor
of 4.3x on average, up to 10.3x. On the side of information
theory, AutoComm improves the performance by enabling
a higher throughput of information. Each remote commu-
nication in GP-TP carries less than two remote CX gates
which is much smaller than AutoComm. On the algorithmic
side, AutoComm reduces unnecessary qubit movement by
taking advantage of burst communication. For example, for
a potential burst communication between q1 and node B, if
there are some commutable remote CX gates between q1 and
node C lying in between and interrupting the communication
block between q1 and node B, the GP-TP method needs to
move q1 to node B first, then to node C and back to node B
again. However, with burst communication, we only need to
first move q1 to node B, and then to node C.

5.4 Optimization Analysis
In this section, we further explore and analyze the effect
of each optimization in AutoComm. For each analysis, we
change only one component of AutoComm at a time, with
other components fixed, to isolate the effect of each compo-
nent/optimization.

The effect of communication aggregation: Table 3 demon-
strates the benefit of communication aggregation compared
to the baseline. Here we further demonstrate the necessity of
considering gate commutation in the aggregation pass. Fig-
ure 17(a) shows the communication cost comparison between
the aggregation without gate commutation and the aggrega-
tion used in AutoComm. For the programs in Figure 17(a),
AutoComm reduces the communication cost by a factor of
5.5x on average, up to 6.7x, compared to the aggregation
without gate commutation. Gate commutation is indispens-
able for discovering burst communications, not only because
multi-qubit gates are often scattered in quantum circuits, but
also due to the uncertainty of qubit mapping to quantum
nodes (the uncertainty of whether a CX is remote or local).

The effect of hybrid communication assignment: We
further demonstrate the importance of considering both Cat-
Comm and TP-Comm for burst communication. Figure 17(b)
shows the communication cost comparison between the com-
munication assignment with Cat-Comm only and the hybrid
assignment scheme in AutoComm. The Cat-Comm only
method is extended from the specialized compiler [21] for
distributed VQE. For the programs in Figure 17(b), Auto-
Comm reduces the communication cost by a factor of 2.8x on
average, up to 4.6x, compared to the Cat-Comm only method.
The key enabler for the hybrid scheme in AutoComm is that
Cat-Comm only applies to few communication patterns and
for the cases that Cat-Comm cannot apply, TP-Comm would
be more efficient.

The effect of communication scheduling: We then study
the effect of the communication scheduling optimization in
AutoComm. Figure 17(c) shows the latency comparison be-
tween AutoComm’s scheduling, denoted by burst-greedy,
and the greedy (as-soon-as-possible) scheduling for com-
munication blocks. For the programs in Figure 17(c), the
burst-greedy method reduces the program latency by a fac-
tor of 1.4x on average, up to 1.6x, compared to the gen-
eral greedy schedule. The effectiveness of AutoComm for
scheduling burst communication stems from its smart uti-
lization of communication qubits, especially for TP-Comm
blocks, as discussed in Section 4.4.

5.5 Sensitivity Analysis
The performance of AutoComm may be affected by some
external factors, e.g., the number of input qubits and the
number of computing nodes. In this section, we study how
the performance of AutoComm varies with those factors. We
focus on ‘improv. factor’ here, and the variation of ‘LAT-
DEC factor’ would follow a similar trend.

The effect of # qubit: Figure 17(d) shows how the improv.
factor of AutoComm changes with the number of qubits. As
shown in the figure, the improv. factor converges when #
qubit/# node is large. This may be due to the fact that the

10

QFT BV0
1

3

5

8
No

 C
om

m
ut

e
/ C

om
m

ut
e

4.35

6.22

4.55

6.63

4.62

6.69

Aggregation analysis
100, 10
200, 20
300, 30

RCA QFT0

1

3

5

Ca
t-C

om
m

 o
nl

y
/ H

yb
rid

1.35

4.2

1.02

4.46

1.17

4.56
Assignment analysis

MCTR QFT0.0

0.5

1.0

1.4

1.8

Gr
ee

dy
 /

Bu
rs

t-g
re

ed
y

1.24
1.44

1.17

1.56

1.19

1.61
Scheduling analysis

100 200 300 400 500 600
qubit

2

3

4

Im
pr

ov
. f

ac
to

r

The effect of # qubit
10 nodes
20 nodes
50 nodes

2 10 20 50 100
node

1

2

3

4

Im
pr

ov
. f

ac
to

r

The effect of # node
100 qubits
200 qubits
300 qubits

(a) (b) (c) (d) (e)

Figure 17: (a)-(c) The effects of the proposed optimizations. Bars with different colors denote different configurations
of (#qubit, #node). For (a)(b), the y-axis is the ratio of # remote communications. For (c), the y-axis is the ratio of
program latency. (d)(e) The effects of # qubit and # node on the improv. factor of AutoComm. The test program in
(d)(e) is MCTR.

number of burst communication blocks also increases when
the total number of remote multi-qubit gates grows with the
number of qubits. Such behavior is preferable because it
illustrates that AutoComm can provide a consistent reduction
for the communication cost as the number of qubits grows.

The effect of # node: Figure 17(e) shows how the improv.
factor of AutoComm changes with the number of nodes. In
this figure, the performance of AutoComm deteriorates when
qubit/# node is small. This is because it is harder to find
large communication blocks when the number of qubits in
each node is limited to be small. Therefore we should avoid
using too many nodes for distributing quantum programs
because in such a case the remote multi-qubit gates would
proliferate and there is little chance to execute those remote
interactions collectively, given the fact that the number of
communication qubits in each node is only two.

6 Discussion and Future Work
To the best of our knowledge, this paper is the first attempt
that formalizes burst communication in distributed quantum
programs. We discover a large number of burst commu-
nications hidden in various distributed quantum programs
and propose the first modular framework to uncover these
burst communications and use them to optimize the commu-
nication overhead. We argue that the formalization of burst
communication and the modular solution proposed in this pa-
per unveil new opportunities for communication optimization
in DQC and would potentially inspire a series of works for
overcoming DQC’s communication problem.

Although we show that the proposed framework signifi-
cantly surpasses existing works in optimizing the communi-
cation overhead of distributed quantum programs, there is
still much space left for potential improvements.

Extending to general collective communication This pa-
per only considers the near-term DQC where communication
qubits are supposed to be limited. In such a case, we are
restricted to studying the qubit-to-node burst communication,
which is a special case of the general collective communica-
tion, involving a group of nodes. Assuming the availability
of more communication qubits in the future, we could con-
sider node-to-node collective communication which offers a
potential optimization opportunity as we can now aggregate
small qubit-to-node burst communication blocks into a larger
one. Besides, for the fusion operation in the communication
schedule optimization, we can also extend it to node-to-node

communication blocks.

Co-designing with front compiling stages The proposed
framework is designed to be easily pluggable into existing
compiling flows. But we could also couple it with front
compiling stages to achieve further optimization. For exam-
ple, existing compilers include a pass to add SWAP gates
to change the qubit layout to optimize circuit metrics. We
could co-design with this pass to maximize the number and
size of burst communications. Besides, in the case where
burst communication is deeply hidden, we could also con-
sider using unitary synthesis to create burst communication
in the gate decomposition pass. Finally, we could co-design
with the qubit mapping pass to achieve a balance of com-
munication overhead and device utilization rate, as shown in
Figure 17(d)(e).

Combining with quantum error correction Since DQC
involves quantum communication which is far more noisy
than local quantum gates, reinforcing the whole distributed
quantum system with quantum error correction (QEC) be-
comes vital for future DQC. One promising way to implement
QEC in DQC is to encode one logical qubit in each node, and
use quantum communication to implement logical operations
between logical qubits. In this case, the CX gate between log-
ical qubits would involve a large number of physical qubits
simultaneously and provide great opportunities for burst com-
munication optimization. Besides, communications coming
from magic state distillation are also worth considering.

7 Related Work
Most existing quantum compilers [16, 17, 18, 19, 20] focus
on the compilation of programs within a single quantum
computer. Extending these works to DQC cannot achieve
high information throughput per quantum communication,
as in the compiler proposed by Ferrari et al. [15]. Baker et
al. [11] propose using the more informative remote SWAP
gates to replace all remote CX gates in distributed quantum
programs and obtain a higher throughput. Diadamo et al. [21]
further increase the communication throughput by consid-
ering multiple-qubit control-unitary blocks. However, their
work requires specialized circuit representation and cannot
optimize general quantum programs. Moreover, all these
works do not consider the burst communication and related
optimizations proposed in this paper.

Another line of work executes distributed quantum pro-
grams in a hybrid way. Tang et al. [40] propose a way to

11

execute quantum programs in distributed computing nodes
but without inter-node communication. To overcome the ex-
pressibility loss due to no inter-node communication, their
work relies heavily on classical post-processing techniques
and cannot be extended to large-scale quantum programs.

Other quantum communication-related works focus on
building robust quantum communication networks [41,42,43,
44] or reducing the resource consumption of existing quantum
communication techniques [45, 46, 47, 48, 49]. These works
are orthogonal to this paper.

8 Conclusion
As in classical distributed computing, the inter-node commu-
nication overhead bottlenecks distributed quantum comput-
ing. Existing compilers [11, 15, 21] for distributed programs
either treat the inter-node communication like the in-node
communication or only provide optimization for gates in the
control-unitary form. These works fail to utilize the hidden
communication patterns in distributed quantum programs. To
overcome the shortcomings of existing compilers, this paper
explores various distributed quantum programs and identifies
burst communication for the first time. Burst communication
is a qubit-node communication pattern that widely exists in
many distributed programs. Based on burst communication,
we propose the framework, AutoComm, which is proved to
be efficient in cutting down inter-node communication over-
head, by comprehensive evaluations on diverse distributed
benchmarks. The proposed framework can be easily inte-
grated into existing compiling flows of quantum programs
and would benefit near-term distributed quantum computing.

REFERENCES
[1] Peter W Shor. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM review,
41(2):303–332, 1999.

[2] Lov K Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 212–219, 1996.

[3] Michael A Nielsen and Isaac Chuang. Quantum computation and
quantum information, 2002.

[4] Kenneth R Brown, Jungsang Kim, and Christopher Monroe.
Co-designing a scalable quantum computer with trapped atomic ions.
npj Quantum Information, 2(1):1–10, 2016.

[5] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and
Jeremy M Sage. Trapped-ion quantum computing: Progress and
challenges. Applied Physics Reviews, 6(2):021314, 2019.

[6] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and
Jeremy M Sage. Trapped-ion quantum computing: Progress and
challenges. Applied Physics Reviews, 6(2):021314, 2019.

[7] Markus Brink, Jerry M Chow, Jared Hertzberg, Easwar Magesan, and
Sami Rosenblatt. Device challenges for near term superconducting
quantum processors: frequency collisions. In 2018 IEEE International
Electron Devices Meeting (IEDM), pages 6–1. IEEE, 2018.

[8] Matteo Pompili, Sophie LN Hermans, Simon Baier, Hans KC Beukers,
Peter C Humphreys, Raymond N Schouten, Raymond FL Vermeulen,
Marijn J Tiggelman, Laura dos Santos Martins, Bas Dirkse, et al.
Realization of a multinode quantum network of remote solid-state
qubits. Science, 372(6539):259–264, 2021.

[9] J. Gambetta. Ibm’s roadmap for scaling quantum technology.
https://www.ibm.com/blogs/research/2020/09/ibm-
quantum-roadmap/.

[10] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz,
L.-M. Duan, and J. Kim. Large scale modular quantum computer
architecture with atomic memory and photonic interconnects. Physical
Review A, 62(5):052317, 2000.

[11] Jonathan M. Baker, Casey Duckering, Alexander Hoover, and
Frederic T. Chong. Time-sliced quantum circuit partitioning for
modular architectures. Proceedings of the 17th ACM International
Conference on Computing Frontiers, 2020.

[12] Christopher Young, Akbar Safari, Preston Huft, J. Zhang, Eun Oh,
Ravikumar Chinnarasu, and Mark Saffman. An architecture for
quantum networking of neutral atom processors. 2022.

[13] Anocha Yimsiriwattana and Samuel J Lomonaco Jr. Generalized ghz
states and distributed quantum computing. arXiv preprint
quant-ph/0402148, 2004.

[14] Jens Eisert, Kurt Jacobs, Polykarpos Papadopoulos, and Martin B
Plenio. Optimal local implementation of nonlocal quantum gates.
Physical Review A, 62(5):052317, 2000.

[15] Davide Ferrari, Angela Sara Cacciapuoti, Michele Amoretti, and
Marcello Caleffi. Compiler design for distributed quantum computing.
IEEE Transactions on Quantum Engineering, 2:1–20, 2021.

[16] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping
problem for nisq-era quantum devices. Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019.

[17] MD SAJID ANIS, Héctor Abraham, AduOffei, Rochisha Agarwal,
Gabriele Agliardi, Merav Aharoni, Ismail Yunus Akhalwaya, Gadi
Aleksandrowicz, Thomas Alexander, Matthew Amy, Sashwat
Anagolum, Eli Arbel, Abraham Asfaw, Anish Athalye, Artur
Avkhadiev, Carlos Azaustre, PRATHAMESH BHOLE, Abhik
Banerjee, Santanu Banerjee, Will Bang, Aman Bansal, Panagiotis
Barkoutsos, Ashish Barnawal, George Barron, George S. Barron,
Luciano Bello, Yael Ben-Haim, M. Chandler Bennett, Daniel
Bevenius, Dhruv Bhatnagar, Arjun Bhobe, Paolo Bianchini, Lev S.
Bishop, Carsten Blank, Sorin Bolos, Soham Bopardikar, Samuel
Bosch, Sebastian Brandhofer, Brandon, Sergey Bravyi, Nick Bronn,
Bryce-Fuller, David Bucher, Artemiy Burov, Fran Cabrera, Padraic
Calpin, Lauren Capelluto, Jorge Carballo, Ginés Carrascal, Adam
Carriker, Ivan Carvalho, Adrian Chen, Chun-Fu Chen, Edward Chen,
Jielun (Chris) Chen, Richard Chen, Franck Chevallier, Kartik Chinda,
Rathish Cholarajan, Jerry M. Chow, Spencer Churchill, CisterMoke,
Christian Claus, Christian Clauss, Caleb Clothier, Romilly Cocking,
Ryan Cocuzzo, Jordan Connor, Filipe Correa, Abigail J. Cross,
Andrew W. Cross, Simon Cross, Juan Cruz-Benito, Chris Culver,
Antonio D. Córcoles-Gonzales, Navaneeth D, Sean Dague, Tareq El
Dandachi, Animesh N Dangwal, Jonathan Daniel, Marcus Daniels,
Matthieu Dartiailh, Abdón Rodríguez Davila, Faisal Debouni, Anton
Dekusar, Amol Deshmukh, Mohit Deshpande, Delton Ding, Jun Doi,
Eli M. Dow, Eric Drechsler, Eugene Dumitrescu, Karel Dumon, Ivan
Duran, Kareem EL-Safty, Eric Eastman, Grant Eberle, Amir Ebrahimi,
Pieter Eendebak, Daniel Egger, ElePT, Emilio, Alberto Espiricueta,
Mark Everitt, Davide Facoetti, Farida, Paco Martín Fernández,
Samuele Ferracin, Davide Ferrari, Axel Hernández Ferrera, Romain
Fouilland, Albert Frisch, Andreas Fuhrer, Bryce Fuller, MELVIN
GEORGE, Julien Gacon, Borja Godoy Gago, Claudio Gambella,
Jay M. Gambetta, Adhisha Gammanpila, Luis Garcia, Tanya Garg,
Shelly Garion, James R. Garrison, Tim Gates, Leron Gil, Austin
Gilliam, Aditya Giridharan, Juan Gomez-Mosquera, Gonzalo,
Salvador de la Puente González, Jesse Gorzinski, Ian Gould, Donny
Greenberg, Dmitry Grinko, Wen Guan, Dani Guijo, John A. Gunnels,
Harshit Gupta, Naman Gupta, Jakob M. Günther, Mikael Haglund,
Isabel Haide, Ikko Hamamura, Omar Costa Hamido, Frank Harkins,
Kevin Hartman, Areeq Hasan, Vojtech Havlicek, Joe Hellmers, Łukasz
Herok, Stefan Hillmich, Hiroshi Horii, Connor Howington, Shaohan
Hu, Wei Hu, Junye Huang, Rolf Huisman, Haruki Imai, Takashi
Imamichi, Kazuaki Ishizaki, Ishwor, Raban Iten, Toshinari Itoko,
Alexander Ivrii, Ali Javadi, Ali Javadi-Abhari, Wahaj Javed, Qian
Jianhua, Madhav Jivrajani, Kiran Johns, Scott Johnstun,
Jonathan-Shoemaker, JosDenmark, JoshDumo, John Judge, Tal
Kachmann, Akshay Kale, Naoki Kanazawa, Jessica Kane, Kang-Bae,
Annanay Kapila, Anton Karazeev, Paul Kassebaum, Josh Kelso, Scott
Kelso, Vismai Khanderao, Spencer King, Yuri Kobayashi, Kovi11Day,
Arseny Kovyrshin, Rajiv Krishnakumar, Vivek Krishnan, Kevin
Krsulich, Prasad Kumkar, Gawel Kus, Ryan LaRose, Enrique Lacal,
Raphaël Lambert, Haggai Landa, John Lapeyre, Joe Latone, Scott
Lawrence, Christina Lee, Gushu Li, Jake Lishman, Dennis Liu, Peng
Liu, Abhishek K M, Liam Madden, Yunho Maeng, Saurav Maheshkar,
Kahan Majmudar, Aleksei Malyshev, Mohamed El Mandouh, Joshua
Manela, Manjula, Jakub Marecek, Manoel Marques, Kunal Marwaha,
Dmitri Maslov, Paweł Maszota, Dolph Mathews, Atsushi Matsuo,
Farai Mazhandu, Doug McClure, Maureen McElaney, Cameron
McGarry, David McKay, Dan McPherson, Srujan Meesala, Dekel
Meirom, Corey Mendell, Thomas Metcalfe, Martin Mevissen, Andrew
Meyer, Antonio Mezzacapo, Rohit Midha, Daniel Miller, Zlatko

12

https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/

Minev, Abby Mitchell, Nikolaj Moll, Alejandro Montanez, Gabriel
Monteiro, Michael Duane Mooring, Renier Morales, Niall Moran,
David Morcuende, Seif Mostafa, Mario Motta, Romain Moyard,
Prakash Murali, Jan Müggenburg, Tristan NEMOZ, David Nadlinger,
Ken Nakanishi, Giacomo Nannicini, Paul Nation, Edwin Navarro,
Yehuda Naveh, Scott Wyman Neagle, Patrick Neuweiler, Aziz
Ngoueya, Johan Nicander, Nick-Singstock, Pradeep Niroula, Hassi
Norlen, NuoWenLei, Lee James O’Riordan, Oluwatobi Ogunbayo,
Pauline Ollitrault, Tamiya Onodera, Raul Otaolea, Steven Oud, Dan
Padilha, Hanhee Paik, Soham Pal, Yuchen Pang, Ashish Panigrahi,
Vincent R. Pascuzzi, Simone Perriello, Eric Peterson, Anna Phan,
Kuba Pilch, Francesco Piro, Marco Pistoia, Christophe Piveteau, Julia
Plewa, Pierre Pocreau, Alejandro Pozas-Kerstjens, Rafał Pracht, Milos
Prokop, Viktor Prutyanov, Sumit Puri, Daniel Puzzuoli, Jesús Pérez,
Quant02, Quintiii, Rafey Iqbal Rahman, Arun Raja, Roshan Rajeev,
Isha Rajput, Nipun Ramagiri, Anirudh Rao, Rudy Raymond, Oliver
Reardon-Smith, Rafael Martín-Cuevas Redondo, Max Reuter, Julia
Rice, Matt Riedemann, Rietesh, Drew Risinger, Marcello La Rocca,
Diego M. Rodríguez, RohithKarur, Ben Rosand, Max Rossmannek,
Mingi Ryu, Tharrmashastha SAPV, Nahum Rosa Cruz Sa, Arijit Saha,
Abdullah Ash-Saki, Sankalp Sanand, Martin Sandberg, Hirmay
Sandesara, Ritvik Sapra, Hayk Sargsyan, Aniruddha Sarkar, Ninad
Sathaye, Bruno Schmitt, Chris Schnabel, Zachary Schoenfeld,
Travis L. Scholten, Eddie Schoute, Mark Schulterbrandt, Joachim
Schwarm, James Seaward, Sergi, Ismael Faro Sertage, Kanav Setia,
Freya Shah, Nathan Shammah, Rohan Sharma, Yunong Shi, Jonathan
Shoemaker, Adenilton Silva, Andrea Simonetto, Deeksha Singh,
Divyanshu Singh, Parmeet Singh, Phattharaporn Singkanipa, Yukio
Siraichi, Siri, Jesús Sistos, Iskandar Sitdikov, Seyon Sivarajah,
Magnus Berg Sletfjerding, John A. Smolin, Mathias Soeken,
Igor Olegovich Sokolov, Igor Sokolov, Vicente P. Soloviev,
SooluThomas, Starfish, Dominik Steenken, Matt Stypulkoski, Adrien
Suau, Shaojun Sun, Kevin J. Sung, Makoto Suwama, Oskar Słowik,
Hitomi Takahashi, Tanvesh Takawale, Ivano Tavernelli, Charles Taylor,
Pete Taylour, Soolu Thomas, Kevin Tian, Mathieu Tillet, Maddy Tod,
Miroslav Tomasik, Caroline Tornow, Enrique de la Torre, Juan
Luis Sánchez Toural, Kenso Trabing, Matthew Treinish, Dimitar
Trenev, TrishaPe, Felix Truger, Georgios Tsilimigkounakis, Davindra
Tulsi, Wes Turner, Yotam Vaknin, Carmen Recio Valcarce, Francois
Varchon, Adish Vartak, Almudena Carrera Vazquez, Prajjwal
Vijaywargiya, Victor Villar, Bhargav Vishnu, Desiree Vogt-Lee,
Christophe Vuillot, James Weaver, Johannes Weidenfeller, Rafal
Wieczorek, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston,
WinterSoldier, Jack J. Woehr, Stefan Woerner, Ryan Woo,
Christopher J. Wood, Ryan Wood, Steve Wood, James Wootton, Matt
Wright, Lucy Xing, Jintao YU, Bo Yang, Unchun Yang, Daniyar
Yeralin, Ryota Yonekura, David Yonge-Mallo, Ryuhei Yoshida,
Richard Young, Jessie Yu, Lebin Yu, Christopher Zachow, Laura
Zdanski, Helena Zhang, Iulia Zidaru, and Christa Zoufal. Qiskit: An
open-source framework for quantum computing, 2021.

[18] Matthew Amy and Vlad Gheorghiu. staq—a full-stack quantum
processing toolkit. arXiv: Quantum Physics, 2019.

[19] Nader Khammassi, Imran Ashraf, J. van Someren, Răzvan Nane,
A. M. Krol, M. A. Rol, Lingling Lao, Koen Bertels, and
Carmen Garcia Almudever. Openql : A portable quantum
programming framework for quantum accelerators. ACM J. Emerg.
Technol. Comput. Syst., 18:13:1–13:24, 2022.

[20] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons,
Alec Edgington, and Ross Duncan. t|ket〉: a retargetable compiler for
nisq devices. Quantum Science and Technology, 2020.

[21] Stephen Diadamo, Marco Ghibaudi, and James R. Cruise. Distributed
quantum computing and network control for accelerated vqe. IEEE
Transactions on Quantum Engineering, 2:1–21, 2021.

[22] Nemanja Isailovic, Yatish Patel, Mark Whitney, and John Kubiatowicz.
Interconnection networks for scalable quantum computers. In 33rd
International Symposium on Computer Architecture (ISCA’06), pages
366–377. IEEE, 2006.

[23] David L Moehring, Peter Maunz, Steve Olmschenk, Kelly C Younge,
Dzmitry N Matsukevich, L-M Duan, and Christopher Monroe.
Entanglement of single-atom quantum bits at a distance. Nature,
449(7158):68–71, 2007.

[24] Stephan Ritter, Christian Nölleke, Carolin Hahn, Andreas Reiserer,
Andreas Neuzner, Manuel Uphoff, Martin Mücke, Eden Figueroa,
Joerg Bochmann, and Gerhard Rempe. An elementary quantum
network of single atoms in optical cavities. Nature,
484(7393):195–200, 2012.

[25] Julian Hofmann, Michael Krug, Norbert Ortegel, Lea Gérard, Markus
Weber, Wenjamin Rosenfeld, and Harald Weinfurter. Heralded

entanglement between widely separated atoms. Science,
337(6090):72–75, 2012.

[26] LJ Stephenson, DP Nadlinger, BC Nichol, S An, P Drmota,
TG Ballance, K Thirumalai, JF Goodwin, DM Lucas, and CJ Ballance.
High-rate, high-fidelity entanglement of qubits across an elementary
quantum network. Physical review letters, 124(11):110501, 2020.

[27] Hannes Bernien, Bas Hensen, Wolfgang Pfaff, Gerwin Koolstra,
Machiel S Blok, Lucio Robledo, Tim H Taminiau, Matthew Markham,
Daniel J Twitchen, Lilian Childress, et al. Heralded entanglement
between solid-state qubits separated by three metres. Nature,
497(7447):86–90, 2013.

[28] Peter C Humphreys, Norbert Kalb, Jaco PJ Morits, Raymond N
Schouten, Raymond FL Vermeulen, Daniel J Twitchen, Matthew
Markham, and Ronald Hanson. Deterministic delivery of remote
entanglement on a quantum network. Nature, 558(7709):268–273,
2018.

[29] Aymeric Delteil, Zhe Sun, Wei-bo Gao, Emre Togan, Stefan Faelt, and
Ataç Imamoğlu. Generation of heralded entanglement between distant
hole spins. Nature Physics, 12(3):218–223, 2016.

[30] Robert Stockill, MJ Stanley, Lukas Huthmacher, E Clarke, M Hugues,
AJ Miller, C Matthiesen, Claire Le Gall, and Mete Atatüre.
Phase-tuned entangled state generation between distant spin qubits.
Physical review letters, 119(1):010503, 2017.

[31] P Maunz, S Olmschenk, D Hayes, DN Matsukevich, L-M Duan, and
C Monroe. Heralded quantum gate between remote quantum
memories. Physical review letters, 102(25):250502, 2009.

[32] Severin Daiss, Stefan Langenfeld, Stephan Welte, Emanuele Distante,
Philip Thomas, Lukas Hartung, Olivier Morin, and Gerhard Rempe. A
quantum-logic gate between distant quantum-network modules.
Science, 371(6529):614–617, 2021.

[33] Norbert Kalb, Andreas A Reiserer, Peter C Humphreys, Jacob JW
Bakermans, Sten J Kamerling, Naomi H Nickerson, Simon C
Benjamin, Daniel J Twitchen, Matthew Markham, and Ronald Hanson.
Entanglement distillation between solid-state quantum network nodes.
Science, 356(6341):928–932, 2017.

[34] Daniele Cuomo, Marcello Caleffi, Kevin Krsulich, Filippo Tramonto,
Gabriele Agliardi, Enrico Prati, and Angela Sara Cacciapuoti.
Optimized compiler for distributed quantum computing. ArXiv,
abs/2112.14139, 2021.

[35] Maarten Van Steen and A Tanenbaum. Distributed systems principles
and paradigms. Network, 2:28, 2002.

[36] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib:
An online resource for reversible functions and reversible circuits. In
Int’l Symp. on Multi-Valued Logic, pages 220–225, 2008. RevLib is
available at http://www.revlib.org.

[37] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum
approximate optimization algorithm. arXiv: Quantum Physics, 2014.

[38] Yun Seong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and
Dmitrii L. Maslov. Automated optimization of large quantum circuits
with continuous parameters. npj Quantum Information, 4:1–12, 2017.

[39] Roberto Sanchez Correa and Jean Pierre David. Ultra-low latency
communication channels for fpga-based hpc cluster. Integration,
63:41–55, 2018.

[40] Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, and
Margaret Martonosi. Cutqc: using small quantum computers for large
quantum circuit evaluations. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 473–486, 2021.

[41] Mihir Pant, Hari Krovi, Don Towsley, Leandros Tassiulas, Liang Jiang,
Prithwish Basu, Dirk Englund, and Saikat Guha. Routing
entanglement in the quantum internet. npj Quantum Information,
5(1):1–9, 2019.

[42] Kaushik Chakraborty, Filip Rozpedek, Axel Dahlberg, and Stephanie
Wehner. Distributed routing in a quantum internet. arXiv preprint
arXiv:1907.11630, 2019.

[43] Frederik Hahn, A Pappa, and Jens Eisert. Quantum network routing
and local complementation. npj Quantum Information, 5(1):1–7, 2019.

[44] Changhao Li, Tianyi Li, Yi-Xiang Liu, and Paola Cappellaro.
Effective routing design for remote entanglement generation on
quantum networks. npj Quantum Information, 7(1):1–12, 2021.

13

[45] H-J Briegel, Wolfgang Dür, Juan I Cirac, and Peter Zoller. Quantum
repeaters: the role of imperfect local operations in quantum
communication. Physical Review Letters, 81(26):5932, 1998.

[46] L-M Duan, Mikhail D Lukin, J Ignacio Cirac, and Peter Zoller.
Long-distance quantum communication with atomic ensembles and
linear optics. Nature, 414(6862):413–418, 2001.

[47] Lilian Childress, JM Taylor, Anders Søndberg Sørensen, and
Mikhail D Lukin. Fault-tolerant quantum repeaters with minimal
physical resources and implementations based on single-photon

emitters. Physical Review A, 72(5):052330, 2005.

[48] Nicolas Sangouard, Christoph Simon, Hugues De Riedmatten, and
Nicolas Gisin. Quantum repeaters based on atomic ensembles and
linear optics. Reviews of Modern Physics, 83(1):33, 2011.

[49] Sreraman Muralidharan, Linshu Li, Jungsang Kim, Norbert
Lütkenhaus, Mikhail D Lukin, and Liang Jiang. Optimal architectures
for long distance quantum communication. Scientific reports,
6(1):1–10, 2016.

14

	1 Introduction
	2 Background
	2.1 EPR Pair and Entanglement
	2.2 Distributed Quantum Computing

	3 Problem and Motivation
	3.1 Communication Problem
	3.2 Burst Communication in DQC
	3.3 Optimization Opportunities

	4 AutoComm Framework
	4.1 Design overview
	4.2 Communication Aggregating
	4.3 Communication Assignment
	4.4 Communication Scheduling

	5 Evaluation
	5.1 Experiment Setup
	5.2 Compared to Baseline
	5.3 Compared to GP-based Compiler
	5.4 Optimization Analysis
	5.5 Sensitivity Analysis

	6 Discussion and Future Work
	7 Related Work
	8 Conclusion

