
DiVa: An Accelerator for Differentially Private Machine Learning

Beomsik Park∗ Ranggi Hwang∗ Dongho Yoon Yoonhyuk Choi Minsoo Rhu
School of Electrical Engineering

KAIST
{parkbeomsik, ranggi.hwang, dongho.yoon, yoonhyuk.choi, mrhu}@kaist.ac.kr

Abstract—The widespread deployment of machine learning
(ML) is raising serious concerns on protecting the privacy
of users who contributed to the collection of training data.
Differential privacy (DP) is rapidly gaining momentum in the
industry as a practical standard for privacy protection. Despite
DP’s importance, however, little has been explored within the
computer systems community regarding the implication of this
emerging ML algorithm on system designs. In this work, we
conduct a detailed workload characterization on a state-of-the-
art differentially private ML training algorithm named DP-
SGD. We uncover several unique properties of DP-SGD (e.g., its
high memory capacity and computation requirements vs. non-
private ML), root-causing its key bottlenecks. Based on our
analysis, we propose an accelerator for differentially private
ML named DiVa, which provides a significant improvement in
compute utilization, leading to 2.6× higher energy-efficiency
vs. conventional systolic arrays.

Keywords-Differential privacy; accelerator; machine learn-
ing; deep learning

I. INTRODUCTION

Deep neural network (DNN) based machine learning (ML)
algorithms have demonstrated remarkable performance in
numerous application domains [20], [30], [87]. Such advances
are fueled by the availability of large, representative datasets
that are being utilized for training ML algorithms, allowing
DNNs to capture multi-level representations and abstractions
from the training dataset.

Despite the enormous success of DNNs, the widespread
deployment of ML applications is raising serious concerns
on protecting the privacy of users who contributed to the
collection of training data. Because the training datasets
are oftentimes crowdsourced and can include sensitive
information (e.g., private emails, medical records, financial
transactions), an adversary can seek a training data extraction
attack to restore individual training examples. Even if the
ML model parameters are not shared, black-box access to
the models was shown to leak private information [13], [27],
[33], [86]. In particular, recent literature demonstrated that
the memorization behavior exhibited with large DNN models
can be exploited to leak individual’s private information,
posing risks to those that contributed to the training data.

∗ Co-first authors who contributed equally to this research.

Given this landscape, both industry and academia have
started developing solutions that satisfy the demands of
ML applications while also offering principled and rigorous
privacy guarantees [2], [8], [22], [72], [85]. Among various
privacy mechanisms, differential privacy (DP) [23] has
rapidly gained momentum as a well accepted notion of
privacy (Section II-A). Informally speaking, for the ML
model to be differentially private, the estimated model and
all of its parameters should be indistinguishable regardless of
whether a particular client’s data was taken into consideration
or not during the training process, allowing the privacy
of individual training examples to be protected. Thanks to
DP’s strong mathematical guarantees on privacy protection
and recent advances in successfully training differentially
private ML models [4], [36], [64], [92], we are witnessing
a wide variety of real-world products incorporating DP. For
example, Apple employs DP to collect iOS device users’
anonymous usage patterns and Amazon similarly utilizes
DP to access user’s personalized shopping preference while
hiding sensitive information regarding past purchases [5],
[21]. In general, DP methods are being recognized in the
industry as a practical standard for privacy protection. Despite
DP’s importance, however, little has been explored and
understood within the computer architecture community
regarding the implication of this highly important and
emerging ML algorithm on computer system designs.

Consequently, an important motivation and key contribu-
tion of our study is a detailed workload characterization on
differentially private ML. To the best of our knowledge, this
work is the first to quantitatively analyze a representative,
state-of-the-art differentially private ML system, discussing
its architectural implications as well as its key challenges.
Standard practice in training a non-private DNN model is
to employ stochastic gradient descent (SGD) where multiple
input examples are batched together as a training mini-batch.
During backpropagation, SGD derives a per-batch weight
gradient for updating the DNN weights. Under the privacy-
preserving scenario, the state-of-the-art algorithm employed
in practice is the “differentially-private” SGD (henceforth re-
ferred to as DP-SGD), a variation of SGD with strong privacy
protection. The unique property of DP-SGD is twofold: 1) it
requires the derivation of per-example weight gradients, rather
than the per-batch weight gradients derived in non-private
SGD, and 2) these per-example weight gradients go through

ar
X

iv
:2

20
8.

12
39

2v
1 

 [
cs

.A
R

] 
 2

6 
A

ug
 2

02
2



series of post-processing steps (e.g., per-example gradient
norm derivation, gradient clipping/reduction, and random
noise addition to the gradients) for the privacy enhancement
of the target model (Section II-C).

Given such, our study uncovers important research chal-
lenges this emerging privacy enhanced ML paradigm brings
about to computer system designers, which we outline
below. The key compute primitive of SGD training is the
GEMM (generalized matrix multiplication) operation as it
can cover the majority of execution time of both forward
and backpropagation (Section III-B). Systolic arrays are
arguably the most successfully deployed GEMM acceleration
engine purposed for ML training, notably represented by
its wide adoption in the industry (e.g., Google TPUs [47]).
Using Google Cloud TPUv3, we demonstrate that training
DNNs with DP-SGD incurs both low compute utilization (up
to 29× lower than SGD) and high memory consumption
(up to 11× higher than SGD), significantly aggravating
training throughput by up to 33× vs. non-private SGD.
Careful examination of such performance drop reveals that
conventional systolic arrays are suboptimal for efficiently
handling both the derivation of per-example weight gradients
as well as gradient post-processing steps, posing serious
challenges in practically training differentially private, large-
scale DNN models (Section III-C).

To this end, we present DiVa, an accelerator architecture
tailored for the unique algorithmic properties of Differentially
PriVate machine learning training. The design of DiVa is
driven by our detailed characterization study, unlocking DP-
SGD’s full potential with the following two key innovations.

1) Compared to non-private SGD, deriving DP-SGD’s
per-example weight gradients can entail hundreds of
irregular, tall-skinny shaped GEMMs, which is ill-
suited for systolic arrays optimized for regular, square
shaped GEMMs. We propose an outer-product based
dataflow for DP-SGD’s processing engines (PEs) which
provides high robustness to both regular and irregularly
shaped GEMMs. Compared to systolic array’s dataflow,
our proposal does a much superior job in mapping irreg-
ular (per-example weight gradient) GEMMs over the
compute fabric, significantly improving PE utilization
by an average 5.5×.

2) Another critical step in DP-SGD training is the gradient
post-processing stage where the L2 norm values of
per-example gradients are derived, which are utilized
for clipping and reducing the gradients (Section II-C).
All of these operations are highly memory band-
width limited and can cause latency overheads. DiVa
augments its outer-product based PE array with a
tightly coupled DP-SGD post-processing unit (PPU),
a multi-level adder-tree for vector reductions whose
datapath is optimized for the unique dataflow of
gradient norm/clipping/reduction to minimize off-chip
memory accesses. We demonstrate that DiVa’s PPU
provides 99% reduction in off-chip data movements

GPT-2

XX Corporation Sxxxx Centre
XXXX Marine Parade Southport
Peter Wx xx
XXXXXX@au1.XXXXXX.com
+xx 7 5xx 40x
Fax: +xx 7 5xx 0xx0

Memorized text

East Stroudsburg 
Stroudsburg ... 

Prefix

Figure 1: When one prompts the GPT language model with
the prefix “East Stroudsburg Stroudsburg . . .”, GPT was shown
to autocomplete a block of text that contains the full name,
phone number, e-mail address, and physical address of a particular
individual whose information was included in GPT’s training dataset.
The figure is reproduced from [12].

during gradient post-processing, effectively resolving
its memory bandwidth limitation.

Putting everything together, DiVa provides a significant
improvement in compute utilization which leads to an average
3.8× training time reduction, providing 2.6× higher energy-
efficiency vs. conventional systolic arrays for DP-SGD.

II. BACKGROUND

A. Why Differential Privacy?

As ML become widely deployed across various application
domains, the importance of protecting data privacy is growing
rapidly, especially among areas such as finance, health care,
etc [9], [26], [34]. Differential privacy (DP) has recently
emerged as a privacy preserving mechanism that provides a
strong, mathematical definition of privacy under the context
of statistical and ML analysis. In general, an algorithm is
considered differentially private if an observer seeing the
output of the algorithm cannot tell whether a particular
individual’s information was utilized in computing that given
output, allowing the privacy of individual training examples
to be protected. Overall, DP mathematically guarantees that
the observer seeing the output of a given algorithm will make
the same inference about any individual’s private information,
regardless of whether or not that individual’s information is
included in the input. We refer to [2], [23], [24], [25] for a
more rigorous discussion on DP’s mathematical foundation.

Under the context of ML, DNN models trained with an
individual’s data (e.g., clinical records, photos) were shown
to be vulnerable to attacks that directly analyze the internal
model parameters or indirectly query the model repeatedly
in a black-box setting (Figure 1) [27], [33], [66], [86]. What
is troubling is the fact that larger DNN models are more
vulnerable than smaller ones [13], which is at odds with
recent trends where larger/bigger models are favored given
their higher algorithmic performance [11], [77], [84], [89].
To address such vulnerabilities, the seminal work by Abadi et
al. [2] proposed a solution that enables the training of DNNs
with DP. In the remainder of this section, we review both
a non-private SGD vs. privacy-aware DP-SGD and discuss
their key differences.



B. Non-Private Training with SGD
Training a DNN involves learning and updating the weights

of the DNN layers by the operations of forward and backward
propagation (aka backpropagation) as detailed below.

Forward propagation. Figure 2(a) illustrates the forward
propagation of a two-layered feedforward DNN with a mini-
batch size of 4. Each layer conducts a mathematical operation
(e.g., convolution) to its input activation (X) using the per-
layer weight (W), if any, and generates the output activation
(Y). Note that all the (four) input examples that are part of the
mini-batch go through the layer-wise forward propagation in
parallel, which helps better reuse the weight W and improve
compute utilization of the ML accelerator.

Backpropagation. A loss function is used to derive the
magnitude of an inference’s error at the end of forward
propagation. Specifically, the gradient of the loss function
with respect to the last layer’s input activation is derived.
Using the chain rule, all the layer’s input activation gradient
(G(X)) as well as the weight gradient (G(W)) is calculated
on a per-layer basis, from the last layer to the first layer [62],
[78]. Once the per-layer G(W) is derived, it is utilized to
update the corresponding layer’s weight W for training. A
distinguishing aspect of mini-batch SGD training is that the
size and shape of the per-layer G(W) is identical to the
original per-layer weight W, regardless of the mini-batch
size. This is because the weight gradient vectors derived
for the individual input examples (that constitute the input
mini-batch) are aggregated (i.e., reduced) into a single set
of G(W). This is illustrated in Figure 2(a) where only a
single set of G(W) is derived, per-layer. In the remainder
of this paper, we refer to the non-private SGD’s weight
gradients as “per-batch” weight gradients to distinguish it
against the “per-example” weight gradients of DP-SGD, as
detailed below.

C. Privacy-Aware Training with DP-SGD
High-level overview of DP-SGD. Abadi et al. [2] suggests

to add DP to deep learning models by adding bias and
noise into the mini-batch gradient computation process.
Algorithm 1 provides a high-level overview of such DP-SGD
training procedure. At each step of the training iteration,
DP-SGD derives the weight gradients for each individual
input examples that constitute the input mini-batch (line 19),
rather than computing a single set of weight gradient per
each mini-batch as done in SGD (see Figure 2). These per-
example weight gradients are then clipped (line 23) based on
the L2 norm of each individual per-example gradient (line
22) and subsequently reduced into a single set of weight
gradient G(W) (line 24). The reduced G(W) is then added
with noise to protect privacy (line 24). By taking a step in
the opposite direction of this noisy gradient, the DNN model
is incrementally trained in a differentially private manner.

SGD vs. DP-SGD. Compared to SGD, a distinguishing
aspect of DP-SGD is threefold. First, DP-SGD requires
the derivation of per-example weight gradients rather than

Layer
A

Layer
B Loss

X1
(A)

X2
(A)

X3
(A)

X4
(A)

Activation
X1

(B)

X2
(B)

X3
(B)

X4
(B)

Activation

Layer
A

Layer
B Loss

G(Y1
(B))

G(Y2
(B))

G(Y3
(B))

G(Y4
(B))

Activation
gradients

G(Y1
(A))

G(Y2
(A))

G(Y3
(A))

G(Y4
(A))

Activation
gradients

Forward propagation

Backpropagation

Update DNN model parameters

Per-batch weight gradients
�G(W(A)) �G(W(B))

(a)

Layer
A

Layer
B Loss

X1
(A)

X2
(A)

X3
(A)

X4
(A)

Activation

Per-example weight gradients

Aggregate per-example weight gradients

X1
(B)

X2
(B)

X3
(B)

X4
(B)

Activation

Layer
A

Layer
B Loss

G(Y1
(B))

G(Y2
(B))

G(Y3
(B))

G(Y4
(B))

Activation
gradients

G(Y1
(A))

G(Y2
(A))

G(Y3
(A))

G(Y4
(A))

Activation
gradients

Aggregated weight gradients

Add random noise

Noisy weight gradients

Forward propagation

Backpropagation

Update DNN model parameters

G1(W(A)) G1(W(B))
G2(W(A)) G2(W(B))
G3(W(A)) G3(W(B))
G4(W(A)) G4(W(B))

Clipped per-example weight gradients
�G1(W(A)) �G1(W(B))
�G2(W(A)) �G2(W(B))
�G3(W(A)) �G3(W(B))
�G4(W(A)) �G4(W(B))

Derive L2 norm to clip weight gradients

�G(W(A))=Σ�Gi(W(A)) �G(W(B))=Σ�Gi(W(B))

�G(W(A)) + N(0, σ2C2I) �G(W(B)) + N(0, σ2C2I)

(b)

Figure 2: Training with a (a) non-private SGD and (b) DP-
SGD. Example assumes Y =X×W and an input mini-batch size
of 4. Both layers are assumed to have its corresponding weight
values, necessitating the derivation of per-layer weight gradients.
As depicted, DP-SGD requires 4 times larger memory allocations
than SGD for storing its per-example weight gradients (G(W)).

per-“batch” weight gradient of SGD. Second, derivation
of per-example weight gradients requires separate memory



Algorithm 1 DP-SGD and DP-SGD(R)
Input: Dataset D= {(x1,y1) , . . . ,(xN ,yN)}, batch size B, max gradient norm C, noise

multiplier σ , max steps T , learning rate ηt , loss function l, model weight w =
{w(1),w(2), . . . ,w(M)}, gaussian random varaible N

1: Initialize model weight w0
2: for t = 0,1, . . . ,T do
3: Randomly sample a minibatch {(xi,yi) | i ∈ [B]} from dataset D
4:
5: . Compute loss value through forward propagation
6: For each i ∈ [B], Li← l(wt ,xi,yi)
7:
8: . Derive differentially private weight gradients
9: g′t ← DERIVE DP GRADIENTS(L)

10: OR DERIVE REWEIGHTED DP GRADIENTS(L)
11:
12: wt+1← wt −ηt g′t . Update model weight
13: end for
14:
15: . DP-SGD
16: procedure DERIVE DP GRADIENTS(L)
17: . Compute per-example weight gradients through backpropagation
18: for layer m = M,M−1, . . . ,1 do
19: For each i ∈ [B], gi(w(m))← ∂Li

∂w(m)

20: end for
21:
22: For each i ∈ [B], ni←‖gi(w)‖2 . Derive per-example L2 norm
23: For each i ∈ [B], ḡi(w)← gi(w)/max(1, ni

C ) . Clip per-example gradients

24: return 1
B

(
∑i∈[B] ḡi(w)+N(0,σ 2C2I)

)
. Aggregate gradients & add noise

25: end procedure
26:
27: . DP-SGD(R)
28: procedure DERIVE REWEIGHTED DP GRADIENTS(L)
29: . Compute per-example weight gradient L2 norm via 1st backpropagation
30: for layer m = M,M−1, . . . ,1 do
31: For each i ∈ [B], n(m)

i ←‖ ∂Li
∂w(m) ‖2

32: end for
33: For each i ∈ [B], ni = ‖{n(1)i ,n(2)i , . . . ,n(M)

i }‖2
34:
35: L′← ∑i∈[B] Li/max(1, ni

C ) . Compute reweighted loss value
36:
37: . Compute clipped, per-batch weight gradient via 2nd backpropagation
38: for layer m = M,M−1, . . . ,1 do
39: g̃(w(m))← L′

∂w(m)

40: end for
41: return 1

B

(
g̃(w)+N(0,σ 2C2I)

)
. Add random noise

42: end procedure
43:

Output: Differentially private model weight wT and total privacy cost (ε,δ )

allocations for each, per-example weight gradient G(W)
across all the layers as it is needed for computing per-
example L2 norms (line 22), incurring a significant increase
in memory usage, i.e., compared to SGD which requires
sizeof(G(W)) memory allocation, DP-SGD with mini-
batch of size B requires B×sizeof(G(W)) memory allo-
cation per each layer (Figure 2). Lastly, the per-example
weight gradients require post-processing (i.e., gradient norm
derivation, gradient clipping, gradient reduction, and noise
addition) in order to derive the single set of G(W) to be
utilized for model updates.

“Reweighted” gradients for memory-efficient DP-SGD.
As we detail in Section III-A, DP-SGD’s high memory
consumption limits the maximum mini-batch size that can
practically be employed for training, posing yet another
challenge in deploying DP-SGD. To address such memory
allocation problem of DP-SGD, Lee et al. [63] proposed
an optimization named reweighted DP-SGD (henceforth

referred to as DP-SGD(R)) which helps reduce the memory
allocation size at the cost of additional computation steps.
Line 28−42 in Algorithm 1 summarizes the steps undertaken
in DP-SGD(R)’s backpropagation. A key difference between
DP-SGD vs. DP-SGD(R) is threefold. First, DP-SGD(R)
effectively executes backpropagation “twice” for: 1) deriving
per-example weight gradients during the 1st backpropagation
to compute the L2 norm (line 31), and 2) utilizing the L2
norms derived to compute per-batch weight gradients during
the 2nd backpropagation pass (line 39). Second, the gradient
clipping and reduction stages of DP-SGD are all fused as part
of DP-SGD’s 2nd backpropagation stages (line 39). Third,
because per-example weight gradients are only required to
compute per-example L2 norms (line 22) and such procedure
is fused as part of the 1st backpropagation under DP-SGD(R),
the runtime memory manager need not have to overprovision
the memory allocation size with B×sizeof(G(W)) across
all the layers, enabling opportunities to reduce memory
usage. In Section III, we provide a detailed analysis on
the compute vs. memory usage tradeoffs between DP-SGD
vs. DP-SGD(R).

D. Systolic Arrays for Accelerating GEMM

Why systolic arrays for training? There is a rich set
of prior literature on designing accelerator designs for both
ML training and inference [3], [14], [16], [17], [31], [41],
[42], [45], [46], [47], [51], [52], [55], [56], [57], [58], [59],
[60], [65], [74], [75], [79]. Interestingly, while defining a
generic ML accelerator for inference is challenging (i.e.,
accelerators for inference is typically optimized for a specific
application domain, for instance convolution for computer
vision [16], [17]), those for training have more or less settled
on a design that is optimized for a “single” key primitive:
generalized matrix multiplication (GEMM). A key reason
why accelerators for training are optimized for GEMM is
because both forward and backpropagation of SGD (i.e.,
derivation of G(X) and G(W)) can all be permuted to GEMM
for representative DNN layers (e.g., the im2col operation
that transforms convolutions into GEMM [18], [44]). Among
these, systolic arrays have been most commercially successful
thanks to its regular layout of processing engines (PEs),
efficient inter-PE communication, and highly regular dataflow
with decent data reuse, enabling low power consumption and
high throughput for training. In the rest of this paper, we
assume systolic arrays as the baseline accelerator for training
given its enormous industrial success and wide applicability.

Systolic array dataflow. There are two distinct approaches
in mapping the GEMM’s dataflow onto systolic arrays,
namely output stationary (OS) and weight stationary (WS).
The OS dataflow, as depicted in Figure 3(b), refers to the
mapping strategy where each PE is responsible for conducting
all the computations required for deriving a given output
activation. All the required data operands are streamed
in from the (left and top) edges of the array, which are
distributed to the PEs using local communication channels to



tsrq

6543
21zy
xwvu

ea

hd
gc
fb lkji

ponm

K

M

N
N

M=

bcd

efgh

3
y
u

z
v
r

w
s
-

t
-
-

i
j
n

o

(b) (c)

l
p

- 4 1 x

a ji k l

nm o p

q - - -

zy 1 2

43 5 6

rq s t

vu w x

Latches 
K rows 

from RHS 
matrix

Stream in LHS 
matrix for

(M + K + PEW - 1) 
cycles

Output streamed 
out over

(M + PEH + PEW - 2) 
cycles

1

2

3

-

-

e-- a-

bf- --

-cg --

--d -h

Stream in 
LHS & RHS matrix 

for 
(K + PEH + PEW – 1) 

cycles

1

Final output 
generated after 

(K + PEH + PEW – 1) 
cycles

2

-
-
-

-
- -

- -
-
-

-
-
k

m

(a)
Figure 3: (a) The three GEMM dimensions (M,K,N) that define a matrix multiplication operation between (M,K)=(4×2) and (K,N)=(2×4)
matrices, generating the output matrix (M,N)=(4×4). Figure (b-c) shows the schematic illustrating two representative dataflows in a
systolic array: (b) output stationary (OS) and (c) weight stationary (WS). The height (PEH ) and width (PEW ) of the systolic array are
assumed as (4,4) in the given example.

the systolic array. The partial sums are generated and reduced
down to its final output activation value locally within each
PE. Once all the PEs within the systolic array are done
deriving its share of the output activation value, the inter-PE
communication links are utilized to transfer the final outputs
out of the array.

Unlike the OS dataflow, the WS dataflow employs a
different strategy as shown in Figure 3(c). Here, the weight
values (RHS matrix) are filled into the local latches in each
PE in advance, prior to the start of GEMM. The elements
of the input activation (LHS matrix) are then streamed in
through the (left) edge of the systolic array, where each
PE computes one partial sum every cycle. The partial sums
derived are then reduced across the rows, along each column
in parallel to generate one output value per each column.
Google TPUs are well-known to employ a WS dataflow
because of its cost-effective design and lower on-chip data
fetch bandwidth requirements [45], [47], [67]. In this work,
we assume a WS dataflow for our baseline systolic array.
Nonetheless, we discuss the implication of DP-SGD on OS
in Section IV-C for the completeness of our study.

In general, because systolic arrays are designed as one
large, inflexibly 2D array ((PEH ,PEW )=(128,128) in Google
TPUv3), it can suffer from low PE utilization when the
GEMM’s (M,K,N) dimensions do not align with the di-
mensions of the physical systolic array (e.g., non-square
shaped matrices, GEMMs with small K-dimension sizes). For
instance, GEMMs with small K-dimensions map poorly to OS
with large (PEH , PEW ) systolic array because the two input
vectors streaming in from left/top edges lead to significant
idle cycles along the diagonal direction (Figure 3(b)). WS
similarly suffers from low PE utility as it fails in fully
utilizing the PEs throughout the computation, i.e., only half
of the PE rows in Figure 3(c) are latched with the RHS
matrix, reducing effective PE throughput.

III. WORKLOAD CHARACTERIZATION

In this section, we utilize Google Cloud TPUv3 [29]
combined with our cycle-level simulation framework to

conduct a workload characterization on training representative
DNNs via 1) non-private SGD, 2) DP-SGD as-is and 3) DP-
SGD with reweighting for memory optimization (denoted
DP-SGD(R), see Section II-C). Section V further details
our methodology regarding hardware/software configurations,
simulation framework, benchmark selection, etc.

A. DP-SGD’s Memory Consumption and Its Effect on Train-
ing Mini-batch Size

Figure 4 shows the size of memory allocations based
on its functionality. Training with DP-SGD requires the
derivation of per-example weight gradients whose size grows
proportional to the mini-batch size (Section II-C). This is
represented by the large portion of per-example weight
gradients’ memory allocations in DP-SGD, amounting to an
average 78% of its memory consumption. The implication
of DP-SGD’s high memory usage is that the maximum
possible mini-batch it can practically employ is severely
limited because TPUs come with much smaller memory
size than CPUs (e.g., 16 GB in Google TPUv3 vs. several
TBs in CPUs). For instance, while SGD can train ResNet-
152 and BERT-base with a mini-batch size of 8192 and
1024 respectively, DP-SGD can only accommodate a mini-
batch of 32 and 8. Encouragingly, DP-SGD(R) is able
to reduce the memory bloat problem of DP-SGD by an
average 3.8× thanks to its reweighted gradient derivation
(Algorithm 1). This enables DP-SGD(R) to achieve similar
levels of maximum possible mini-batch size that is feasible
with non-private SGD.

Key takeaways: Training with DP-SGD as-is incurs an
intractable amount of memory consumption, severely limiting
the largest mini-batch size it can be trained on. DP-SGD(R)
can help achieve commensurate level of memory allocation
to that of SGD, enabling much larger mini-batches to
be employed for training. The memory efficiency of DP-
SGD(R), however, comes at the cost of an additional pass
of backpropagation for deriving per-batch weight gradients;
for DP-SGD(R) to become a practically viable solution for



0

2

4

6

8

10

12
SG

D

D
P-

SG
D

D
P-

SG
D(

R)

SG
D

D
P-

SG
D

D
P-

SG
D(

R)

SG
D

D
P-

SG
D

D
P-

SG
D(

R)

SG
D

D
P-

SG
D

D
P-

SG
D(

R)

SG
D

D
P-

SG
D

D
P-

SG
D(

R)

SG
D

D
P-

SG
D

D
P-

SG
D(

R)

SG
D

D
P-

SG
D

D
P-

SG
D(

R)

SG
D

D
P-

SG
D

D
P-

SG
D(

R)

SG
D

D
P-

SG
D

D
P-

SG
D(

R)

VGG-16 ResNet-50 ResNet-152 SqueezeNet MobileNet BERT-base BERT-large LSTM-small LSTM-large

CNN Transformer RNN

M
em

or
y 

us
ag

e 
(n

or
m

al
iz

ed
)

Weight Activation Per-batch weight gradient Per-example weight gradient Else

Figure 4: Breakdown of SGD, DP-SGD, and DP-SGD(R)’s Google
TPUv3 memory usage based on its functionality (normalized to
SGD). All three design points assume an identical mini-batch size,
i.e., the mini-batch that can be employed with DP-SGD is the
smallest (vs. SGD and DP-SGD(R)) so all three designs employ
such mini-batch size identically for a fair comparison.

DP training, the added computation overhead of per-batch
backpropagation should incur reasonable latency overheads.

B. Identifying the Bottlenecks in DP-SGD

In order to identify performance bottlenecks of DP-SGD,
Figure 5 explores the end-to-end training time broken down
into key steps of forward and backpropagation1. We make
several key observations from this characterization study.

1) Both DP-SGD algorithms incur an average 9.1×/5.8×
increase in training time vs. SGD, largely due to its
significantly longer backpropagation time (i.e., the
forward propagation stages are practically identical
among the three design points). Unlike the non-
private SGD where backpropagation “only” accounts
for 60− 77% of training latency, the proportion of
backpropagation takes up close to an average 99%
of latency under DP-SGD, making it the single most
important bottleneck.

2) The significantly slower backpropagation of DP train-
ing is mostly attributed to deriving the per-example
weight gradients and gradient post-processing. Specif-
ically, DP-SGD and DP-SGD(R) causes an average
12.7× and 8.0× increase in latency for deriving the
final weight gradient set G(W) used for model updates.
It is worth pointing out that, regardless of which
training algorithm is being employed, all the gradients
derived during backpropagation (i.e., G(X), G(W) for
both per-batch and per-example weight gradients) are
generated by conducting GEMMs (detailed further in
Figure 6).

3) Lastly, despite having to execute another backpropa-
gation pass, the reweighted DP-SGD(R) surprisingly

1While we employ a simulation based methodology to breakdown training
time, we confirmed that the key observations made in this subsection
holds true in real Google TPUv3 experiments. Nonetheless, the black-box
nature of Google TPUv3 hardware/software system as well as the several
caveats existing in its profiling tool (TensorBoard [1]) makes it challenging
to precisely breakdown training time, so we report our results based on
simulation.

0

5

10

15

20

25

30

35

40

S
G

D

D
P
-S

G
D

D
P
-S

G
D

(R
)

S
G

D

D
P
-S

G
D

D
P
-S

G
D

(R
)

S
G

D

D
P
-S

G
D

D
P
-S

G
D

(R
)

S
G

D

D
P
-S

G
D

D
P
-S

G
D

(R
)

S
G

D

D
P
-S

G
D

D
P
-S

G
D

(R
)

VGG-16 ResNet-50 ResNet-152 SqueezeNet MobileNet

La
te

nc
y 

(n
or

m
al

ize
d)

Bwd(Reduce/noise)

Bwd(grad clip)

Bwd(per-batch grad)

Bwd(activation grad,2nd pass)

Bwd(grad norm)

Bwd(per-example grad)

Bwd(activation grad,1st pass)

Fwdprop

0.0

1.0

2.0

3.0

4.0

5.0

S
G

D

D
P
-S

G
D

D
P
-S

G
D

(R
)

S
G

D

D
P
-S

G
D

D
P
-S

G
D

(R
)

S
G

D

D
P
-S

G
D

D
P
-S

G
D

(R
)

S
G

D

D
P
-S

G
D

D
P
-S

G
D

(R
)

BERT-base BERT-large LSTM-small LSTM-large

Bwd(Reduce/noise)

Bwd(grad clip)

Bwd(per-batch grad)

Bwd(activation grad,2nd pass)

Bwd(grad norm)

Bwd(per-example grad)

Bwd(activation grad,1st pass)

Fwdprop

Figure 5: Breakdown of SGD vs. DP-SGD training time into
key stages of forward and backpropagation. The training time
is normalized to non-private SGD. Training mini-batch size is
configured as the maximum mini-batch size possible with DP-SGD
under Google TPUv3’s HBM capacity (i.e., 16 GB), which all three
algorithms employ identically. We utilize our cycle-level simulation
framework modeled after Google TPUv3 for this experiment.

performs better than DP-SGD with an average 31%
reduction in training time vs. DP-SGD. Reason for
DP-SGD(R)’s superior performance is as follows. The
gradient post-processing stages of DP-SGD involves
a series of memory bandwidth limited operations,
incurring high latency. DP-SGD(R), however, fuses the
gradient clipping/reduction stages of post-processing
as part of the “reweighted” per-batch weight gradient
derivation, significantly reducing its memory traffic and
reducing latency. In other words, while DP-SGD does
not require DP-SGD(R)’s second backpropagation pass,
the high latency overhead of gradient clipping/reduction
stage (which is eliminated with DP-SGD(R), line 39
in Algorithm 1) washes out DP-SGD’s performance
advantage vs. DP-SGD(R), rendering DP-SGD(R) to
perform superior than DP-SGD.

Key takeaways: DP-SGD incurs an order of magnitude
higher training time than SGD because of the high latency
incurred during the derivation of 1) per-example weight
gradients and 2) gradient post-processing. And while both
DP-SGD algorithms perform poorly vs. SGD, the reweighted
DP-SGD(R) demonstrated its superiority over DP-SGD as
it not only provides consistently higher performance but it
also helps drastically reduce its overall memory consumption,
becoming a strong baseline DP training algorithm.

C. Understanding the Bottlenecks in DP-SGD
Our characterization in Section III-B identified two key

bottlenecks of DP-SGD: 1) derivation of the per-example
weight gradients and 2) computing gradient norms. Below
we root-cause the key reasons behind such performance
bottleneck.

Low compute utilization in DP-SGD backprop. As
mentioned in Section III-B, both per-batch and per-example
weight gradients are derived using GEMMs. To understand
the reason behind GEMM’s low throughput during DP-SGD
backpropagation, we compare the GEMM dimensions of



Forward 
propagation

Backpropagation 
(per-batch weight gradient)

Backpropagation
(per-example weight gradients)

M K N M K N M K N

Multi-layer perceptron
(MLP) layer B I O I B O I 1 O

Convolutional layer B*P*Q Cin *R*S Cout Cin*R*S B*P*Q Cout Cin*R*S P*Q Cout

MLP layer with time-series input
(e.g., LSTM, BERT) B*L I O I B*L O I L O

𝐘𝐘𝟏𝟏
𝐘𝐘𝟐𝟐
𝐘𝐘𝟑𝟑
𝐘𝐘𝟒𝟒

𝐗𝐗𝟏𝟏
𝐗𝐗𝟐𝟐
𝐗𝐗𝟑𝟑
𝐗𝐗𝟒𝟒

𝐖𝐖
"K"

"M"

"N"

𝐆𝐆(𝐘𝐘𝟏𝟏)
𝐆𝐆(𝐘𝐘𝟐𝟐)
𝐆𝐆(𝐘𝐘𝟑𝟑)
𝐆𝐆(𝐘𝐘𝟒𝟒)

𝐗𝐗𝟏𝟏𝐓𝐓 𝐗𝐗𝟐𝟐𝐓𝐓 𝐗𝐗𝟑𝟑𝐓𝐓 𝐗𝐗𝟒𝟒𝐓𝐓

“K”

"M"

“N”

�𝐆𝐆𝒊𝒊(𝐖𝐖)

𝐆𝐆(𝐘𝐘𝟏𝟏) 𝐆𝐆(𝐘𝐘𝟐𝟐) 𝐆𝐆(𝐘𝐘𝟑𝟑) 𝐆𝐆(𝐘𝐘𝟒𝟒)

𝐗𝐗𝟏𝟏𝐓𝐓 𝐗𝐗𝟐𝟐𝐓𝐓 𝐗𝐗𝟑𝟑𝐓𝐓 𝐗𝐗𝟒𝟒𝐓𝐓

"K"

"M"

"N"

𝐆𝐆𝟒𝟒(𝐖𝐖)𝐆𝐆𝟑𝟑(𝐖𝐖)𝐆𝐆𝟐𝟐(𝐖𝐖)𝐆𝐆𝟏𝟏(𝐖𝐖)

- B: mini-batch, I: input features, O: output features, Cin: input channels, R: filter width, S: filter height, Cout: output channels, P: output width, Q: output height, L: sequence length

Figure 6: Comparison of GEMM operation during (left) forward propagation and backpropagation for deriving (middle) per-batch weight
gradients and (right) per-example weight gradients.

0

20

40

60

80

100

VGG-16 ResNet-50 ResNet-152 SqueezeNet MobileNet BERT-base BERT-large LSTM-small LSTM-large

CNN Transformer RNN

FL
O

PS
 u

ti
liz

at
io

n 
(%

)

Fwdprop Backprop (activation grad) Backprop (per-batch grad) Backprop (per-example grad)

Figure 7: Google TPUv3’s compute utilization during key GEMM
operations of forward and backpropagation. We quantify TPU’s
compute utilization by measuring the effective FLOPS achieved vs.
maximum available FLOPS in Google TPUv3.

forward and backpropagation for both SGD and DP-SGD
in Figure 62. As depicted, deriving a per-batch weight
gradient is equivalent to a GEMM with its K-dimension
scaling proportional to the mini-batch size, generating a
single set of G(W) (i.e., the inner-product along the K-
dimension has the effect of conducting a gradient reduction
across all mini-batch examples). Consequently, the systolic-
array is provided with more abundant data-level parallelism
and weight reuse opportunity under larger mini-batched
GEMMs, better saturating its compute units. Contrast that
with the GEMMs that derive the per-example weight gradients
where a total of B(=mini-batch) independent GEMMs are
conducted (generating B sets of G(W)), each GEMM’s
K-dimension sized irrespective of the mini-batch size B
exhibiting irregularly shaped GEMMs.

Now, recall from Section II-D that GEMMs with small K-
dimensions map poorly to the highly regular and structured
design of systolic arrays, leading to significant underutiliza-
tions (Figure 3). In Figure 7, we quantify the magnitude
of systolic array’s underutilization across all major GEMM
operations of forward and backpropagation. Across all studied

2It is worth pointing out that DP-SGD(R), our highest performing DP-
SGD design point, utilizes both per-example (during the 1st backpropagation
phase) and per-batch (during the 2nd phase) weight gradient derivations
for computing the final G(W), all of which are covered by the GEMMs
illustrated in Figure 6.

DNN models, the irregularly shaped GEMM for per-example
weight gradients consistently exhibit much lower compute
utilization compared to the other GEMM operations (i.e.,
forward propagation as well as backpropagation for deriving
the input activation gradient and per-batch weight gradient).
These results explain why the per-example weight gradient
derivation incurs such high performance overhead (Figure 5),
providing important guidelines on designing an accelerator
tailored for the unique dataflow of DP-SGD.

Memory-bound gradient norm derivation. The post-
processing stages of DP-SGD (i.e., gradient norm derivation,
gradient clipping/reduction) are all memory-bound operations
with low compute intensity. With reweighted DP-SGD(R)
established as our baseline DP-SGD algorithm, computing
the gradient norms is the only major step left in our memory-
bound bottleneck stage during gradient post-processing (see
Figure 5). Aside from the systolic array engine, Google
TPUv3 comes with an on-chip vector processing unit that
handles vector operations (e.g., vector additions and mul-
tiplications), which Google TPUv3 utilizes for computing
gradient norms. We observe that the per-example weight
gradients that are targeted for gradient norm derivation are
typically too large to be stored inside Google TPUv3’s on-
chip buffers, rendering these per-example gradient tensors
to be spilled to off-chip DRAM. This leads to frequent
off-chip memory accesses to fetch the weight gradients for
computing gradient norms, exhibiting memory bandwidth
limited behavior and causing steep latency penalties.

Key takeaways: The two key bottleneck operations of
DP-SGD are 1) series of irregular, tall-skinny GEMMs
with small K-dimension sizes during per-example weight
gradient derivation, and 2) memory-bandwidth limited vector
reduction operations for deriving gradient norms.

IV. DIVA ARCHITECTURE AND DESIGN

A. Architecture Overview
DiVa consists of a GEMM engine which is implemented

as a 2D spatial array of PEs, a post-processing unit (PPU)



Control U
nit

DMA Unit

Post-Processing Unit (PPU)

DRAM

SRAM Buffer

Input Buffer
(LHS Matrix)

Output Buffer

Input Buffer
(RHS Matrix)

Transpose
Perm

ute U
nit

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

GEMM Engine

Figure 8: High-level overview of DiVa.

for accelerating gradient post-processing, a large on-chip
SRAM buffer that is partitioned for storing the left-hand
side (LHS) and right-hand side (RHS) input matrices as well
as one output matrix, a transpose/permute unit that handles
matrix transposition or im2col operation (i.e., transforms
convolutional layers into GEMM) [18], [44], a DMA unit
that orchestrates on-/off-chip data movements, and the main
control unit (Figure 8). The control unit populates the on-
chip SRAM buffer as appropriate per DiVa’s tiled GEMM
execution order. Once the two input matrix tiles are uploaded,
the control unit initiates the outer-product dataflow based
matrix multiplication using the GEMM engine. After the
GEMM computation is finished, depending on which phase
of DP training DiVa is currently under processing, either
the output activation (forward propagation), the per-batch
input gradient, the per-batch weight gradient, or the per-
example weight gradient (backpropagation) is derived and
latched inside the spatial PE array, i.e., DiVa is classified as an
output stationary (OS) dataflow. In cases where gradient post-
processing over per-example weight gradients is required,
the control unit directly routes the outputs latched inside
the PEs into the PPU. The PPU output is then drained back
into the SRAM buffer and finally the off-chip DRAM by the
DMA unit.

B. Outer-product GEMM Engine
Challenges of systolic array dataflow. A fundamental

limitation of the systolic array architecture is that it suffers
from very low PE utilization when the K-dimension of
the LHS (and RHS) matrix is small, which is a unique
property of the GEMMs that derive DP-SGD’s per-example
weight gradients. Under the WS systolic dataflow, having
a small K-dimension results in only partially latching the
RHS matrix rows within the systolic array and for the OS
systolic dataflow, small K-dimension leads to a shorter length
(LHS/RHS) vectors being streamed into the OS systolic array
(Figure 3). This leads to only a handful of PEs being utilized
for MAC operations each cycle, far lower than the maximum
MAC throughput available across the systolic array, thereby
significantly underutilizing its compute power.

Outer-product dataflow and its implementation. To
address such challenge, DiVa proposes a GEMM engine
based on the outer-product dataflow. Figure 9(a) shows an

biaiM

K
N

M

N

K

C1 = a1 b1
C2 = a2 b2

Ck = ak bk

…

X =

(a)

az

bz

cz

dz

ay

by

cy

dy

ax

bx

cx

dx

aw

bw

cw

dwVector queue
(LHS matrix)

Output partial sums locally accumulated as new vector 
pairs are latched into (LHS/RHS matrix) vector queues.

w x y z

a

b

c

d

Vector queue
(RHS matrix)

All-to-all multiplication

(b)

Figure 9: (a) An outer-product matrix multiplication between (M,K)
matrix A and (K,N) matrix B. (b) Implementation of an outer-product
based GEMM engine via 2D spatial array of PEs conducting all-to-
all multiplication.

outer-product GEMM between matrices A and B, where the
matrix multiplication is decomposed into series of outer-
product multiplications between pairs of vectors, ai and bi.
Specifically, each column of A (ai) and the corresponding
row of B (bi) is multiplied in an all-to-all manner, producing
K partial sum matrices, Ci. These partial sum matrices are
summed altogether to produce the final output matrix C.
Notice how the outer-product generates a total of M×N
MAC operations over two input vectors with lengths M and N,
respectively. Unlike an inner-product where two input vectors
must be of equal length, outer-product can have arbitrary
length input vectors M and N, having more flexibility and
robustness in mapping the GEMM across the PE array.

DiVa seeks to address the PE underutilization issue of
systolic arrays by leveraging the aforementioned property
of outer-product dataflow as illustrated in Figure 9(b). For
clarity of explanation, suppose the M-/N-dimension sizes of
an (M,K,N) GEMM matches the spatial PE array’s height
(PEH) and width (PEW ). The frontend of DiVa’s GEMM
engine streams in two vectors of length M (columns of
LHS matrix) and N (rows of RHS matrix) each clock
cycle. Each row and each column of our spatial PE array
utilizes its local bus to broadcast the streamed in vectors
across the PEs, conducting an all-to-all multiplication as



+ + + +

GEMM Unit
(WS dataflow)

Vector Memory

Ve
ct

or
Un

it

DRAM

TPU Core (WS)

DMA Unit

1 2

+ + + +

GEMM Unit
(OS dataflow)

Vector Memory

Ve
ct

or
Un

it

DRAM

TPU Core (OS with PPU)

DMA Unit

PPU
1

(a) (b)

Figure 10: Dataflow of gradient norm derivation under (a) a WS
systolic array and (b) an OS systolic array. The red boxes indicate
locations where the per-example weight gradients are stored.

depicted in Figure 9(b). The partial sum matrix Ci (i.e.,
matrix M×N) gets newly generated every clock cycle, which
are accumulated locally within each individual PE, requiring
a total of K clock cycles to derive the final matrix C for the
(M,K,N) dimension GEMM. Note how DiVa’s GEMM engine
is always capable of conducting M×N MAC operations each
cycle, regardless of the K-dimension size. Again, it is worth
pointing out that the outer-product dataflow broadly falls
under an OS dataflow as the final output remain stationary
within the spatial PE array during GEMM computation.

Given DP-SGD’s key bottleneck is the small K-dimension
GEMMs in deriving per-example weight gradients, DiVa’s
outer-product GEMM engine can significantly improve
performance as the effective throughput of these GEMMs
are dependent upon the M-/N-dimensions, and not the K-
dimension (see Figure 6). In Section VI-A, we quantify the
magnitude of how much improvement DiVa brings about in
closing the wide performance gap between SGD vs. DP-GSD.

C. Post-Processing Unit (PPU) Design

WS vs. OS dataflow in gradient norm derivation. An-
other crucial bottleneck in DP-SGD training is the memory-
bandwidth limited gradient norm derivation (Section III-C).
Before discussing DiVa’s PPU, let us first discuss the
challenges of Google TPU’s WS dataflow in handling
gradient norm computation, root-causing its memory-bound
characteristic. As discussed in Figure 3(c), for WS systolic
arrays to achieve high PE utility, the length of the LHS
matrix streamed in from the left side of the GEMM engine
must be sufficiently large enough to amortize the effect of
idle cycles manifested in the diagonal direction of the input
stream. An important implication of having large LHS input
streams is that the output SRAM buffer that temporarily
stores the WS systolic array’s output must be sufficiently
large, proportional to the size of the LHS input stream. In
Google TPUv3, the size of this SRAM buffer (referred to
as Vector Memory in TPUs [47], [67], Figure 10) is 16 MB,

1

2

6

7

Adder-tree topology for reduction

+ + + +

+ +

+ + + +

+ +

++

+ x 8

Figure 11: DiVa’s multi-level (= 7) adder-tree in PPU, assuming
(128,128) PE array (i.e., 27 = 128). The baseline DiVa configuration
employs a PPU that can read out 8 output rows from the GEMM
engine, so 8 instances of adder-trees are instantiated within a PPU.

accounting for the largest on-chip memory capacity. Since
the per-example weight gradients, subject for gradient norm
derivation, are stored inside this (large) SRAM buffer, the
control unit can either 1) directly forward this several tens
of MBs worth of tensors to the vector unit for on-the-fly
gradient norm derivation, or 2) temporarily spill them to off-
chip DRAM and process them later on. Careful examination
of this process over Cloud TPUs revealed that Google TPUv3
typically takes the latter approach and spills these large sized
tensors to DRAM (step 1 in Figure 10(a)), later fetching
them back on-chip for gradient norm derivation (step 2). We
speculate the reason for such design decision is as follows.
Directly forwarding the per-example gradients to the vector
unit for on-the-fly gradient norm derivation requires the
GEMM engine (systolic array) to remain stalled until the
gradient norm computation is finalized by the vector unit (i.e.,
unless the output SRAM buffer is vacant, the systolic array
does not have a temporary buffer to store the next GEMM’s
output). Since these tensors are sized in the tens of MBs
scale, deriving gradient norms on-the-fly itself incurs high
latency, which directly affects the main GEMM unit’s stalled
period. Double-buffering the output SRAM buffer, however,
is practically a non-option since this buffer is already in the
order of tens of MBs, due to the nature of a WS dataflow.

Consequently, an OS systolic dataflow becomes an ap-
pealing alternative for handling on-the-fly gradient norm
derivation. As illustrated in Figure 10(b), the per-example
weight gradients are derived in a much smaller, finer-
granularity in an OS dataflow, the size of which scales
proportional to the systolic array size. Under the (128,128)
PE array, this amounts to “only” 64 KB (=128× 128× 4
Bytes), far less than the tens of MBs of tensors requiring
post-processing under a WS dataflow. Overall, the benefits
of an OS dataflow that can directly forward the per-example
weight gradients to the vector unit is clear: 1) the tensors no
longer have to be spilled/retrieved to/from DRAM, alleviating
its memory bandwidth pressure, and 2) the datapath of
such on-the-fly derivation of gradient norm opens up an
opportunity to further boost its overall throughput with a
dedicated accelerator microarchitecture tuned for gradient



R output rows are drained out
of the GEMM engine each
cycle, amounting to a draining
rate of (FREQGEMM x R x PEW)
elements per clock.

A

A single row drained out of the
GEMM engine is routed to its
corresponding adder tree,
allowing R adder trees to
concurrently derive gradient
norms over the R output rows.

B

GEMM Engine

Post Processing Unit

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

+ +
Adder tree

+ + +
Adder tree

+
…

R instances of adder trees

Figure 12: Interfacing DiVa’s GEMM engine and PPU for seamless
gradient norm derivation. Under default DiVa configuration, both
units are synthesized at the same operating frequency (= 940 MHz)
under 65 nm technology.

norm derivation. We now detail DiVa’s PPU design, readily
applicable not only for DiVa’s outer-product GEMM engine
(i.e., outer-product also falls under an OS dataflow) but also
for an OS dataflow based systolic arrays.

PPU architecture. Deriving an L2 norm of a tensor
(Equation 1) requires an element-wise multiplication of the
target tensor with itself, followed by a reduction operation
over all of its elements to generate a single output scalar
value.

‖g‖2 =

√√√√ d1

∑
i1=1
· · ·

dn

∑
in=1

g2
i1...in

, where g ∈ Rd1×···×dn (1)

While conventional vector units do an excellent job in the
element-wise dot-product operation, they become sub-optimal
in conducting reductions as it require multiple iterations of
vector permutations to retrofit reductions as vector operations.
In DiVa’s PPU, we implement a spatial, multi-level adder-tree
based reduction unit for accelerating gradient norm derivation
as illustrated in Figure 11. Under such tree-based topological
design, the input data loading and output data generation
time is in the order of O(1) and O(log2E), respectively (E:
number of elements to reduce), significantly reducing latency
for gradient norm derivation.

Interface between GEMM engine and PPU. Figure 12
summarizes 1) the rate in which DiVa’s GEMM engine
drains out per-example weight gradient vectors to the
PPU, and 2) the required PPU’s processing throughput
to seamlessly derive gradient norms. As depicted, DiVa’s
GEMM engine reads out R output rows each clock cycle and
forwards them to the PPU for post-processing. Assuming
the GEMM engine’s operating frequency is FREQGEMM ,
(FREQGEMM×R×PEW ) elements are drained out of the
GEMM engine each clock cycle. Under DiVa’s default

configuration of FREQGEMM=940 MHz, R=8 rows, PEW=
128 elements/row, and 4 Bytes/element, this amounts to
(940M×8×128×4B)=(3.85) TB/sec of weight gradients to
reduce. DiVa’s PPU is provisioned with sufficient processing
throughput by having the reduction unit be designed as a
7-level (=log2PEW ), pipelined adder-tree with R separate
instances of it incorporated within the PPU. Specifically,
each output row of the GEMM engine is forwarded to
its corresponding adder-tree each clock cycle. Because the
operating frequency of PPU (FREQPPU ) matches FREQGEMM
and the PPU’s adder tree is capable of reducing PE W=128
elements each clock in a pipelined manner, DiVa is able to
seamlessly derive gradient norms. Overall, a total of 128/R
clock cycles are required in fully draining out the GEMM
engine’s outputs for gradient norm derivation.

D. Design Overhead

While DiVa’s outer-product engine provides robust GEMM
performance across a wide range of GEMM shapes, it can
incur design overheads vs. systolic arrays in terms of 1) inter-
PE communication channels and 2) read/write bandwidth
from/to on-chip SRAM buffers.

One of the key advantages of systolic arrays is its simple
inter-PE communication datapath as only spatially nearby
PEs exchange data amongst them, simplifying its design.
DiVa’s all-to-all multiplication requires each and every rows
and columns to have a local bus datapath to broadcast
the incoming two input vectors across the PEs, potentially
incurring higher area and power overheads vs. systolic arrays.

In terms of on-chip SRAM bandwidth needs, the WS
systolic dataflow requires sufficient SRAM read bandwidth to
be provisioned for a one-time latching of the RHS matrix into
the systolic array (e.g., Google TPUv3 is capable of filling
in 8 rows/cycle, Table I), accompanied by a single vector
streaming bandwidth of O(PEH ) to feed in the LHS matrix.
In contrast, DiVa outer-product dataflow needs to stream in
two separate vectors of length PEH and PEW consistently
to the GEMM engine, having an O(PEH+PEW ) SRAM read
bandwidth at steady state. It is worth pointing out that the
O(PEH+PEW ) SRAM read bandwidth of outer-product (as
well as its SRAM write bandwidth) is no worse than the OS
systolic dataflow, as summarized in Table I (see Figure 3(c)
vs. Figure 9(b)). As we uncovered in the previous subsection,
the OS dataflow provides better opportunities than WS for
accelerating gradient norm derivation (but the OS in itself
does not necessarily help accelerate the GEMMs with small
K-dimensions for per-example weight gradient derivation),
rendering DiVa’s higher on-chip SRAM bandwidth vs. WS
a reasonable trade-off. We quantitatively analyze the design
overheads of DiVa in Section VI-B, demonstrating its merits.

V. METHODOLOGY

The workload characterization in Section III is performed
over the Google Cloud TPUv3 platform. We used TensorFlow
Privacy (v0.5.1) [73] to compare SGD vs. DP-SGD’s memory



0

5

10

15

20

25

30

with
PPU

w/o
PPU

with
PPU

with
PPU

w/o
PPU

with
PPU

with
PPU

w/o
PPU

with
PPU

with
PPU

w/o
PPU

with
PPU

with
PPU

w/o
PPU

with
PPU

with
PPU

w/o
PPU

with
PPU

with
PPU

w/o
PPU

with
PPU

with
PPU

w/o
PPU

with
PPU

with
PPU

w/o
PPU

with
PPU

WS OS DiVa WS DiVa WS OS DiVa WS DiVa WS OS DiVa WS DiVa WS OS DiVa WS DiVa WS OS DiVa WS DiVa WS OS DiVa WS DiVa WS OS DiVa WS DiVa WS OS DiVa WS DiVa WS OS DiVa WS DiVa

DP-SGD(R) SGD DP-SGD(R) SGD DP-SGD(R) SGD DP-SGD(R) SGD DP-SGD(R) SGD DP-SGD(R) SGD DP-SGD(R) SGD DP-SGD(R) SGD DP-SGD(R) SGD

VGG-16 ResNet-50 ResNet-152 SqueezeNet MobileNet BERT-base BERT-large LSTM-small LSTM-large

CNN Transformer RNN

Sp
ee

du
p

Figure 13: End-to-end speedup vs. baseline WS systolic array. DiVa is evaluated with/without PPU. Unlike WS, the OS systolic array can
reap the benefits of PPU (Section IV-C), so we evaluate OS with PPU implemented. We also present non-private SGD trained with WS
and DiVa as a comparison point.

Table I: Comparison of on-chip SRAM buffer read/write bandwidth
requirements assuming Google TPUv3 level configuration [47], [67].
Note that the LHS/RHS matrices are stored as 16-bit data types
(2-Bytes) while the accumulation happens in 32-bits (4-Bytes) for
output derivation [48].

Data type Dataflow (Bytes/clock)
Systolic WS Systolic OS & Outer-product

Input LHS PEH×2B PEH×2B
Input RHS PEW×8×2B PEW×2B

Output PEW×4B PEW×8×4B

Total (2×PEH +20×PEW )B (2×PEH +34×PEW )B

allocation size and maximum possible mini-batch size. When
measuring performance, we construct a strong baseline con-
figuration that represents state-of-the-art by employing JAX
(v0.3.7) [10] with auto-vectorization features enabled [53],
[90], allowing DP-SGD to suffer less from the small K-
dimension GEMMs during per-example weight gradient
derivation. The JAX auto-vectorization enhanced GEMM
kernels are utilized when measuring all baseline systolic
WS/OS as well as our baseline GPU systems. Driven by
our characterization, we employ the following measures for
estimating performance, area, and energy in Section VI.

Performance. We developed a cycle-level simulator for
both DiVa and Google TPUv3 as described in [47], [67], [80],
[81], [82], [83]. The TPUv3 performance model is carefully
validated against Google Cloud TPUv3 in terms of effective
throughput across a wide range of GEMM shapes (Pearson
correlation coefficient: 0.95). Table II summarizes the key
parameters of DiVa’s baseline architecture design, which is
configured similar to Google TPUv3.

Area/power. To estimate the area and power of DiVa, we
implement both the WS and OS systolic array along with
our outer-product GEMM engine augmented with the PPU
in RTL using SystemVerilog. The RTL is synthesized with
Synopsys Design Compiler targeting 0.94 GHz of operating
frequency using a 65 nm standard-cell library.

Energy. The energy consumed in DiVa’s GEMM engine
and PPU is estimated by the power numbers from Synopsys
Design Compiler. For modeling the power and energy
consumption of on-chip SRAM usage, we use CACTI [61]
targeting a 65nm process. We employ the energy model
from Horowitz [37] for quantifying energy per operation for
off-chip DRAM accesses.

Table II: DiVa architecture configuration.

Processor architecture
PE array dimension 128×128

PE operating frequency 940 MHz
On-chip SRAM size 16 MB

Memory subsystem
Number of memory channels 16

Memory bandwidth 450 GB/sec
Memory access latency 100 cycles

Benchmarks. We study five DNN models for computer
vision (VGG, ResNet-50, ResNet-152, SqueezeNet, Mo-
bileNet) [30], [38], [43], [88] and four models for natural lan-
guage processing (BERT-base/large, LSTM-small/large) [20],
[35], [70]. State-of-the-art DP-SGD algorithms for computer
vision are currently demonstrated with its efficacy over
CIFAR-10 datasets so the evaluation in Section VI assumes
such setting. We discuss DiVa’s efficacy when deviating from
our default configuration in Section VI-C.

VI. EVALUATION

As we demonstrated DP-SGD(R)’s superiority over a
vanilla DP-SGD, this section always employs DP-SGD(R)
as the baseline differentially private training algorithm.

A. Performance

End-to-end speedup. Figure 13 summarizes the end-to-
end speedup offered with DiVa. In general, DiVa exhibits
consistently higher performance than both WS and OS sys-
tolic array, achieving an average 3.6× (max 7.3×) speedup
over WS. Such high speedup enables privacy-enhanced DiVa
to reach an average 75% of the performance of a non-
private SGD trained with systolic WS, closing their wide
performance gap (Figure 4). In fact, for DNNs that baseline
WS especially suffers from low performance (MobileNet,
LSTM-large), DiVa’s DP training actually performs better
than non-private SGD. Note that DiVa without PPU, while
still providing meaningful speedup, leaves significant perfor-
mance left on the table (e.g., DiVa with/without PPU achieves
7.3×/2.1× speedup vs. WS in ResNet-152), demonstrating
the importance of optimizing gradient post-processing.

It is also interesting to note that DiVa utilized for
training “non-private SGD” (denoted DiVa-SGD) performs
better than systolic WS used for non-private SGD training,
achieving an average 1.6× higher performance. Such superior



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

WS OS DiVa WS OS DiVa WS OS DiVa WS OS DiVa

VGG-16 ResNet-152 BERT-large LSTM-large

En
d-

to
-e

nd
 la

te
nc

y 
(n

or
m

al
iz

ed
)

Fwdprop Bwd(activation grad, 1st pass) Bwd(per-example grad)
Bwd(activation grad, 2nd pass) Bwd(per-batch grad) Bwd(grad norm)

Figure 14: Breakdown of DP training time. Due to space constraints,
we only show a subset of our studied DNN models, but the key
observations remain intact on models not shown in this figure.

performance comes from DiVa’s outer-product dataflow,
which enables our architectural substrate to be robust for
small K-dimension GEMMs existent in non-private SGDs.
As we later discuss in Section VI-B, however, DiVa’s outer-
product does come at a higher area overhead than the
baseline systolic WS. So from a performance/area perspective,
ML accelerators optimized for non-private SGD training
only might prefer the lightweight systolic design than our
proposed outer-product dataflow. Nonetheless, for privacy-
enhanced ML training, our DiVa architecture demonstrates
its robustness and wide applicability for both non-private and
private SGD training.

Latency breakdown. To better root-cause where DiVa’s
superior performance comes from, Figure 14 shows the
breakdown of end-to-end training time. As discussed in
Section III-B, derivation of per-example weight gradients
(yellow) and gradient norm (green) causes the biggest
performance degradation. The outer-product based DiVa is the
only design point that successfully addresses the bottlenecks
incurred in per-example gradient derivation, providing an
average 7.0× (max 14.6×) reduction in its latency. Our
proposed PPU design also shines with its high efficacy,
successfully reducing the latency of gradient norm derivation
not just for DiVa but also for the OS systolic array.

FLOPS utilization. We highlight DiVa’s effectiveness
over a different dimension by presenting the improvements
our outer-product dataflow brings about in terms of FLOPS
utilization (Figure 15). The increase in effective compute
throughput is more pronounced with CNNs (compared to
Transformers/RNNs) as they suffered from more severe
FLOPS underutilization under baseline WS systolic array
(see Figure 7), achieving an average 5.5× (max 28.9× in
SqueezeNet) improvement in per-example weight gradient
derivations. Transformers and RNNs already achieved around
20% effective throughput even with WS systolic array, so
DiVa’s benefits are relatively modest, but still providing a
sizable 2.2× average improvement.

B. Area, Power, and Energy Consumption

Area and power. Table III summarizes the area and power
overhead of DiVa’s GEMM engine and PPU. The outer-

0

1

2

3

4

Fw
dp

ro
p

Bw
d(

ac
tiv

at
io

n 
gr

ad
)

Bw
d(

pe
r-

ba
tc

h 
gr

ad
)

Bw
d(

pe
r-

ex
am

pl
e 

gr
ad

)

Fw
dp

ro
p

Bw
d(

ac
tiv

at
io

n 
gr

ad
)

Bw
d(

pe
r-

ba
tc

h 
gr

ad
)

Bw
d(

pe
r-

ex
am

pl
e 

gr
ad

)

Fw
dp

ro
p

Bw
d(

ac
tiv

at
io

n 
gr

ad
)

Bw
d(

pe
r-

ba
tc

h 
gr

ad
)

Bw
d(

pe
r-

ex
am

pl
e 

gr
ad

)

Fw
dp

ro
p

Bw
d(

ac
tiv

at
io

n 
gr

ad
)

Bw
d(

pe
r-

ba
tc

h 
gr

ad
)

Bw
d(

pe
r-

ex
am

pl
e 

gr
ad

)

VGG-16 ResNet-152 BERT-large LSTM-large

FL
O

PS
 u

til
iz

at
io

n 
im

pr
ov

em
en

t
(n

or
m

al
iz

ed
)

WS OS DiVa

9.6 9.2

Figure 15: Improvements in FLOPS utilization, i.e., effective
computational throughput (normalized to WS systolic array). Similar
to Figure 14, due to space constraints, we discuss a subset of our
studied models, but the key observations remain identically over
the models not shown in this figure.

Table III: Power, area, and effective throughput (TFLOPS) nor-
malized to power and area.

GEMM engine
Systolic WS Systolic OS Outer-product

Technology Commercial 65 nm
Clock frequency 940 MHz

MACs 16,384 (128×128 PEs)
Data type BF16 Mult, FP32 Add

Peak TFLOPS 29.5
Effective TFLOPS 1.2 0.9 6.6

Power (Watt) 13.4 13.6 21.2
Area (mm2) 68 70 82

Effective TFLOPS/Watt 0.089 0.070 0.311
Effective TFLOPS/mm2 0.017 0.012 0.081

product GEMM engine alone adds 19.6% of area overhead vs.
WS systolic array, with an additional 4.6% overhead with our
PPU. As we target an accelerator chip with Google TPUv3
level compute throughput and on-chip SRAM capacity, the
chip-wide area is estimated to be 650 mm2 (designed using 12
nm technology) [47]. Consequently, the addition of DiVa’s 17
(=85-68) mm2 (estimated using 65 nm standard cell library)
area costs a chip-wide 0.3% additional area overhead. In
terms of power consumption, DiVa’s all-to-all multiplication
datapath and PPU adds 10.4 Watt (7.8 (outer-product) + 2.6
(PPU)) of additional power consumption, causing a chip-wide
2.3% (=10.4/450) overhead (i.e., TPUv3’s TDP is 450 W).
In general, such added area and power overheads are highly
reasonable given DiVa’s substantial improvement in FLOPS
utilization, achieving 3.5× and 4.6× higher TFLOPS/Watt
and TFLOPS/area than WS, respectively.

Energy consumption. Across all the models we study,
DiVa provides an average 2.6× (max 4.6×) reduction in
energy consumption. Due to space constraints, we show a
subset of our studied models’ chip-wide energy consumption
in Figure 16. Our analysis is based on a 65 nm technology
(i.e., RTL synthesis of DiVa’s compute units for power
measurement and SRAM energy modeled using CACTI all
assume 65 nm). As depicted, the power overheads of DiVa
is outweighed by the significant reduction in training time,
achieving substantial reduction in energy consumption.

C. Sensitivity
This subsection evaluates DiVa’s robustness to different

model configurations. As discussed in Section V, DP-SGD



0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

w/o
PPU

with
PPU

WS OS DiVa WS OS DiVa WS OS DiVa WS OS DiVa

VGG-16 ResNet-152 BERT-large LSTM-large

En
er

gy
 c

on
su

m
pt

io
n

(n
or

m
al

iz
ed

)

Figure 16: Energy consumption of DiVa (normalized to the WS
systolic dataflow).

for computer vision is currently limited to CIFAR-10 level
datasets (i.e., 32× 32 input images), which we assume in
our baseline setting. We evaluate DiVa’s robustness to future
larger datasets by increasing the image size by 4×/16×/64×
(which allows the systolic arrays to better populate the PEs
for higher throughput), achieving an average 3.6×/2.1×/1.7×
end-to-end speedup across the five CNNs over WS systolic
array, respectively. We also evaluate DiVa for Transformers
and RNNs with longer input sequence lengths that are
2×/4×/8× longer than the baseline 32 sequence length,
achieving an average 2.0×/1.6×/1.5× training time reduc-
tion, respectively.

D. DiVa vs. GPUs

While we focused on accelerating DP-SGD over acceler-
ators like Google TPUs, we also compare DiVa’s merits
over a GPU system for the completeness of our study
(Figure 17). We compare DiVa against two GPU systems [68],
[69] employing NVIDIA’s V100 (32 GB, 900 GB/sec of
bandwidth) and A100 (40 GB, 1,555 GB/sec of bandwidth)
running JAX enabled with auto-vectorization [10], [53], [90].
Both V100 and A100 are evaluated with/without NVIDIA’s
Tensor Core enabled, which provide a sizable difference in
its maximum throughput (i.e., 125 TFLOPS/312 TFLOPS
with Tensor Cores enabled (FP16) and 15.7 TFLOPS/19.5
TFLOPS when disabled (FP32) for V100/A100, respectively).
For those key GEMM operations that constitute DP-SGD’s
backpropagation bottleneck stages, DiVa generally provides
superior performance against NVIDIA Tensor Cores (FP16),
achieving an average 1.2×/1.0× (max 4.1×/3.4×) speedup
vs. V100/A100, respectively, despite having only 23.6%/9.5%
of V100 and A100’s FP16 throughput. MobileNet is an
exception where DiVa performs worse than the two GPUs
as the GPU seemingly does a better job in mapping the
small sized GEMMs across its SIMD vector units. Nonethe-
less, recall that DiVa “only” comes with 29.5 TFLOPS,
unlike V100 and A100’s Tensor Cores which contain 4.2×
(=125/29.5) and 10.6× (=312/29.5) higher computational
throughput, respectively, than DiVa. These results highlight
the importance of optimally mapping DP-SGD’s MAC
operations across the computational units (e.g., despite the
significantly higher peak TFLOPS of A100 vs. V100, A100
only achieves incremental speedup comapred to V100), which

0

1

2

3

4

5

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

GPU DiVa GPU DiVa GPU DiVa GPU DiVa GPU DiVa GPU DiVa GPU DiVa GPU DiVa GPU DiVa

VGG-16 ResNet-50 ResNet-152 SqueezeNet MobileNet BERT-base BERT-large LSTM-small LSTM-large

CNN Transformer RNN

Sp
ee

du
p

0

1
2

3
4

5

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

(F
P3
2)

(F
P1
6)

(B
F1
6)

GPU DiVa GPU DiVa GPU DiVa GPU DiVa GPU DiVa GPU DiVa GPU DiVa GPU DiVa GPU DiVa

VGG-16 ResNet-50 ResNet-152 SqueezeNet MobileNet BERT-base BERT-large LSTM-small LSTM-large

CNN Transformer RNN

Sp
ee

du
p

V100 A100 DiVa

Figure 17: DiVa’s speedup vs. NVIDIA’s V100 and A100 GPUs.
GPU(FP32) and GPU(FP16) refers to V100 and A100 without and
with Tensor Cores enabled.

DiVa’s outer-product dataflow demonstrates its efficiency.

VII. RELATED WORK

Outer-product dataflow for GEMM acceleration. Sev-
eral recent literature explored domain-specific architectures
for accelerating sparse linear algebra. Among these, Out-
erSPACE [71] and SpArch [93] are two-most recent stud-
ies employing an outer-product dataflow for sparse-sparse
GEMMs. The motivation behind the adoption of outer-
product in OuterSPACE/SpArch is completely different than
DiVa as these two studies seek to reap out opportunities from
sparsity. While the details of the underlying microarchitecture
and its dataflow are not publicly available, Tesla’s Full Self-
Driving (FSD) computer [7], [91] hints at the adoption of an
outer-product dataflow in conducting GEMMs. All of these
prior studies assume an inference scenario, unlike the training
context DiVa is studied over. More importantly, none of these
prior work explores DP training for privacy protection, an
important motivation and contribution of our study.

Accelerators for irregular GEMMs. Similar to DiVa,
SIGMA [76] seeks to address the PE underutilization issue
of systolic arrays in executing irregular and sparse GEMMs
via flexible interconnects and various sparse optimizations.
Unlike the outer-product DiVa, SIGMA employs a SIMD-
style inner product array design, let alone the fact that it is
optimized for a non-private SGD algorithm. Planaria [28]
similarly seeks to address the PE underutilization of systolic
arrays for irregular GEMMs via spatially co-locating multi-
ple DNN models, presenting a dynamically reconfigurable
interconnect for better utility of computation units. Again,
the focus of these prior studies is different than our study,
rendering the key contribution of our work stands on its own.

Privacy-preserving ML accelerators. While not neces-
sarily exploring differential privacy, there is a body of prior
art that seeks to preserve privacy by adding security enhance-
ments. GuardNN [39] is a DNN accelerator that employs
encryption/decryption and integrity verification for off-chip
data movements, enhancing its security. DarKnight [32] uses
a custom data encoding strategy based on matrix masking
to enable input obfuscation. MAXelerator [40] proposes a
privacy-preserving MAC unit at the circuit-level. In general,
the contributions of DiVa is orthogonal to these prior work.



DNN dataflows for spatial architectures. In this work,
we primarily focused on the systolic OS and WS dataflow
as assumed in our baseline training accelerator. There
are however alternative DNN dataflows discussed in prior
literature, with a particular emphasis on inference deployment
scenarios. Eyeriss [15], for instance, argued for a row-
stationary (RS) dataflow for convolutional neural network
inference, demonstrating RS’s superiority over OS and WS.
MAESTRO [54] explores a data-centric DNN dataflow for
inference, presenting an analytical cost model to evaluate a
target dataflow’s latency, throughput, and energy-efficiency.
As discussed in this work, ML training involves the derivation
of both activation and weight gradients, a computation
process non-existent in inference. Therefore, it is unclear
how the inference-optimized DNN dataflows explored in
prior literature [15], [49], [50], [54] can be applied for
the backpropagation’s gradient derivation. Enabling these
inference-optimized dataflows to be applicable and optimized
for training-purposes, let alone DP training, is beyond our
scope. Instead, we focused on two most widely deployed
training-purposed architectures like systolic arrays (i.e., OS
and WS) and GPUs.

Multi-tenant ML accelerators for enhanced utilization.
Aside from novel DNN dataflows for irregular and/or sparse
GEMMs, recent work explored the possibility of multi-tenant
DNN execution as means to improve compute utilization and
throughput for inference. PREMA [19] is one of the first
work in this line of research, which employs preemptive
multi-tasking to temporally share the ML accelerator. AI-
MT [6] and Planaria [28], on the other hand, explored spatial
multi-tasking to concurrently execute multiple DNN models
and better saturate compute and memory throughput. Given
such, co-locating multiple skinny GEMMs within the ML
accelerator for spatial multi-tasking is an interesting approach
that can potentially lead to higher PE utility in DP-SGD.
However, it is unclear how such co-location enabled GEMM
engine can efficiently handle the backpropagation stages
of deriving both activation and weight gradients (i.e., prior
multi-tenant ML accelerators strictly focus on inference, not
training), a feature naturally supported under the systolic
dataflow as well as our proposed DiVa design. Optimizing
DiVa’s spatial array to handle these cases is beyond the scope
of our work and we leave it as future work.

VIII. CONCLUSION

This paper proposed DiVa, an accelerator for differentially
private machine learning training. We first conduct a workload
characterization on a state-of-the-art DP-SGD algorithm
executing over Google TPUs, uncovering its high memory
consumption and low compute utilization issue. We then
utilize the lessons learned from our characterization to
develop a ML accelerator optimized for DP-SGD, employing
an outer-product dataflow augmented with an adder-tree
based post-processing unit. Compared to prior systolic arrays,

DiVa provides significant improvement in compute utilization
which allows 3.6× increase in training throughput.

ACKNOWLEDGMENT

This research is partly supported by the National Re-
search Foundation of Korea (NRF) grant funded by the
Korea government(MSIT) (NRF-2021R1A2C2091753), the
Engineering Research Center Program through the NRF
funded by the Korean government MSIT under grant NRF-
2018R1A5A1059921, and by Samsung Electronics Co., Ltd.
We also appreciate the support from the IC Design Education
Center (IDEC), Korea, for the EDA tools. Minsoo Rhu is
the corresponding author.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “ TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems,”
https://www.tensorflow.org/, 2015.

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep Learning with Differential
Privacy,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2016.

[3] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep
Convolutional Neural Network Computing,” in Proceedings
of the International Symposium on Computer Architecture
(ISCA), 2016.

[4] R. Anil, B. Ghazi, V. Gupta, R. Kumar, and P. Manurangsi,
“Large-Scale Differentially Private BERT,” in arxiv.org, 2021.

[5] Apple, “Learning with Privacy at Scale,” https://docs-
assets.developer.apple.com/ml-research/papers/learning-with-
privacy-at-scale.pdf, 2017.

[6] E. Baek, D. Kwon, and J. Kim, “A Multi-Neural Network
Acceleration Architecture,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2020.

[7] P. Bannon, G. Venkataramanan, D. D. Sarma, and E. Talpes,
“Computer and Redundancy Solution for the Full Self-Driving
Computer,” in Hot Chips: A Symposium on High Performance
Chips, 2019.

[8] R. Bassily, A. Smith, and A. Thakurta, “Private Empirical Risk
Minimization: Efficient Algorithms and Tight Error Bounds,”
in IEEE Annual Symposium on Foundations of Computer
Science, 2014.

[9] M. Blatt, A. Gusev, Y. Polyakov, and S. Goldwasser, “Secure
Large-Scale Genome-wide Association Studies Using Homo-
morphic Encryption,” in Proceedings of the National Academy
of Sciences, 2020.

https://www.tensorflow.org/
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf


[10] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Vander-
Plas, S. Wanderman-Milne, and Q. Zhang, “JAX: Com-
posable Transformations of Python+NumPy Programs,”
http://github.com/google/jax, 2022.

[11] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell
et al., “Language Models are Few-Shot Learners,” in Proceed-
ings of the International Conference on Neural Information
Processing Systems (NIPS), 2020.

[12] N. Carlini, “Privacy Considerations in Large Language Mod-
els,” https://ai.googleblog.com/2020/12/privacy-considerations-
in-large.html, 2020.

[13] N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-
Voss, K. Lee, A. Roberts, T. Brown, D. Song, Ú. Erlingsson,
A. Oprea, and C. Raffel, “Extracting Training Data from Large
Language Models,” in USENIX Security Symposium (USENIX
Security), 2021.

[14] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “DianNao: A Small-Footprint High-Throughput
Accelerator for Ubiquitous Machine-learning,” in Proceedings
of the International Conference on Architectural Support for
Programming Languages and Operation Systems (ASPLOS),
2014.

[15] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural
Networks,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2016.

[16] Y. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks,” in Proceedings of the International Solid
State Circuits Conference (ISSCC), 2016.

[17] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDianNao: A
Machine-Learning Supercomputer,” in Proceedings of the
International Symposium on Microarchitecture (MICRO),
2014.

[18] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cuDNN: Efficient Primitives
for Deep Learning,” in arxiv.org, 2014.

[19] Y. Choi and M. Rhu, “PREMA: A Predictive Multi-task
Scheduling Algorithm For Preemptible Neural Processing
Units,” in Proceedings of the International Symposium on
High-Performance Computer Architecture (HPCA), 2020.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of Deep Bidirectional Transformers for Language
Understanding,” in arxiv.org, 2018.

[21] T. Diethe, O. Feyisetan, B. Balle, and T. Drake, “Preserving
Privacy in Analyses of Textual Data,” in Proceedings of the
International Conference on Web Search and Data Mining,
2020.

[22] H. Dong, C. Wu, Z. Wei, and Y. Guo, “Dropping Activation
Outputs With Localized First-Layer Deep Network for Enhanc-
ing User Privacy and Data Security,” in IEEE Transactions
on Information Forensics and Security, 2018.

[23] C. Dwork, “Differential Privacy,” in Automata, Languages
and Programming, 2006.

[24] C. Dwork, “Differential Privacy: A Survey of Results,” in
Theory and Applications of Models of Computation, 2008.

[25] C. Dwork and A. Roth, “The Algorithmic Foundations of
Differential Privacy,” in Found. Trends Theor. Comput. Sci.,
2014.

[26] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson,
“Learning to Communicate with Deep Multi-Agent Rein-
forcement Learning,” in Proceedings of the International
Conference on Neural Information Processing Systems (NIPS),
2016.

[27] M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion
Attacks That Exploit Confidence Information and Basic Coun-
termeasures,” in Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2015.

[28] S. Ghodrati, B. H. Ahn, J. K. Kim, S. Kinzer, B. R. Yatham,
N. Alla, H. Sharma, M. Alian, E. Ebrahimi, N. S. Kim et al.,
“Planaria: Dynamic Architecture Fission for Spatial Multi-
Tenant Acceleration of Deep Neural Networks,” in Proceedings
of the International Symposium on Microarchitecture (MICRO),
2020.

[29] Google, “Cloud TPU,” https://cloud.google.com/tpu, 2018.

[30] S. Gross and M. Wilber, “Training and Investigating Residual
Nets,” in arxiv.org, 2016.

[31] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and
W. Dally, “EIE: Efficient Inference Engine on Compressed
Deep Neural Network,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), June 2016.

[32] H. Hashemi, Y. Wang, and M. Annavaram, “DarKnight: An
Accelerated Framework for Privacy and Integrity Preserving
Deep Learning Using Trusted Hardware,” in Proceedings of
the International Symposium on Microarchitecture (MICRO),
2021.

[33] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro,
“LOGAN: Membership Inference Attacks Against Generative
Models,” in Proceedings on Privacy Enhancing Technologies
(PoPET), 2019.

[34] J. B. Heaton, N. G. Polson, and J. H. Witte, “Deep Learning
for Finance: Deep Portfolios,” in Applied Stochastic Models
in Business and Industry, 2017.

[35] S. Hochreiter and J. Schmidhuber, “Long Short Term Memory,”
in Neural Computation, 1997.

[36] S. Hoory, A. Feder, A. Tendler, S. Erell, A. Cohen, I. Laish,
H. Nakhost, U. Stemmer, A. Benjamini, A. Hassidim, and
Y. Matias, “Learning and Evaluating a Differentially Private
Pre-trained Language Model,” in Findings of the Association
for Computational Linguistics: EMNLP, 2021.

[37] M. Horowitz, “Computing’s Energy Problem (and What We
Can Do About It),” in Proceedings of the International Solid
State Circuits Conference (ISSCC), 2014.

https://ai.googleblog.com/2020/12/privacy-considerations-in-large.html
https://ai.googleblog.com/2020/12/privacy-considerations-in-large.html
https://cloud.google.com/tpu


[38] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision
Applications,” arXiv preprint arXiv:1704.04861, 2017.

[39] W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “GuardNN: Secure
DNN Accelerator for Privacy-Preserving Deep Learning,” in
arxiv.org, 2020.

[40] S. U. Hussain, B. D. Rouhani, M. Ghasemzadeh, and
F. Koushanfar, “MAXelerator: FPGA Accelerator for Privacy
Preserving Multiply-Accumulate (MAC) on Cloud Servers,”
in Design Automation Conference (DAC), 2018.

[41] R. Hwang, T. Kim, Y. Kwon, and M. Rhu, “Centaur: A Chiplet-
Based, Hybrid Sparse-Dense Accelerator for Personalized
Recommendations,” in Proceedings of the International Sym-
posium on Computer Architecture (ISCA), 2020.

[42] B. Hyun, Y. Kwon, Y. Choi, J. Kim, and M. Rhu, “NeuMMU:
Architectural Support for Efficient Address Translations in
Neural Processing Units,” in Proceedings of the International
Conference on Architectural Support for Programming Lan-
guages and Operation Systems (ASPLOS), 2020.

[43] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level Accuracy with
50x Fewer Parameters and <0.5MB Model Size,” in arxiv.org,
2016.

[44] Y. Jia, “Learning Semantic Image Representations at a Large
Scale,” 2014.

[45] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers,
R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,
M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,
R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,
J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, “In-Datacenter Performance
Analysis of a Tensor Processing Unit,” in Proceedings of the
International Symposium on Computer Architecture (ISCA),
2017.

[46] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B.
Jablin, G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma et al., “Ten
Lessons From Three Generations Shaped Google’s TPUv4i
: Industrial Product,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2021.

[47] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon,
C. Young, and D. Patterson, “A Domain-Specific Supercom-
puter for Training Deep Neural Networks,” in Communications
of the ACM, 2020.

[48] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Baner-
jee, S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang,
H. Yuen et al., “A Study of BFLOAT16 for Deep Learning
Training,” in arxiv.org, 2019.

[49] S.-C. Kao, G. Jeong, and T. Krishna, “ConfuciuX: Autonomous
Hardware Resource Assignment for DNN Accelerators using
Reinforcement Learning,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2020.

[50] S.-C. Kao and T. Krishna, “GAMMA: Automating the HW
Mapping of DNN Models on Accelerators via Genetic Algo-
rithm,” in Proceedings of the 39th International Conference
on Computer-Aided Design, 2020.

[51] B. Kim, J. Park, E. Lee, M. Rhu, and J. H. Ahn, “TRiM:
Tensor Reduction in Memory,” in IEEE Computer Architecture
Letters, 2020.

[52] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay, “Neurocube: A Programmable Digital Neuromorphic
Architecture with High-Density 3D Memory,” in Proceedings
of the International Symposium on Computer Architecture
(ISCA), 2016.

[53] A. Kurakin, S. Song, S. Chien, R. Geambasu, A. Terzis,
and A. Thakurta, “Toward Training at ImageNet Scale with
Differential Privacy,” in arxiv.org, 2022.

[54] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer,
and A. Parashar, “MAESTRO: A Data-Centric Approach to
Understand Reuse, Performance, and Hardware Cost of DNN
Mappings,” in IEEE Micro, 2020.

[55] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via
Programmable Interconnects,” in Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operation Systems (ASPLOS), 2018.

[56] Y. Kwon, Y. Lee, and M. Rhu, “TensorDIMM: A Practical
Near-Memory Processing Architecture for Embeddings and
Tensor Operations in Deep Learning,” in Proceedings of
the International Symposium on Microarchitecture (MICRO),
2019.

[57] Y. Kwon, Y. Lee, and M. Rhu, “Tensor Casting: Co-Designing
Algorithm-Architecture for Personalized Recommendation
Training,” in Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA), 2021.

[58] Y. Kwon and M. Rhu, “A Case for Memory-Centric HPC
System Architecture for Training Deep Neural Networks,” in
IEEE Computer Architecture Letters, 2018.

[59] Y. Kwon and M. Rhu, “Beyond the Memory Wall: A Case
for Memory-Centric HPC System for Deep Learning,” in Pro-
ceedings of the International Symposium on Microarchitecture
(MICRO), 2018.

[60] Y. Kwon and M. Rhu, “A Disaggregated Memory System for
Deep Learning,” in IEEE Micro, 2019.

[61] H. Labs, “CACTI: An Integrated Cache and Memory Access
Time, Cycle Time, Area, Leakage, and Dynamic Power Model,”
http://www.hpl.hp.com/research/cacti/, 2016.

[62] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
Based Learning Applied to Document Recognition,” in Pro-
ceedings of the IEEE, 1998.

http://www.hpl.hp.com/research/cacti/


[63] J. Lee and D. Kifer, “Scaling up Differentially Private
Deep Learning with Fast Per-Example Gradient Clipping,”
in Proceedings on Privacy Enhancing Technologies (PoPET),
2021.

[64] X. Li, F. Tramer, P. Liang, and T. Hashimoto, “Large Language
Models Can Be Strong Differentially Private Learners,” in
Proceedings of the International Conference on Learning
Representations (ICLR), 2022.

[65] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen,
and T. Chen, “Cambricon: An Instruction Set Architecture
for Neural Networks,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2016.

[66] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive
Privacy Analysis of Deep Learning: Passive and Active White-
box Inference Attacks Against Centralized and Federated
Learning,” in IEEE Symposium on Security and Privacy (SP),
2019.

[67] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon,
C. Young, N. P. Jouppi, and D. A. Patterson, “Google’s
Training Chips Revealed: TPUv2 and TPUv3.” in Hot Chips:
A Symposium on High Performance Chips, 2020.

[68] NVIDIA, “NVIDIA Tesla V100,” 2018.

[69] NVIDIA, “NVIDIA A100,” 2020.

[70] Opacus, https://github.com/pytorch/opacus/blob/main/
examples/char-lstm-classification.py, 2020.

[71] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng,
C. Chakrabarti, H.-S. Kim, D. Blaauw, T. Mudge, and
R. Dreslinski, “OuterSPACE: An Outer Product Based Sparse
Matrix Multiplication Accelerator,” in Proceedings of the
International Symposium on High-Performance Computer
Architecture (HPCA), 2018.

[72] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and
K. Talwar, “Semi-supervised Knowledge Transfer for Deep
Learning from Private Training Data,” in Proceedings of the
International Conference on Learning Representations (ICLR),
2017.

[73] N. Papernot, A. Galen, and S. Chien, “Tensorflow Privacy,”
https://github.com/tensorflow/privacy, 2022.

[74] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN:
An Accelerator for Compressed-sparse Convolutional Neural
Networks,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), 2017.

[75] J. Park, B. Kim, S. Yun, E. Lee, M. Rhu, and J. H. Ahn, “TRiM:
Enhancing Processor-Memory Interfaces with Scalable Tensor
Reduction in Memory,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2021.

[76] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan,
D. Das, B. Kaul, and T. Krishna, “SIGMA: A Sparse and
Irregular GEMM Accelerator with Flexible Interconnects for
DNN Training,” in Proceedings of the International Sympo-
sium on High-Performance Computer Architecture (HPCA),
2020.

[77] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever, “Language Models Are Unsupervised Multitask
Learners,” in OpenAI Blog, 2019.

[78] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W.
Keckler, “vDNN: Virtualized Deep Neural Networks for
Scalable, Memory-Efficient Neural Network Design,” in Pro-
ceedings of the International Symposium on Microarchitecture
(MICRO), October 2016.

[79] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon,
and S. W. Keckler, “Compressing DMA Engine: Leveraging
Activation Sparsity for Training Deep Neural Networks,”
in Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), February 2018.

[80] J. Ross, “Prefetching Weights for Use in a Neural Network
Processor,” Patent, 05 2015, uS 9805304B2.

[81] J. Ross, N. Jouppi, A. Phelps, R. Young, T. Norrie, G. Thorson,
and D. Luu, “Neural Network Processor,” Patent, 05 2015, uS
9747546B2.

[82] J. Ross and A. Phelps, “Computing Convolutions Using a
Neural Network Processor,” Patent, 05 2015, uS 9697463B2.

[83] J. Ross and G. Thorson, “Rotating Data for Neural Network
Computations,” Patent, 05 2015, uS 9747548B2.

[84] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le,
G. Hinton, and J. Dean, “Outrageously Large Neural Networks:
The Sparsely-Gated Mixture-of-Experts Layer,” in Proceedings
of the International Conference on Learning Representations
(ICLR), 2017.

[85] R. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learn-
ing,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2015.

[86] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Mem-
bership Inference Attacks Against Machine Learning Models,”
in IEEE Symposium on Security and Privacy (SP), 2017.

[87] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the
Game of Go with Deep Neural Networks and Tree Search,”
in Nature, 2016.

[88] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” in arxiv.org,
2014.

[89] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari,
J. Casper, Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti
et al., “Using DeepSpeed and Megatron to Train Megatron-
Turing NLG 530B, A Large-Scale Generative Language
Model,” in arxiv.org, 2022.

[90] P. Subramani, N. Vadivelu, and G. Kamath, “Enabling Fast
Differentially Private SGD via Just-in-Time Compilation and
Vectorization,” in Proceedings of the International Conference
on Neural Information Processing Systems (NIPS), 2021.

https://github.com/pytorch/opacus/blob/main/examples/char-lstm-classification.py
https://github.com/pytorch/opacus/blob/main/examples/char-lstm-classification.py
https://github.com/tensorflow/privacy


[91] E. Talpes, D. D. Sarma, G. Venkataramanan, P. Bannon,
B. McGee, B. Floering, A. Jalote, C. Hsiong, S. Arora,
A. Gorti, and G. S. Sachdev, “Compute Solution for Tesla’s
Full Self-Driving Computer,” in IEEE Micro, 2020.

[92] D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath,
J. Kulkarni, Y. T. Lee, A. Manoel, L. Wutschitz, S. Yekhanin,
and H. Zhang, “Differentially Private Fine-tuning of Language

Models,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2022.

[93] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch: Efficient
Architecture for Sparse Matrix Multiplication,” in Proceed-
ings of the International Symposium on High-Performance
Computer Architecture (HPCA), 2020.


	I Introduction
	II Background
	II-A Why Differential Privacy?
	II-B Non-Private Training with SGD
	II-C Privacy-Aware Training with DP-SGD
	II-D Systolic Arrays for Accelerating GEMM

	III Workload Characterization
	III-A DP-SGD's Memory Consumption and Its Effect on Training Mini-batch Size
	III-B Identifying the Bottlenecks in DP-SGD
	III-C Understanding the Bottlenecks in DP-SGD

	IV DiVa Architecture and Design
	IV-A Architecture Overview
	IV-B Outer-product GEMM Engine
	IV-C Post-Processing Unit (PPU) Design
	IV-D Design Overhead

	V Methodology
	VI Evaluation
	VI-A Performance
	VI-B Area, Power, and Energy Consumption
	VI-C Sensitivity
	VI-D DiVa vs. GPUs

	VII Related Work
	VIII Conclusion
	References

