
Dynamic Acceleration of Multithreaded Program Critical Paths in Near-Threshold Systems

Hyoun Kyu Cho Scott Mahlke
University of Michigan

{netforce,mahlke}@umich.edu

Abstract

Near-Threshold Computing (NTC) is an effective technique to im-
prove energy efficiency. However, single thread performance can
suffer dramatically in NTC systems as cores must be run at low fre-
quency to ensure proper operation. A potential way to solve this
problem is to accelerate a core for a short period of time using
dynamic voltage and frequency scaling (DVFS). This fast-mode ex-
ecution option must be selectively applied so as to not sacrifice the
overall efficiency of the NTC system. To this end, this paper presents
a novel software framework to improve the performance of multi-
threaded programs through smart scheduling of the fast mode cores.
Our framework statically analyzes a target application and instru-
ments dynamic monitoring and priority management code into the
program. At runtime, the probabilistic scheduler assigns the cores to
the fast mode according to the priority set by the instrumented code.
In this way, the program critical path is dynamically accelerated by
spending more time in the fast mode so that the overall performance
gets improved.

1. Introduction

Power and energy efficiency has become the primary concern for
the design of recent computer systems. While Moore’s law keeps
providing more transistors, power and thermal constraints will limit
the number of cores that can be simultaneously turned on as well
as the clock frequency. In order to continue delivering scalable
computing performance, dramatic improvements in computational
energy efficiency are necessary.

One of the most promising solutions to reduce energy consump-
tion is voltage scaling. In particular, Near-Threshold Computing
(NTC) [4] lowers the supply voltage to a value approximately equal
to the threshold voltage of the transistors. NTC is expected to provide
10x or higher energy efficiency by reducing both dynamic and static
energy superlinearly, so that it can enable many more cores to be
powered on than conventional Super-Threshold Computing (STC).

Although NTC gives promising energy-frequency trade-offs, it
also faces several major challenges. Among them is increased perfor-
mance variation. As the dependencies of MOSFET drive current on
the threshold voltage and the supply voltage becomes very steep in
the near-threshold regime, the performance of NTC is very sensitive
to process variation. The conventional approach for performance
variation, adding margin so that all chips meet the specification in
the worst case, is not effective for NTC and it imposes a daunting
challenge to the chip designers [4, 11, 7].

One solution for the performance variation problem of chip mul-
tiprocessors (CMPs) is to allow each core to run at the maximum
frequency it can operate at. In this case, the CMP becomes heteroge-
neous even though the individual cores are identical by design, and it
can cause unpredictable performance.

A recent proposal, Booster [9], copes with this variation-induced
heterogeneity by introducing dynamic heterogeneity to balance work-
loads. The Booster CMP includes two power supply rails set at two
different voltages. This allows each core to quickly switch between
two different maximum frequencies by dynamically assigning each
core to either of the two power rails using a gating circuit. The
Booster CMP virtually eliminates the effects of core-to-core fre-
quency variation by letting slow cores spend more time on the high
voltage rail. It further reduces the effects of workload imbalances by
taking hints from synchronization libraries.

Another serious problem with NTC systems is single-thread per-
formance. With each thread running at a relatively low frequency, the
performance of multithreaded applications can suffer dramatically
when parallelism is limited due to synchronization or other serializing
events. This paper proposes a software framework to improve the
performance of multithreaded programs using the mechanisms for
dynamic heterogeneity introduced by Booster. Given the capability
of selectively running a set of cores in faster mode, how to schedule
the faster mode can make a big difference for the overall program
performance. Our framework first analyzes a target application to
understand the parallelism structure of the program. Then, it instru-
ments the program with the code to dynamically monitor the program
behavior and adjust the priority of each thread. At runtime, the prob-
abilistic scheduler assigns the cores to the fast mode according to
the priority set by the instrumented code. In this way, the program
critical paths are accelerated by intelligently utilizing the fast mode
and thereby improving overall program performance.

The rest of the paper is organized as follows. Section 2 analyzes
parallel benchmarks to show the potentials whereas smart scheduling
of fast mode can improve performance. Section 3 presents our prob-
abilistic priority-based scheduler, and Section 4 describes how the
combination of static analysis and dynamic monitor assigns priori-
ties to accelerate program critical paths. Section 5 demonstrates the
performance improvement of our framework, followed by Section 6
discusses related work. Finally, we summarize the contributions and
conclude in Section 7.

2. Motivational Data

In this section, we discuss how well multithreaded programs can
scale as the number of cores increases. We analyze the bottlenecks
that prohibit the programs from scaling better to demonstrate the
potentials where smart scheduling of dynamic heterogeneity can
improve the performance. All the experiments in this section were
conducted on a 32-core machine consisting of four 8-core Intel Xeon
X7560 processors with 24MB per-chip shared L3 cache, and 32GB
of memory.

Figure 1 shows the speedups of a subset of PARSEC [1] bench-
marks with different number of threads normalized against their
single thread execution. Ideally, a perfectly scaling application has
to show the speedup equal to the number of threads. As can be

Figure 1: Speedup of PARSEC [1] benchmarks with varying number of threads compared to single thread executions.

Figure 2: CPU cycles spent blocked for synchronization operations.

seen, the benchmarks possess varying amount of scalability. While
some programs such as blackscholes and canneal scale pretty close
to the ideal, others like streamcluster or facesim do not scale very
well. Regardless of whether they scale well or not, all of them show
less performance improvement per thread as the number of threads
increases.

According to the recent studies [3, 5], there are several factors
that hinder shared-memory parallel programs from scaling perfectly:
contention for shared resources such as last-level cache (LLC) and
memory bandwidth, synchronization stalls including spinning and
yielding, and workload imbalance and parallelization overhead. Eye-
rman et al. [5] quantifies the impact of these scaling delimiters and
show that synchronization is the most important component for the
most of the benchmarks, especially the poorly scaling ones.

In order to re-confirm their findings, we focus on how much portion
of processor time is wasted waiting for synchronization operations in-
cluding mutex locks, condition variable waits, and barrier waits. We
intercept every Pthread library calls by overloading LD_PRELOAD
environment variable in Linux and measure waiting time for each op-
eration. Figure 2 depicts the portion of time spent for synchronization.

Figure 3: Average arrival time variation between the fastest thread
and the slowest thread.

Comparing Figure 2 and Figure 1, we can see the benchmarks that
spend more time for synchronization do not scale very well, which
supports the previous finding. Furthermore, this shows the potential
of performance improvement if we can reduce the time spent for
synchronization operations by assigning fast mode in a considerate
way.

We further analyze the benchmarks to see if there are some com-
mon patterns for synchronization operation usage. The most common
and basic task of synchronization operations is to use mutex locks to
guarantee atomic access to shared variables. If there are mutexes that
many threads often compete against each other to acquire, they can
be performance and scaling bottleneck. The code regions which hold
contended mutexes are important target of our fast mode scheduling.

Another common synchronization pattern is the phase control of
data-parallel threads. Many shared memory multithreaded programs
exploit data parallelism, whereas multiple threads execute the same
code on different data regions. These programs often need to synchro-
nize those threads to make sure they progress to the next step together.

2

Figure 4: Overview of the proposed acceleration framework.

This type of synchronization can be implemented with barriers, join
operations, and condition variables. The potential performance im-
provement for this synchronization pattern comes from the fact that
not all threads arrive at the synchronization points at the same time.
The arrival time for each thread varies, and the slowest ones forms
the critical path for the execution.

Figure 3 presents the variation of the arrival times. We measure
the time from the thread creation to the join point for blackscholes,
and we use the time from the previous barrier to the next barrier for
bodytrack, canneal, fluidanimate, and streamcluster. We take the geo-
metric mean of the ratio of the fastest thread and the slowest thread.
We can see there are significant variations in the arrival time for this
type of synchronization and this is also an important performance
improvement opportunity for our acceleration framework.

3. Probabilistic Priority-based Scheduling

Figure 4 presents the system architecture of our acceleration frame-
work. It consists of two major parts: the static analysis and instrumen-
tation part that works at compile time, and the monitor and scheduler
part that works at runtime.

The static analysis and instrumentation part takes the target pro-
gram as input, and compiles it into the intermediate representation
first. Then, it analyzes the control and parallelism structure of the
program. Based on the analysis information, it synthesizes and in-
strument the monitor logic into the program. The details of the static
analysis and the optimization will be covered in Section 4.

At runtime, the instrumented code monitors the behavior of the
program and adjusts the priority of the program. The basic idea is
to let the thread executing the critical path runs at the fast mode so
that the critical path gets accelerated. However, it is not possible
to determine which thread becomes the critical path ahead of time.
Therefore, the dynamic monitor increases the priority of the thread
which is more likely to be included in the critical path. Then, the
probabilistic priority-based assigns the fast mode to the higher priority
threads with the higher probability by rolling a dice.

We adopt the interface of the probabilistic scheduler from Lottery
scheduling [12]. It assigns lottery tickets to each thread according
to the priority of the thread. In other words, the number of lottery
tickets that each thread gets is proportional to the priority of the
thread. The scheduler decide the winning lottery by rolling a dice
and the thread which is holding the lottery gets assigned to the fast

1 : double pgain(long x, Pointts *points, ...) {
2 : long bsize = points->num / nproc;
3 : long k1 = bsize * pid;
4 : long k2 = k1 + bsize;
5 : ...
6 : pthread_barrier_wait(barrier);
7 : /* INSTRUMENTED CODE BEGIN */
8 : long PROGRESS_GRANULE = (k2 - k1) / NUM_STEPS;
9 : /* INSTRUMENTED CODE END */
10: for (i = k1 ; i < k2 ; i++) {
11: float x_cost =
12: dist(points->p[i],points->p[x],points->dim)
13: * points->p[i].weight;
14: float current_cost = points->p[i].cost;
15: if (x_cost < current_cost) {
16: switch_membership[i] = 1;
17: cost_of_opening_x += x_cost - current_cost;
18: } else {
19: int assign = points->p[i].assign;
20: lower[center_table[assign]] +=
21: current_cost - x_cost;
22: }
23: /* INSTRUMENTED CODE BEGIN */
24: if ((i - k1) % PROGRESS_GRANULE == 0)
25: halve_priority_tickets();
26: /* INSTRUMENTED CODE END */
27: }
28: pthread_barrier_wait(barrier);
29: ...
30: }

Figure 5: An example of progress monitoring instrumented code.

mode. Statistically, if we repeat this assignment process many times,
the ratio of the time each thread gets the fast mode approaches to the
ratio of priority. The lottery abstraction allows the flexible adjustment
and delegation of the priority for the fast mode.

4. Dynamic Priority Management

The fundamental goal of our priority management is to assign higher
priorities to the threads that are more likely to be included in the
critical path. To do so, our framework analyzes the control and
parallelism structure statically and instruments the monitor code that
dynamically adjusts the priority of each code region according to its
runtime behavior.

In this section, we explain how our monitor code observes the
runtime behavior and adjust the priority. We follow the guide of
the findings described in Section 2 to concentrate on the two very
common patterns of synchronization. Section 4.1 focuses on the
phase control of data-parallel threads, and we cover the mutexes used
for guaranteeing atomic access to the shared variables in Section 4.2.

4.1. Progress Monitoring

As we measured in Figure 3, data-parallel threads often exhibit vary-
ing arrival times to the joining or barrier synchronization points.
There are a number of factors that cause the variation. Among them
are control flow deviation, non-uniform effect of memory subsystem,
and other synchronization operations such as mutex locks. When
these factors accumulate and make a specific thread the slowest, it
turns out to be in the critical path. Therefore, if a thread progresses
slower than other threads in the earlier stages of the task, it is likely
to be also slower in the end and thus in the critical path.

From the previous observation, our framework tries to assign
higher priority to the threads that shows slower progress. In or-
der to do that, our static analysis divides a chunk of task into the
multiple of the smaller chunks that approximately have the same

3

Figure 6: Performance gain of our framework for streamcluster.

amount of work. Then, it instruments the monitoring code between
the chunks that lowers the thread’s priority. The rationale behind this
policy is that if a thread reaches a checkpoint earlier than the other
threads it is less likely to be in the critical path.

For the straight lines of code, we use the type and the number
of instructions to estimate the amount of work each chunk has. We
further refine the model by profiling the average number of cycles
each type of instructions takes. Control divergence makes it difficult
to statically estimate the amount of work, if two different paths have
significantly different number of instructions. For control divergence,
we exploit edge profiling to approximate the amount of work. In
order words, we use the weighted sum of each path’s amount of work
with the edge bias as weight.

Heavy workload chunks usually involve with loops. Based on
the assumption that each iteration virtually has the similar amount
of work, we use the number of iterations as the amount of work to
divide the chunks. Figure 5 shows an example of our monitoring
code instrumentation for loops. It is the workload phase that takes the
most substantial amount of the time in the streamcluster benchmark.
This phase consists of one big loop (line 10 line 27) between two
barrier synchronization, and the number of iteration is determined at
runtime by the parameters of the input size and the number of threads.
We instrument the code to decide the monitoring granularity based
on the parameters in line 8. Then, the instrumented code adjust the
priority at every PROGRESS_GRANULE iterations in line 25.

4.2. Priority Delegation

Another type synchronization that we exploit to accelerate critical
paths is mutexes. Since only one thread that is holding a mutex can
progress among the threads that require the same mutex, the code
region holding a mutex is more likely to be in the critical path than
other regions without any mutex. We instrument after every mutex
acquisition to increase the priority.

The threads holding the contended mutexes are even more likely
to be in the critical paths. Furthermore, the contended mutexes
can cause the priority inversion problem, in which a higher priority
thread is waiting for a mutex held by a lower priority thread. In
order to solve the priority inversion problem and give emphasis on
the threads holding the contended mutexes, our runtime monitoring

system enables temporary transfer of priority tickets. When a thread
tries to acquire a mutex, it first checks whether the mutex is held by
another thread or not. If so, it temporarily transfers its priority tickets
to the thread holding the mutex and wait for the mutex. In this way,
the threads holding the contended mutexes get higher priority.

5. Performance Evaluation
In this section, we present the effectiveness of our acceleration frame-
work with the performance improvement on the streamcluster bench-
mark. We estimate the performance improvement by post-processing
the traces generated by the instrumented code with the progress time
indication. The traces are generated by the program running 32
threads on a 32-core machine consisting of four 8-core Intel Xeon
X7560 processors with 24MB shared L3 cache per chip and 32GB of
total memory. We assume that only one core can run in the fast mode
at a time, but the same scheduling mechanism can be applied when
more than one core can be accelerated simultaneously.

Figure 6 presents the performance improvement over the conven-
tional round robin scheduling with the modern operating system
scheduling quantum size, varying the acceleration of the fast mode
from 1.5x to 10x and the scheduling quantum size from 1 microsec-
ond to 1 millisecond. These are reasonable parameter settings as
Miller et al. [9] varies the core and L1 clock frequency from 300MHz
to 2300Hz and assumes 10 cycles (10 nsec for 1GHz frequency) of
transition time between the fast and the slow mode.

As can be seen in the graph, our acceleration framework gives
substantial performance improvement, from 5% to 27% without any
hardware modification. Our acceleration scheduler works better with
smaller time quanta as it assigns the fast mode probabilistically. In
addition, our framework is relatively better than the round robin
scheduler for higher acceleration rate because the round robin sched-
uler is not effective to distribute the computational power gained by
the acceleration.

6. Related Work
The key idea of our framework is to accelerate the critical path identi-
fied by synchronization operations with the capability of dynamically

4

changing the performance of each core. In this section, we discuss
the previous proposals related to our work focusing on two parts: i)
dynamic heterogeneity, and ii) critical path identification via synchro-
nization.

Our work is broadly based on the architectural capability of chang-
ing the throughput of each core. Miller et al. suggests the same
capability to overcome the sensitivity to process variation of NTC
in Booster [9]. Bower et al. [2] also expects dynamic heterogeneity
due to process variability, physical faults, and dynamic voltage and
frequency scaling. Other than changing the throughput of cores by
scaling frequency, Lukefahr et al. [8] proposes fast switching by inte-
grating two different types of architectural computing engines into a
core. Assuming the low overhead dynamic heterogeneity suggested
in these previous proposals, we further improve the performance of
the multithreaded programs by smartly scheduling the fast mode of
each core.

Another vein of previous work related to our proposal is to use
synchronization operations to guide hardware acceleration. Booster
SYNC [9] adjust thread priorities taking hints from barriers, locks,
and condition waits. Suleman et al. [10] migrates the threads running
critical sections to the fast cores, and Joao et al. [6] extends their
work to cover other types of bottlenecks including barriers. The most
important difference of our work from these previous proposals is that
our scheduling works entirely in software. Moreover, our framework
pro-actively accelerates the code between barriers by tracking their
progress via the instrumented monitor.

7. Conclusion

We introduce a novel software framework to improve the perfor-
mance of shared-memory multithreaded programs via considerate
scheduling of the fast mode cores, given the capability of selectively
running a set of cores in faster mode for near-threshold computing.
The technique works by statically analyzing target program and in-
strumenting dynamic monitoring and priority management code into
the program. At runtime, the probabilistic scheduler assigns the fast
mode to the threads with higher priority by rolling a dice. We present
the effectiveness of our framework with the post-processing result of
the streamcluster traces on a 32 core machine. Varying the parameters
corresponding to a previous work [9], we show our framework can
give the substantial performance improvement (5% - 27%).

References
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:

Characterization and architectural implications,” in Proc. of the 17th
International Conference on Parallel Architectures and Compilation
Techniques, 2008, pp. 72–81.

[2] F. A. Bower, D. J. Sorin, and L. P. Cox, “The impact of dynamically
heterogeneous multicore processors on thread scheduling,” IEEE Micro,
vol. 28, no. 3, pp. 17–25, 2008.

[3] G. Chadha, S. Mahlke, and S. Narayanasamy, “When less is more
(limo): Controlled parallelism for improved energy efficiency,” in Proc.
of the 2012 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, 2012.

[4] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming moore’s law through
energy efficient integrated circuits,” Proceedings of the IEEE, vol. 98,
no. 2, pp. 253–266, Feb. 2010.

[5] S. Eyerman, K. D. Bois, and L. Eeckout, “Speedup stacks: Identifying
scaling bottlenecks in multi-threaded applications,” in Proc. of the 2012

IEEE Symposium on Performance Analysis of Systems and Software,
2012, pp. 145–155.

[6] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck
identification and scheduling in multithreaded applications,” in 20th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2012, pp. 223–234.

[7] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas, “Varius-ntv:
A microarchitectural model to capture the increased sensitivity of many-
cores to process variations at near-threshold voltages,” in Proc. of the
2012 International Conference on Dependable Systems and Networks,
2012, pp. 1–11.

[8] A. Lukefahr, S. Padmanabha, R. Das, F. Sleiman, R. Dreslinski,
T. Wenisch, and S. Mahlke, “Composite cores: Pushing heterogene-
ity into a core,” in Proc. of the 45th Annual International Symposium on
Microarchitecture, 2012.

[9] T. N. Miller, X. Pan, R. Thomas, N. Sedaghti, and R. Teodorescu,
“Booster: Reactive core acceleration for mitigating the effects of pro-
cess variation and application imbalance in low-voltage chips,” in Proc.
of the 18th International Symposium on High-Performance Computer
Architecture, 2012, pp. 1–12.

[10] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Accelerating
critical section execution with asymmetric multi-core architectures,” in
17th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2009, pp. 253–264.

[11] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling
and power management for chip multiprocessors,” in Proc. of the 35th
Annual International Symposium on Computer Architecture, Jun. 2008,
pp. 363–374.

[12] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: Flexible
proportional-share resource management,” in Proceedings of the 1st
USENIX Symposium on Operating Systems Design and Implementation,
1994.

5

