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Abstract— With the ubiquitous computing of providing services 

and applications at anywhere and anytime, cloud computing is 

the best option as it offers flexible and pay-per-use based services 

to its customers. Nevertheless, security and privacy are the main 

challenges to its success due to its dynamic and distributed 

architecture, resulting in generating big data that should be 

carefully analysed for detecting network’s vulnerabilities.  In this 

paper, we propose a Collaborative Anomaly Detection 

Framework (CADF) for detecting cyber attacks from cloud 

computing environments. We provide the technical functions and 

deployment of the framework to illustrate its methodology of 

implementation and installation.  The framework is evaluated on 

the UNSW-NB15 dataset to check its credibility while deploying 

it in cloud computing environments. The experimental results 

showed that this framework can easily handle large-scale systems 

as its implementation requires only estimating statistical 

measures from network observations. Moreover, the evaluation 

performance of the framework outperforms three state-of-the-art 

techniques in terms of false positive rate and detection rate. 
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I.  INTRODUCTION  

     The term ‘cloud computing’ denotes a network of networks 

interconnected using internet services in which virtual shared 

servers offer the software, infrastructure, platform, services 

and other resources to customers anywhere and anytime [1]. 

Cloud computing produces a flexible computing model which 

permits firms and organisations to use and adapt their IT needs 

over the internet at a low cost of use and without any liability 

towards IT infrastructure and maintenance [2].   
 
    In the cloud computing environment, network-accessible 

resources are used as services. These services are categorised 

into three types of Platform as a Service (PaaS), Infrastructure 

as a Service (IaaS) and Software as a Service (SaaS) models 

[2] [3] [4]. Firstly, a PaaS delivers to a user or organisation 

client applications using programming languages, libraries, 

services and tools which are supported by a PaaS provider’s 

infrastructure.  Then, an IaaS offers processing units, network 

capabilities and other fundamental computing resources via 

Virtual Machines (VMs) to service subscribers. Finally, a     

SaaS offers to a user or organisation on-demand applications 

and software services via a cloud infrastructure, avoiding the 

cost of buying and maintaining those applications. 

 

   Cloud executions often contain security mechanisms, 

typically available because of the data centralisation and 

global architecture. Cloud providers endeavour to secure the 

homogeneous resources of cloud architecture as much as 

possible [3]. However, several vulnerabilities are a result of 

the underlying technologies, for example, network systems, 

APIs, datacentres and virtual machines that considerably 

threaten the cloud architecture [2].  

 

    The architecture of cloud computing includes three layers: 

infrastructure, application and platform which execute its 

functionalities. Each layer faces particular vulnerabilities, 

developed by diverse malicious scripts or configuration errors 

of user/service providers. Cloud’s vulnerabilities expose the 

confidentiality, integrity or/and availability of its resources. 

This is because that data and virtualised infrastructure of cloud 

systems can be breached by existing and new attacks [5]. The 

security challenge of a cloud computing system occurs when a 

cloud runs a high storage capacity and computing power that 

is abused by an insider or outsider hacker [6]. 

 

    There are some existing security techniques and tools, 

including authentication, access control, encryption, access 

control, firewall and intrusion detection systems (IDSs), to 

tackle the cloud’s security issues. However, in current cloud 

computing systems, no single mechanism fits all cases of 

exploitation. These mechanisms should be incorporated to 

produce a comprehensive layer of defence. In this study, we 

mainly focus on the IDS technology and what is the suitable 

framework for detecting intrusive events that threaten cloud 

environments.  

 

    We propose a Collaborative Anomaly Detection Framework 

(CADF) for processing big data of cloud computing systems. 

More specifically, we provide the technical functions and the 
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way of deployment of this proposed framework for these 

environments. The technical framework comprises three 

modules: capturing and logging network data, pre-processing 

these data and a new Decision Engine (DE) using a Gaussian 

Mixture Model (GMM) [15] and lower-upper Interquartile 

Range (IQR) threshold [16] for detecting attacks. The UNSW-

NB15 dataset1 is used for evaluating the new DE to assess its 

reliability while deploying the framework in real cloud 

computing systems.   

II. BACKGROUND AND RELATED WORK 

     Because of the dynamic configurations of cloud computing, 

numerous vulnerabilities attempt to penetrate its architecture, 

leaving loopholes in which attackers exploit cloud’s services 

and its big data [2]. The analysis of cloud data should consider 

the inspection of big data properties, i.e., volume, velocity, 

variety, veracity and value, for efficiently detecting malicious 

activities [7]. Inspecting these properties in cloud data helps in 

making the decision of designing a scalable security 

mechanism that can precisely model network data for defining 

malicious patterns, and these properties are declared as 

follows. 

 Volume is a large amount of processed data. 

 Velocity is the high speed of processed data. 

 Variety is the dimensionality of processed data. 

 Veracity is the correctness of processed data. 

 Value is the significance of processed data.  

 

   An IDS is widely used to detect intrusive activities from 

cloud’s big data, but it still faces the challenge of successfully 

recognising invariants of known attacks and zero-day/new 

malicious activities. The purpose of IDS is to provide a layer 

of defence against malicious events that try to breach 

computing systems. It monitors and analyses activities which 

happen in computer or network systems to detect possible 

threats [1].  

 

   The IDS detection approaches are classified into three 

categories: misuse- (MDS), anomaly- (ADS) and hybrid-based 

IDS, merging the first two types [1][5][7]. A MDS monitors 

network data to match observed activities against an existing 

blacklist. Nevertheless, although it produces high detection 

rates and low false positive rates, it cannot identify any zero-

day attacks or even variants of known ones [5]. Conversely, an 

ADS establishes a normal profile and discovers any variation 

from it as an attack. Because it can identify both known and 

unknown attacks, it is a better approach than a MDS if its 

detection method is properly developed [1] [5] [3].  

                                                           
1The UNSW-NB15 dataset,  https://www.unsw.adfa.edu.au/australian-centre-

for-cyber-security/cybersecurity/ADFA-NB15-Datasets/ , May 2015 

   The majority of recent cloud computing IDS research 

focuses on its design at the application, platform, and 

infrastructure layers separately [6]. For instance, Gustavo and 

Miguel [8] executed many ADS techniques and suggested an 

IDS for protecting complex web applications as SaaS. Their 

results showed that the deployment of ADS at the application 

layer is very effective, as it is easy to detect application 

attacks. Nevertheless, they did not provide an effective way of 

deploying their system in a real cloud computing environment.  

 

    Establishing the IDS in the infrastructure layer is important 

to some extent. As in [9], the authors suggested a hypervisor 

model based on a VM monitor to secure the infrastructure 

layer (IaaS) from different types of attacks. This model 

enhances the reliability and availability of the system because 

the running services can be protected. However, this model 

cannot protect the system if the infrastructure collapses due to 

the norm of contemporary flooding traffic of attacks such as 

DDoS. 

 

     Designing a collective IDS structure for cloud computing 

systems is always an arduous task because of their 

heterogeneous model and virtualisation technology. Zayed et 

al. [10] developed a collaborative IDS using a support vector 

machine technique for detecting abnormal activities. However, 

this system is not scalable as the performance drops with the 

increase of data capacity into the central node in which a 

single point of failure is unsuitable in the cloud.  

 

    Gai et al. [11] suggested a grid and cloud computing IDS 

for discovering malicious events. However, this system can 

only detect particular attacks. Tan et al. [2] proposed a 

collective IDS which associates malicious events between 

different IDSs to enhance the IDS efficiency. Although these 

collaborative systems are scalable to some extent, they cannot 

efficiently detect large-scale distributed anomalies, and there 

is no central correlation handler to merge activities, as we 

propose in this study. 

III. PROPOSED COLLABORATIVE ANOMALY DETECTION 

FRAMEWORK (CADF) 

    Existing misuse IDSs are not able to identify zero-day 

attacks or even variants of existing types. The design of a 

collaborative IDS for each node in cloud computing 

environments is extremely significant for detecting these types 

of intrusions. A Collaborative Anomaly Detection Framework 

(CADF) is proposed to detect malicious observations from 

each network node in order to considerably improve the 

detection accuracy.  
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    The target of the framework is to develop an effective ADS 

installed in each node in cloud computing systems which 

identifies malicious activities with a central data capturing and 

logging module. We describe the technical functions and 

deployment of this framework to understand the way of 

implementing it in real environments. The technical 

framework involves three modules, capturing and logging, 

data pre-processing and decision engine for identifying 

suspicious activities of cloud, as depicted in Figure 1.  

 

 
Figure 1. Proposed Collaborative Anomaly Detection Framework (CADF) 

A. Capturing and logging module 

    This module includes the steps of sniffing network data and 

storing them to be processed by the DE technique, like the 

steps of designing the UNSW-NB15 dataset [12] [13]. The 

configuration of the UNSW-NB15 testbed was used to 

simulate a large-scale network. A tcpdump tool was applied to 

sniff packets from the network’s interface while Bro, Argus 

tools and other scripts were used to extract a set of features 

from network flows 12] [13]. These features were recorded 

using the MySQL Cluster CGE technology2 that has a highly 

scalable and real-time database and enables a distributed 

architecture to read and write intensive workloads, and is 

accessed via SQL APIs for processing big data. 

B. Pre-processing module 

    This module determines and filters network data in three 

steps. Firstly, its feature conversion replaces non-numeric 

features with numeric ones because our GMM-based ADS 

technique deals with only numeric features, for example 

mapping TCP, UDP and ICMP into 1, 2 and 3, respectively. 

Secondly, its feature reduction uses the PCA technique to 

                                                           
2 The MySQL CGE technology, https://www.mysql.com/products/cluster/ , 

May 2017. 

select a small number of uncorrelated features. Because this is 

one of the best-known linear feature reduction algorithms, 

with the advantages of demanding less memory storage, 

having lower data transfer and processing times, and better 

accuracy than others [14], we used it for this study.  

 

    Finally, feature normalisation arranges the value of each 

feature in a certain range to remove any bias from raw data 

and easily process it. We apply the z-score function, as it can 

scale the network data with no change in the norm of the 

original data. It scales each feature ( ) with a 0 mean ( ) and 

1 standard deviation ( ), to normalise the data using (1). 

 

                                          (1) 

IV. DECISION ENGINE MODULE  

   This section elaborates the new DE technique based on the 

Gaussian mixture model and lower-upper interquartile range 

baseline.    

 

A. Finite Mixture Model using Gaussian distribution 

    As a finite mixture model is defined as a convex 

combination of two or more Probability Density Functions 

(PDFs), the joint properties of these functions can approximate 

any arbitrary distribution. It is a powerful and flexible 

probabilistic modeling technique for multivariate data [15]. 

Network data are typically considered multivariate as they 

have d dimensions for differentiating between attack and 

normal instances; for example, let  be a d-

dimensional random variable and  an 

observation of X. The probability density Function (PDF) of a 

Gaussian distribution is computed by 

                         (2) 

   where  is feature values,  is mean of the distribution and 

 is variance. The PDF of a mixture model is declared by a 

convex combination of -component PDFs and is given as  

 

                         (3) 

 

   where ( )  are the mixing proportions, each  is a 

set of parameters defining the  components which are based 

on the number of the feature selected using the PCA technique 

and  is the complete set of 

parameters required to identify the mixture. Applying the 

probability conditions,  has to satisfy  

 

        (4) 

 

https://www.mysql.com/products/cluster/


 

    The mixture model is computed by the Maximum 

Likelihood Estimation (MLE) [15]. Assuming  data with  

observations, the probability of data in which  are 

identically and independently distributed is given by  

 

     (5) 

 

The MLE is derived from the set of parameters ( ) by 

 

          (6) 

 

   The GMM is the mixture model most often applied for 

NADSs. It estimates the PDFs (from equations (2) to (6)) of 

the normal data given by a training set. The parameters 

 of the GMM are estimated using the EM 

algorithm to model network data.  

B. Training Phase 

 

    It is vital to obtain a purely normal training set to assert 

correct detection. Given a set of normal vectors ( ) in 

which each record comprises a set of features, 

where , the normal profile 

contains only statistical measures from . They involve 

the estimated parameters of the GMM to 

compute the PDFs of the Gaussian distribution 

( ) for each vector in the training set, as shown 

in Figure 2.   

 
Figure 2. Sample of density curves for normal network data  

 

    Algorithm 1 presents the proposed steps for establishing a 

normal profile (pro), with the parameters (  ) of the 

GMM estimated for all the normal vectors ( ) using the 

equations published in [15], and then the PDFs of the features 

( ) are calculated using equations (2) to (6). Following this, 

the IQR is calculated by subtracting the first quartile 

subtracted from the third quartile of the PDFs [16] to generate 

a threshold for identifying abnormal instances in the testing 

phase.  It is known that quartiles divide data into contiguous 

intervals with equal probabilities [16]. 

 

Algorithm1: generation of normal profile in training phase 

Input: normal vectors ( ) 

Output: normal profile (pro) 

1. for each record i  in  ( )  do  

2. estimate the parameters ( ) of the GMM  

3. compute the PDFs using equations (2) to (6) based on the 

parameters estimated in Step 2 

4. end for 

5. calculate   lower = quartile (PDFs,1)  

6. calculate   upper = quartile (PDFs,3)  

7. calculate   IQR = upper - lower 

8. pro       {( ), (lower-upper IQR)} 

9. return pro 

C. Testing Phase 

     In the testing phase, the Gaussian PDF ( ) of 

each vector ( ) is calculated using the same parameters 

computed for the normal profile ( ). Algorithm 2 describes 

the steps in the testing phase and decision-making method for 

specifying the Gaussian PDFs of attack records, with step 1 

building the PDF of each vector using the stored normal 

parameters ( ). 

 

Algorithm 2: testing phase and decision-making method 

Input: observed record ( ) 

      , normal profile (pro) {( ), (lower-upper IQR)} 

Output:  normal or abnormal record 

1. compute the PDFtesting  using equations 2 to 6 with parameters ( 

) 

2. if  (PDFtesting  < (lower –w.(IQR))) || (PDFtesting  > (upper + w. 

(IQR)) then   

3.     return attack 

4. else 

5.    return normal 

6. end if 

 

   Steps 2 to 6 are the steps of the decision-making method. 

The IQR of the normal vectors is calculated to find the 

anomalies of any testing record ( ) which are considered 

to be any vector falling below (lower – w.(IQR)) or above 

(upper + w.(IQR)), where w is interval values between 1.5 and 

3 that precisely represents the lower and upper bounds of 

normal data, as proven in [16]. The detection decision is based 

on considering any PDFtesting falling outside of this interval as 

anomalies, otherwise they are normal records. 

V. DEPLOYMENT OF PROPOSED FRAMEWORK FOR CLOUD 

COMPUTING ENVIRONMENTS 

 

   The deployment of this framework is described for three 

nodes (A, B and C) depicted in Figure 3 in order to be 

executed for cloud computing systems. Unlike traditional 

IDSs, the CADF is deployed on each network node and each 

CADF connected simultaneously with the shared module of 

capturing and logging. This is for collecting attribute values of 



 

network traffic in a particular time interval to make it much 

easier while passing the processed data to the DE module for 

each network node. 

 

    We suggest the deployment in two stages: a shared module 

as SaaS and ADS as SaaS. The first includes a sensor for 

capturing network attributes and logging them in a data 

source, as presented in Figure 3. It is designed to be a sharable 

service for the entire connected ADSs at different cloud nodes. 

The second contains the main functionality of the proposed 

ADS to be installed at each node for handling large-scale 

networks by distributing it as service at each node.   

 

 
Figure 3. Deployment architecture of CADF 

VI. EXPERIMENTAL RESULTS AND EXPLANATIONS 

A. Dataset and pre-prosessing module used for evaluation 

 

    The evaluation of the proposed framework is conducted 

using the UNSW-NB15 dataset which has a hybrid of 

authentic contemporary normal and attack vectors. The 

volume of its network packets is nearly 100 Gigabytes, 

generating 2,540,044 observations which are recorded in four 

CSV files. Each record includes 47 features and the class 

label. The dataset comprises ten different classes, one normal 

and nine types of security events and malware (i.e., Analysis, 

Backdoors, DoS, Exploits, Generic, Reconnaissance, Fuzzers 

for anomalous activity, Shellcode and Worms). The GMM-

ADS technique is evaluated using 10 features selected from 

the UNSW-NB15 dataset selected using the PCA, as presented 

in Table I. 
 

   Table  I.  FEATURES SELECTED FROM UNSW-NB15 DATASET 
 

ct_dst_sport_ltm, tcprtt, dwin, ct_src_dport_ltm, 

ct_dst_src_ltm, ct_dst_ltm, smean, dmean, service, proto 

 

    The proposed technique was developed using the ‘R 

language’ on Linux Ubuntu 14.04 with 16 GB RAM and an i7 

CPU processor. To conduct the experiments on the dataset, we 

selected random samples from the CSV files of the UNSW-

NB15 dataset with various sample sizes between 70,000 and 

150,000. In each sample, normal records were about 60-70% 

of the total size, with some used for establishing the normal 

profile and the testing set. 

B. Performance Evaluation  

 

     The accuracy, Detection Rate (DR) and False Positive Rate 

(FPR) explained below are used to evaluate the framework 

performance.  

 The accuracy is the percentage of all normal and attack 

records correctly classified, that is, 

    (7) 

 The DR is the percentage of correctly detected attack 

records, that is, 

    (8) 

 The FPR is the percentage of incorrectly detected attack 

records, that is, 

     (9) 

 

  where TP  (true positive) is the number of actual attack 

records classified as attacks, TN (true negative) is the number 

of actual normal records classified as normal, FN (false 

negative) is the number of actual attack records classified as 

normal and FP (false positive) is the number of actual normal 

records classified as attacks.  

C. Result discussion 

    The performance evaluation of the CADF was conducted on 

the features selected from the UNSW-NB15 dataset, with the 

overall DR, accuracy and FPR values demonstrated in Table 

II. Figure 4 presents the Receiver Operating Characteristics 

(ROC) curves which display the relationship between the DRs 

and FPRs using the w values.   

 
 Table II.  Evaluation of features from unsw-NB15 dataset 

w value DR Accuracy FPR 

1.5 86.3% 88.2% 8.4% 

2 89.1% 90.1% 5.5% 

2.5 93.4% 94.8% 4.4% 

3 95.6% 96.7% 3.5% 

 

    It can be seen that the stable increase in the w value 

between 1.5 and 3 increased the overall DR and accuracy 

while decreasing the overall FPR. The overall DR and 

accuracy increased from 86.3% to 95.6 % and 88.2% and 

96.7%, respectively, however the overall FPR decreased from 

8.4 % to 3.5% when the w value increased from 1.5 to 3. 
 

    The key reasons for the CADF performing better than the 

other peer techniques discussed below are that the GMM can 

perfectly fit the boundaries of each feature as it accurately 



 

estimates the mixing weights of network features in order to 

model normal data. Moreover, the lower-upper IQR method 

can successfully specify the boundaries between normal and 

outlier observations. 

 
Figure 4. ROC curves with w values 

 

    The performance evaluation results for the CADF were 

compared with three existing techniques, namely the Triangle 

Area Nearest Neighbours (TANN) [17], Euclidean Distance 

Map (EDM) [18] and Multivariate Correlation Analysis 

(MCA) [19], with their overall DRs and FPRs listed in Table 

III, revealing the superiority of our framework . 

 
Table III. Comparison of performances of four techniques  

Technique DR FPR 

TANN [17] 88.2% 12.3% 

EDM [18] 89.4% 10.6% 

MCA [19] 91.4% 8.9% 

Proposed CADF 95.6% 3.5 % 

 

     According to the above discussions, the proposed 

framework can be easily deployed in cloud computing 

systems. Since the shared module as SaaS collects important 

network observations from different network nodes, the DE as 

SaaS does not consume high processing time to inspect the 

observations, either normal or attacks, for these nodes. This is 

because the DE was built based on only estimating statistical 

measures of Gaussian mixture model and lower-upper 

interquartile range from network instances that can be simply 

computed in real cloud computing systems with less 

computational resources.  

VII. CONCLUDING REMARKS 

    This study discusses a new collaborative anomaly detection 

framework for detecting known and unknown intrusive 

activities in cloud computing environments. This framework 

comprises capturing and logging network data, pre-processing 

these data to be handled at the decision engine sensor and a 

new decision engine using the Gaussian Mixture model and 

interquartile range for identifying abnormal patterns. 

Moreover, the architecture for deploying this framework as 

Software as a Service (SaaS) is produced in order to be easily 

installed in cloud computing systems. The experimental 

results of the framework show its superiority for detecting 

abnormal events using the UNSW-NB15 dataset compared 

with three ADS techniques. In future, we plan to extend this 

study for deploying the framework in a real cloud computing 

environment with further findings and explanations.  
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