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Abstract— Supervisory Control and Data Acquisition (SCADA) 

systems face the absence of a protection technique that can beat 

different types of intrusions and protect the data from disclosure 

while handling this data using other applications, specifically 

Intrusion Detection System (IDS). The SCADA system can 

manage the critical infrastructure of industrial control 

environments. Protecting sensitive information is a difficult task 

to achieve in reality with the connection of physical and digital 

systems. Hence, privacy preservation techniques have become 

effective in order to protect sensitive/private information and to 

detect malicious activities, but they are not accurate in terms of 

error detection, sensitivity percentage of data disclosure.  In this 

paper, we propose a new Privacy Preservation Intrusion Detection 

(PPID) technique based on the correlation coefficient and 

Expectation Maximisation (EM) clustering mechanisms for 

selecting important portions of data and recognizing intrusive 

events. This technique is evaluated on the power system datasets 

for multiclass attacks to measure its reliability for detecting 

suspicious activities. The experimental results outperform three 

techniques in the above terms, showing the efficiency and 

effectiveness of the proposed technique to be utilized for current 

SCADA systems. 
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I.  INTRODUCTION  

      

     Supervisory control and data acquisition (SCADA) systems 

that operate in critical infrastructure are progressively executed 

with Internet-based protocols and devices for remote control. 

The involved embedded components’ nature and legacy factors 

add non-trivial and novel security approaches efficiently [1]. In 

a SCADA system, it is significant that a protection mechanism 

is embedded to define various types of intrusive activities and 

protecting sensitive information from disclosure. It monitors 

and controls critical industrial infrastructure utilities, such as 

gas, electricity, waste, traffic, water, and railway [1] [2].  

 

   The augmented complexity and connectivity of SCADA 

systems face a large number of cyber security vulnerabilities 

[2]. In addition, they include embedded devices that allow only 

limited protection against current sophisticated strategies of 

intrusive activities, resulting in exposing the principles of 

Confidentiality, Integrity and Availability (CIA). Practically, 

malicious or unauthorized access to external sources, using the 

TCP/IP model, can threaten SCADA systems by misusing 

communication faults/problems to launch sophisticated attacks 

which lead to catastrophic failure, denial of service, 

compromising the safety and stability of power system 

operations [3]. 

 

  To defend against threats to a SCADA system and protecting 

its shared data, an IDS is defined as a technique for monitoring 

host or network activities to detect possible threats that face 

them, has become a powerful solution. Data mining and 

machine learning algorithms are widely used for establishing an 

effective IDS [4] because of their capability to handle a large 

volume of historical data, as it is hard for people to deduce 

primary traffic patterns in such SCADA’s data.  However, the 

scarcity of SCADA data is considered as one of the main issues 

for establishing an efficient IDS for SCADA systems. The 

privacy preservation of these data requires a new methodology 

for keeping these data without disclosure. So, it is widely 

realised nowadays that SCADA data privacy and 

confidentiality are greatly becoming a key aspect of data 

sharing and integration [3] [5].  

 

   The aim of designing an intelligent IDS for SCADA systems 

without revealing their data has become one of the big issues in 

this field due to several reasons [1][2][3]. First and foremost, 

the use of traditional machine learning and data mining 

mechanisms for discovering intrusive activities requires a large 

amount of SCADA data to be correctly learned and validated. 

This exposes the principles of privacy and confidentiality [2]. 

If the mechanisms are learned using a small amount of SCADA 

information, they will poorly detect those malicious activities. 

Secondly, selecting the important SCADA’s information that 

helps these mechanisms has become an arduous task because 

the information of SCADA should be carefully analysed to 

avoid sensitive information from the processing by the IDS 

techniques. Finally, the way of capturing information from 

different incompatible layers and protocols of current SCADA 

systems demands efficient tools and mechanisms to be 

successfully handled at a real time monitoring and detection [1] 

[2].  In the literature, privacy preservation data mining 
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techniques have emerged in order to protect sensitive 

information [1] [3] [4], but the above limitations for SCADA 

data are still an active area of research.  

 

   This paper addresses the above limitations by applying the 

privacy preservation concept for SCADA systems. A new 

privacy preservation Intrusion Detection (PPID) technique is 

proposed using the correlation coefficient technique for 

selecting the important information without exposing sensitive 

information of SCADA data. This uses EM clustering algorithm 

for identifying intrusive observations of SCADA instances. 

This technique is evaluated on power system datasets [21] for 

multiclass attacks. The experimental results outperform three 

techniques in the above terms, showing the efficiency of it to be 

utilised for current SCADA systems. 

II. BACKGROUND AND RELATED WORK 

A. IDS and its relation to SCADA systems  

  
    Intrusion Detection Systems (IDSs) for SCADA systems 

have become an active domain of research [2][3][4][5]. IDSs 

are classified into two types: a host-based IDS monitors the 

events of a host by collecting information about activities which 

occur in a computer system, while a network-based IDS 

monitors network traffic to identify remote attacks that take 

place across that network. IDS methods are categorized into 

two types: Misuse-based and Anomaly-based. A misuse-based 

IDS monitors host or network data audits to compare observed 

behaviours with those on an identified blacklist. Although it 

offers relatively high detection rates (DRs) and low false 

positive rates (FPRs), it cannot identify new attacks [3] [4]. 

 

 
Figure 1. Architecture of typical network IDS [6] 

 

  A typical network IDS comprises of four components, namely 

a packet decoder, a pre-processor, a decision engine sensor and 

a defence response/alert module [6], as shown in Figure 1 and 

described as follows.   

 

 The packet decoder acquires portions of raw network 

traffic using audit data collection tools.   

 The pre-processor captures a set of features from the raw 

audit data, used later in the decision engine sensor.  

 The Decision Engine (DE) sensor receives the proposed 

features by the processor and builds a model that 

distinguishes attack observations from normal ones.  If 

an attack is detected, the DE requests the defence 

response to raising an alert.  

 The defence response is the process of raising alerts 

requested by the DE.  

 

   Several IDS methods have been proposed for SCADA 

systems. These are classified into supervised and unsupervised 

techniques [2] [7] [8]. The supervised methods, such as SVM 

[8] and Naive Bayes [9], include two main steps. Firstly, the 

learning step (where classification algorithms aim to analyse 

the supervised training data and build an inferred model). 

Secondly, the classification step (where the established model 

can be utilised to distinguish, detect, and classify malicious and 

infected data and potential cyber attacks in the future traffic 

streams). However, one of the major problems with all the 

supervised techniques is that the step of learning process needs 

a large size of training observations, which lead to establishing 

an effective generalised model [2].  

 

   It is important to note that the training data should be labelled 

in advance, which is time-consuming and requires previous 

knowledge. These Clustering [10] and SOFM–PCA [11] 

approaches provide some practical advantages over supervised 

techniques, which can use only unlabelled data. Unsupervised 

techniques attempt to create clusters in unlabelled traffic data 

and allocate any future traffic flow to either normal or attack 

category, according to the nearest cluster. Empirical evaluations 

demonstrate the higher-purity clusters, found by unsupervised 

techniques, and detect traffic flows from previously unknown 

types of applications. However, the unsupervised techniques 

have a crucial problem in mapping a great number of clusters 

to real traffic varieties, but they can detect existing and new 

attacks without labelling processing which is difficult in real 

time [2] [10] [11]. 

B. Privacy Preservation Techniques for sensitive data 

  

    Privacy Preservation techniques have emerged as a new 

direction of research by Aggarwal et al. in 2008 [12] in order to 

protect retrieving private/sensitive information. The target of 

these techniques is to considerably reduce unauthorised 

accessing of sensitive information while running any normal 

technique to do a particular task, such as IDS, for discovering 

useful knowledge. Simultaneously, attackers try to retrieve that 

information that can be executed by normal techniques, 

breaching the Confidentiality, Integrity and Availability (CIA) 

of systems. Privacy-preserving mechanisms generally modify 

the integrity of data to prevent normal techniques from the same 

knowledge of the altered data as completely and correctly 

similar to the original data [14]. 

   

    Numerous privacy-preserving methods for various scenarios 

of data have been proposed in the past years [2] [13]. The 

privacy-preserving methods, which modify or transform data to 

preserve privacy without compromising security, have been 

roughly classified into three classes, data generalisation 

methods, data transformation methods and data aggregation 

methods.  
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Firstly, in data generalisation methods, the core process is 

developed based on mapping sensitive attributes to more 

generalised values. Secondly, in transformation methods, the 

confidentiality of the data is preserved by transforming the 

original data into new values, with some random multiplication 

or by applying projection to the original data, resulting in lower 

dimensional random space. Finally, in data aggregation 

methods, the original data is partitioned into a group of small 

size, and then replaces the private values in each group with the 

group average. These methods still face the problem of 

handling different data types effectively [2] [13] and the 

integration with the IDS method which detects attacks. 

However, these methods face the challenge of using them for 

IDS as they provide high false alarm rate of detection, as well 

as the difficulty of using in SCADA systems that have several 

layers of data capturing with the linking with the internet 

services, as discussed below.  

C. SCADA systems 

     SCADA (Supervisory Control and Data Acquisition) is 

defined as the business automation control system central to 

many modern industries, including, oil, energy, gas, power, 

transportation and water [2]. Both public-sector providers and 

private enterprises use SCADA systems, and they can work 

well in various types of companies because they have the ability 

to extend from simple configurations to huge, complicated 

projects. SCADA systems organize manifold software and 

hardware components, which allow industrial institutions to 

gather, monitor, and process data, and also, cooperate with 

control technologies that are connected over Human Machine 

Interface (HMI) software and record events into a log file 

[4][15]. 

     Information of SCADA systems is collected from sensors or 

other manual inputs, and then sent to programmable logic 

controllers (PLCs) or remote terminal units (RTUs), from 

which this information is sent to the computers with SCADA 

software. Current SCADA systems have Ethernet connectivity 

to enable connecting with the functionalities of networking. 

Standard protocols include IEC 60870-5-101/104, IEC 

61850 and DNP3. These protocols are standardised to operate 

over the TCP/IP model. Modbus TCP Protocol is commonly 

supported in devices with Ethernet Connectivity [16]. The main 

function of SCADA software is to analyse and display the data 

to help operators and other employees to decrease waste and 

improve efficiency in the manufacturing procedure, as shown 

in Figure 2 [5][15]. 

    Some recent studies have focused on designing IDS for 

SCADA systems, and these studies show the challenges of 

designing an effective IDS–based SCADA system without 

disclosing their shared data. Classic encryption techniques, 

comprising RSA and AES, are not appropriate because we 

cannot use the encrypted data for analysing this data [17]. 

Encryption techniques are still the practical solution to prevent 

disclosing data, during transactions to that data, such as 

analysis, logging in databases and detection purposes, however, 

it has to be decrypted first. Meanwhile, processing any of those 

transactions could be intrusive actions happen; hence it is still a 

controversial area of research to find methods that provide 

privacy-preservation for SCADA data [1].  

 

 
Figure 2. Basic architecture of SCADA systems [9] 

 

I. RESEARCH METHODOLOGY 

  This section describes the proposed methodology for building 

an effective privacy preservation intrusion detection technique 

for SCADA systems.  

A. Correlation coefficient for selecting important information  

In this subsection, the Pearson’s correlation coefficient (PCC)   

technique is used in order to select the important information of 

SCADA systems, which is considered as one of the simplest 

linear correlation techniques for approximating the correlation 

scores of features [18], with that of two features ( 𝑓1𝑎𝑛𝑑 𝑓2)  

𝑃𝐶𝐶( 𝑓1,  𝑓2) =
𝑐𝑜𝑣( 𝑓1, 𝑓2)

𝜎 𝑓1
.𝜎 𝑓2

       

           

     =  
∑ (𝑥𝑖−𝑀𝑓1

)(𝑦𝑖−𝑀𝑓2
)𝑁

𝑖=1

√∑ (𝑥𝑖−𝑀𝑓1)2𝑁
𝑖=1 .√∑ (𝑦𝑖−𝑀𝑓2)2𝑁

𝑖=1

       (1) 

 

where 𝑐𝑜𝑣 and 𝜎 are the covariance and the standard deviation 

of these features, respectively, and  𝑀𝑓1
=

1
𝑁⁄ ∑ 𝑥𝑖  and  𝑀𝑓2

= 𝑁 ∑ 𝑦𝑖  𝑛
𝑖

𝑁
𝑖 are the means of  f1 and f2, 

respectively. 

 

   The result attained from Equation (1) has to be in a specific 

range of [-1, 1]; where this result is close to -1, shows a strong 

correlation in a reverse direction. If it is close to 1, there is a 

strong correlation in the same direction and, if it is close to 0, 

there is no correlation among these features, where a positive or 

negative sign indicates that these features have the same or 

various tendencies, respectively. The PCC values of features 

are descendingly ranked to select the important features. If there 

are a set of features and their correlation matrix is constructed, 

as shown in Figure 5, the highest correlation feature values 

produce the significant features.  

 

B. EM clustering for identifying SCADA attacks 
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   An EM algorithm [19] is implemented to evaluate the 

maximum likelihood parameters of a statistical model in several 

states, such as the one where the equations cannot be explained 

directly. The EM algorithm repeatedly estimates the unknown 

model parameters with two main phases: the E and M steps.  

 

   Firstly, the E step (i.e., expectation) in which the posterior 

distribution probabilities of the hidden variables are estimated 

using the present model parameter values. After that, the objects 

are slightly allocated to each cluster based on this posterior 

distribution. Secondly, the M step (maximisation) re-evaluates 

the parameters of the model with the maximum likelihood rule 

for estimating the fractional assignment. The EM algorithm is 

guaranteed to catch a local maximum for the model parameters 

estimated. The steps of the EM technique are presented in 

Algorithm 1.   

 

Algorithm 1: the EM algorithm main steps. 

Input: the dataset (x), the total number of clusters (M), the accepted 

error threshold for convergence € and the maximum number of 

iterations 

E-step: calculate the expectation of the whole data log-likelihood. 

 
M-step: choice a new parameter estimate that maximizes the Q-

function. 

 

Iteration: increment ; repeat step 2 and 3 until the 

convergence condition is met. 

Output: a sequence of parameter estimates , which 

represent the success of the convergence criteria. 

C. Architecture of privacy preservation Intrusion Detection 

Technique  

 

    An effective privacy preservation intrusion detection 

technique is proposed for preventing the disclosure of 

sensitive/privacy information and detecting malicious 

observations of SCADA systems. As shown in Figure 3, the 

architecture of this technique consists of four steps that 

demonstrate its ease of application for all SCADA types, in 

particular, power systems that are used in this study.  First and 

foremost, it is an essential step for building privacy and 

intrusion detection mechanisms collecting SCADA data in a 

data source to make it easier while preprocessing and during 

analysis. As SCADA data is collected from different nodes with 

diverse protocols that are incompatible when handled by 

machine learning algorithms, this data has to be processed for 

execution by those algorithms. 

 

   Secondly, selecting portions of important features using the 

PCC technique prevents disclosing private information of 

SCADA. This is because that some features are neglected and 

the most important ones will be used by machine learning 

techniques. Machine learning techniques demand a large 

number of features to be successfully learned and validated, but 

this exposes sensitive information of SCADA systems, so 

adopting small features can address this issue. This can be 

measured using the new term of ‘sensitivity percentage of data 

disclosure’ that means the rate of the feature selected to the 

entire number of features used in a data source.  

 

   Thirdly, we apply the EM technique for clustering normal and 

suspicious instances of SCADA data in order to estimate the 

efficiency of identifying attack activities with a small number 

of features. Finally, the performance evaluation of the proposed 

PPID technique is computed in terms of error detection/false 

positive rate (FPR), sensitivity percentage of data disclosure 

(i.e., feature percentage).  The efficiency of the technique can 

be achieved when these terms are as low as possible, as 

discussed in Section V.   

 

 
Figure 3. Framework of privacy preservation intrusion detection technique 

II. DATASET FOR EVALUATION  

 

   The power system datasets [21] for multiclass attacks are used 

to evaluate the performance of the proposed privacy 

preservation intrusion detection technique and are compared 

with the techniques published in [20]. The multi-class datasets 

include 37 scenarios, are encompassed into natural events (8), 

no events (1) and intrusion events (28). The process of 

establishing this dataset is depicted in Figure 4, which 

demonstrates the main network components used. Firstly, G1 

and G2 are power generators. R1 across R4 are Intelligent 

Electronic Devices (IEDs) that can turn the breakers on or off. 

These breakers are tagged BR1 over BR4. There are two lines: 

line one spans from breaker 1 (BR1) to breaker 2 (BR2) and 

line two spans from breaker 3 (BR3) to breaker 4 (BR4).  

 

    Each IED manages one breaker. R1 controls BR1, R2 

controls BR2, where the IEDs apply a distance protection 

mechanism that trips the breaker on detected faults whether 

actually valid or fake, as they have no internal validation to 

identify the difference. Operators can also manually generate 

instructions to the IEDs R1 over R4 to manually trip the 

breakers BR1 over BR4. The manual override is utilised while 

executing maintenance on the lines or other components. 
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Figure 4. Framework of generating power system datasets [20] 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Evaluation criteria  

 

    The accuracy, Detection Rate (DR) and False Positive Rate 

(FPR) depend on the four terms true positive (TP), true negative 

(TN), false negative (FN) and false positive (FP). TP denotes 

the number of actual attack records classified as attacks, TN 

refers to the number of actual normal records classified as 

normal, FN is the number of actual attack records classified as 

normal and finally, FP is the number of actual normal records 

classified as attacks. These metrics are defined as follows. 

 The accuracy is defined as the proportion of all normal 

and attack records properly classified, that is, 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+ 𝑇𝑁+ 𝐹𝑃+𝐹𝑁
    (2) 

 

 The DR is the percentage of precisely detected attack 

records, that is, 

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (3)  

 

 The FPR identifies the percentage of incorrectly detected 

attack records, that equals, 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
      (4) 

B. Feature Description and selection  

 

    In the power system dataset for multiclass attacks, there are 

4 synchrophasors that include 29 features for a total of 116 

PMU measurements. The features taken from each PMU and 

their descriptions are shown in Table I.  

 

   The PCC technique is employed for ranking these features in 

a range of [-1, 1], as depicted in Figure 5.  Each quarter of these 

features is applied in order to evaluate the EM technique. The 

main motive for selecting each portion of these features is to 

prevent sensitive features from disclosure through the IDS 

techniques.   

 

Table I.  Feature description of power system dataset [20] 
 

PA1:VH – PA3:VH Phase A – C Voltage Phase Angle 

PM1:V – PM3:V Phase A – C Voltage Magnitude 

PA4:IH – PA6:IH Phase A – C Current Phase Angle 

PM4:I – PM6:I Phase A – C Current Magnitude 

PA7:VII – PA9:VII Pos. – Neg. – Zero Voltage Phase Angle 

PM7:V – PM9:V Pos. – Neg. – Zero Voltage Magnitude 

PA10:VH – PA12:VH Pos. – Neg. – Zero Current Phase Angle  

PM10:V – PM12:V Pos. – Neg. – Zero Current Magnitude 

F Frequency for relays 

DF Frequency Delta (dF/dt) for relays 

PA:Z Apparent Impedance seen by relays 

PA:ZH Apparent Impedance Angle seen by relays 

S Status Flag for relays 

 

 
Figure 5. Ranked features using PCC technique 

 

C. Evaluation using EM technique  

 

     The performance evaluation of the EM was conducted in 

each quarter of these features, revealing the overall DR, 

accuracy and FPR values demonstrated in Table II. Figure 6 

displays the Receiver Operating Characteristics (ROC) curve, 

which represents the correlation between the DRs and FPRs for 

the selected features.  

 
Table II.  Evaluation of features selection using EM technique 

Feature 

percentage 

DR Accuracy FPR 

25% 66.4% 70.6% 32.5% 

50% 75.6% 76.3% 25.1% 

75% 82.8% 83.5% 17.8% 

100% 88.9% 90.2% 11.7% 

 

   It can be observed that the gradual increase of the feature 

percentages improved the DR and accuracy, whilst dropping the 

FPR. The DR and accuracy improved from 66.4% to 88.9% and 

70.6% and 90.2%, respectively, but the FPR decreased from 

32.4% to 11.7%. This reveals that the use of all of the features 

significantly improves detecting SCADA attacks, however 

keeping sensitive information secure requires intelligent 

techniques for detecting malicious events of SCADA systems 

while using a small number of features, which contains private 

information.  



6 

 

 
Figure 6. ROC curves of EM technique for feature percentages 

D. Comparison with three techniques 

    The results of our technique are compared with the three 

techniques of Nearest Neighbour, Naïve Bayes, Random 

Forests published in [20].  As demonstrated in Table III, our 

technique achieves superiority in terms of DR and FPR 

compared with these techniques, with the 75% of features.  

 
Table III. Performance comparisons of techniques  

Technique DR FPR 

Nearest Neighbour [20] 55.3% 44.8% 

Naïve Bayes [20] 44.4% 52.6% 

Random Forests [20] 60.5% 38.4% 

Our technique 88.9% 11.7 % 

 

     Our technique accomplishes better results than the three 

other techniques, as it clusters normal and abnormal data based 

on the exact estimation of mean and standard deviation of 

normal and attack classes, making a clear difference between 

them. However, the technique is not able to detect the best 

results with a lower number of features because of the relative 

similarity between normal and attack data. This can be achieved 

by using hierarchical clustering techniques to use a small 

number of features, resulting in disclosing sensitive information 

of SCADA systems.    

IV. CONCLUSION  

   This study produces a novel privacy preservation intrusion 

detection mechanism using the correlation coefficient EM 

clustering techniques. Important features are selected based on 

the correlation coefficient technique to select portions of 

SCADA data with less sensitive information.  Then, the EM 

clustering technique groups SCADA data in order to effectively 

and efficiently detect abnormal activities.  The performance 

evaluation of this mechanism is compared with three peer 

techniques using the power system dataset for multiclass 

attacks, with the superiority of the proposed mechanism for 

detecting SCADA attacks. The experimental results reveal 

reducing the number of features that prevent disclosing 

sensitive information slightly decreases the detection rate of 

attacks. In future, we will use advanced clustering techniques 

that significantly improve the detection accuracy.   
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