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Abstract—We consider Quality-of-Information (QoI) aware
transmission policies in the presence of time-varying links in
a mobile ad hoc network. QoI, tailored for military tactical
networks, is defined by a set of attributes relevant to the
application. Time-varying nature of links in practical networks
leads to uncertainty in evaluating QoI utility to be delivered
to end users. This delivered-QoI utility is a function of both
attributes provided by the source input, as a result of observing
certain events, and the channel induced attributes that impact
the QoI obtained at the destination. The goal of this paper is to
attain the maximum QoI output utility, termed as Operational
Information Content Capacity (OICC) of a network. First,
for a single link, we demonstrate that the optimal decision
structure for transmission is threshold-based. Next, we consider
multihop relay networks. For the basic model of a two-hop
relay network, we propose transmission scheduling and link
activation schemes based on approximate dynamic programming
methods. Furthermore, we exploit time-variations of links by
opportunistic scheduling by employing buffers at the relay node.
We demonstrate that significant gains in QoI output utility are
gained by opportunistic scheduling algorithms.

I. INTRODUCTION

In tactical networks, the main goal is sound decision mak-
ing. This leads to the necessity of a new paradigm which
emphasizes the quality of information by viewing the network
as an information source, and developing methods to satisfy
quality requirements at the end user. For military applications,
Quality of Service (QoS)-based approaches that are agnostic to
the application or content of data may not be sufficient. Con-
sequently, there is growing interest in moving from traditional
QoS metrics as throughput, packet delivery ratio, fairness,
and delay, towards new notions of quality associated with
information. Recently, a set of attributes, including provenance
[1], accuracy and precision [2] [1], reliability [2], corrobora-
tion [1] [3], age/freshness and timeliness [2] [1] started to
emerge as factors impacting the Quality-of-Information (QoI)
[2] [1]. Initial work to assess the impact of this new paradigm
on fundamental networking operations has considered the
probability of error in event detection problems as a QoI metric
[4].
Recently, we have proposed QoI-aware scheduling policies

where new information arrives randomly to the source for a
single link, trading the attributes of accuracy and freshness [5].
We have also characterized the set of utility-maximizing QoI
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vectors and associated rate allocation for multiuser networks
[6]. All this previous work assumes a static environment, and
does not address problems that might arise nor take advantage
of the time varying nature of wireless channels.
We consider a tactical network where an end user requests

missions to be performed sequentially, and other users with
sensing capabilities respond to each mission. The utility de-
rived at the end user depends on the QoI of the response. We
are interested in the maximum utility a network can provide
relevant to the desired operation, which has been termed
the Operational Information Content Capacity (OICC) of the
network [1]. In this paper, we consider a dynamic tactical
network where channel states are time-varying. In particular,
we consider the following two basic models: a single link and a
two-hop relay network, with the objective of maximizing the
utility of the system, i.e., attaining the OICC. The dynamic
nature of channel states leads to a sequential decision making
problem in order to maximize QoI utility.
Among attributes that can effect QoI, we focus particularly

on accuracy and timeliness. These two attributes are funda-
mental representatives in the sense that accuracy is an indicator
of the quality of the initial information content and generating
information at the sources, while timeliness is concerned with
the capability and the quality of the network to deliver the
information. In Section III, we discuss a model for output
QoI utility that depends on these two metrics.
The input information content can simply be characterized

as an amount of data to be delivered. In the most general
sense, the specific size of data in terms of bits depending on
attributes including type, accuracy, precision and credibility.
Depending on network delivery, a delay will be introduced
until the information is utilized at the destination. This delay
will depend on rates allocated to links, the number of hops in
the path and possibly queueing delays.
In [7], we have demonstrated that deploying queues at relay

nodes significantly improves stability regions for stochastic
traffic and time-varying channels. The underlying reason was
that queueing at the relay(s) allows for opportunistically ex-
ploiting the channel variations. In this paper, we shall utilize
the idea of opportunistically exploiting the channel variations
for QoI-based multihop relay networks.
The main contributions of this paper are twofold: (i) For

a single link, we establish the optimal transmission structure
to achieve the OICC. (ii) For a relay network, we propose
a practical joint transmission scheduling and link activation
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Fig. 1. Two-hop QoI-based relay network.

scheme.

II. SYSTEM MODEL

For clarity of exposition, we concentrate on two fundamen-
tal communication models: a single link, and a two-hop relay
network (Fig. 1). The results for the two-hop case can be
readily generalized to more than two hops. These constitute
basic and inspiring models for QoI adaptation, which involve
scheduling among links and QoI optimization accordingly.
We consider a scenario where missions are issued from an

end user in a tactical network. Missions arrive sequentially
at time instants {b1, b2, ...} with stochastic interarrival times,
which are greater than or equal to T , i.e. bs+1− bs ≥ T,∀s >

0. We assume that at most one mission is processed by the
network at any time. Information source S responds to the
mission and generates information related with the mission.
This can correspond to phenomena related with the envi-
ronment, as the presence of troops. The information content
available at the source is associated with several attributes,
as accuracy, credibility, precision, freshness which can be
prioritized depending on the specific mission.
The overall importance of the information to the mission as

the is characterized by the QoI of the piece of information.
Two types of QoI can be defined: delivered-QoI, which is
the QoI associated with a piece of information generated
and delivered by the network, and desired-QoI, which is the
QoI requested of the network. QoI can be represented by a
QoI-vector, which is a vector of attribute-value pairs: e.g.,
[type = image, timeliness = 15s, accuracy = 600 ×
800, FOV = 150 mm per meter . . .], where FOV is the field
of view which represents the (angular or linear or areal) extent
of the observable world seen at any given moment. In this
example, the linear FOV is given with specified in a ratio of
lengths. The first term of the accuracy attribute specifies the
resolution [1].
The utility derived by the end user from this response

depends on its delivered-QoI. This QoI utility is a function of
both the initial quality at the source and the timeliness of the
information. The maximum QoI utility that the network can
deliver to the end node is termed as the OICC of the network.
As a result of network delivery, a delay will be introduced until
the information is utilized at the destination. We are interested
in the effect of delay due to network delivery on the timeliness
of the information at the destination.
Once the decision of transmission is made by the source (or

relay), the information available is fed into a wireless channel
with a certain rate. Transmission rates can be upper bounded

by the capacity of a Gaussian link given by [8]:

ri(t) ≤ W log2(1 +
hi(t)P

N0W
) = ci(t), i = 1, 2 (1)

where ri(t) is the rate supported by hop i at time slot t,
√

hi(t)
denotes the channel gain for link i at time slot t, P is the power
constraint for all nodes, the N0

2 is the noise spectral density and
2W is the two-sided bandwidth. We assume that nodes have
half-duplex constraints, i.e., no node can transmit and receive
simultaneously. Channels are time-varying within missions.
More specifically, we consider the quasi-static channel model
where the channels potentially change after a time duration,
referred to as a slot. We assume that the time scales of interest
due to timeliness requirements are large enough, along with
a large operational bandwidth, allowing usage of possibly
multiple codewords with sufficiently large block lengths to
approach the bound in (1) during any time slot. For the two-
hop relay network, the relay node forwards the data received
from the source node using decode and forward relaying [9].
No direct link exists between the source and destination, so
assistance from the relay is mandatory. Transfer of information
to the destination entitles two phases of transmission: Phase I
(from source to relay), and Phase II (from relay to destination).
Next, we present details two different transmission policies for
the relay network.

A. Transmission Policies

1) Hop-by-hop Scheduling: In Hop-by-Hop Scheduling
(HHS), relay nodes possess buffers and in each slot only one
of the two transmission phases is scheduled for transmission
[7]. That is, either the source node transmits to the relay (a
phase I transmission) or the relay forward previously received
information to the destination (a phase II transmission) in
a time slot. Due to the relay queues, it is not necessary to
forward information in consecutive slots of phase I and phase
II. the network control policy performs the scheduling decision
on which nodes will be active that slot operation. At each
slot, the relay queue x(t) evolves according to the following
dynamics:

x(t + 1) = max(x(t)− r2(t), 0) + r1(t). (2)

The queue size x(t) limits the amount of information that can
be transferred at the second hop due to the causality constraint.
2) Immediate Forwarding: In Immediate Forwarding (IF),

the relay node does not possess queues and the time slot
is divided into two consecutive phases. Relay immediately
forwards the traffic received in the first phase to the end nodes
[10], [11]. This transmission scheme is characterized by end-
to-end rate regions every time-slot, given by:

Ce−e(Δ)(t) = min(Δ(t)c1(t), (1−Δ(t))c2(t)), (3)

where Δ(t) ∈ [0, 1] is a time-sharing variable representing the
fraction of a time-slot that is allocated to phase I.
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Fig. 2. Utility degradation as a function of delivery time, D = 50.

B. Utility Function Properties

Next, we discuss a utility function which reflects the trade-
off between the attributes of accuracy and timeliness for a
QoI-vector q. Consider the utility function of the following
form for QoI-vector q:

u(q) = ag(td), (4)

where td is the timeliness, i.e. delivery time of q, and a is
a scalar capturing the overall instantaneous accuracy metric
of the resolution and FOV of the information specified by q.
g(td) represents the reduction in utility due to latency.
The essential properties a utility function has to satisfy with

respect to timeliness is that it is non-increasing function, and
it eventually decays to zero for high latency. Specifically, we
focus on smooth functions which are twice differentiable and
concave within the domain of interest as in [6]. As a candidate
utility function, let us consider:

g(td) = k(γ,D)(1− eγ(td−D)), (5)

for td ≤ D, and 0 otherwise. Illustration of sample utility
degradation curves reflecting the effect of timeliness are in Fig.
2 for different parameters. The general trend observed is that
the utility initially stays relatively unchanged for low delivery
time and decays to zero as the delivery time approaches D.
D ≤ T can be thought as a expiration time in the sense that
the information is regarded useless afterwards. Application
specific behavior for the utility curve can be realized by
varying γ. k(γ,D) = 1

1−e−γD is a parameter normalizing the
decay.
We assume that the structure of the utility functions and

behavior according to timeliness parameters are known at both
of the sources, as well as channel gains.
We consider slotted operation where network decisions may

be dynamically adapted at the beginning of each time slot. We
also assume that the missions are all independent of each other.
For mission s, us(t) denotes the amount of utility that

the end user attains if the network finishes sending back its
response in the current slot t. To facilitate online QoI-vector
adaptation, we allow the option of stopping of information
transfer for the mission. At the stopping instant, the end node
utilizes the received information since the beginning of the
mission. The overall delivered-QoI is characterized by both

the accuracy through the content delivered and the timeliness
through delivery time, which is in turn equivalent to the
stopping time. Once the network is finished with sending
information, the destination can fuse the received information
at different slots and evaluate the information content which
corresponds to an accuracy level and timeliness status.
More specifically, let j denote the stage, i.e. number of time

slots since the beginning of the ongoing current mission s at
any time t. Note that j is updated as t− bs at each time slot
t. At each stage j, the current QoI-vector qs(j) is defined by
the accuracy as(j) due to information already sent in previous
stages of the mission, and j corresponds to the timeliness.
Rate regions supported vary each stage depending on h1(t)
and h2(t) through (1). The increase in accuracy metric due
to new information transferred at the slot, es(j), depends on
rate region at stage j. Additionally, depending on j, the QoI-
utility function experiences a degradation g(j) due to latency.
At stage j, 1 ≤ j < D, the users can decide to stop, resulting
in the final response with utility us(j).
We define d(j): one-slot degradation factor at slot j, which

is equal to d(j) = g(j+1)
g(j) . Then, the QoI-utility evolves

according to the following dynamics:

us(j + 1) = d(j)us(j) + g(j + 1)es(j). (6)

es(j) is equal to es,1(j) for the single link and es,2(j)
for the two-hop relay network, where es,i(j), i = 1, 2,
depends on ri(t) since transferring more bits can lead to a
greater improvement on accuracy. We also note that es,2(j) is
additionally limited by x(t), the relay queue size.
Ultimately, the aim is to stop with maximum QoI-utility

us(j) with the aim of attaining QoI-vectors attaining the
OICC. Note that the main obstacle is the uncertainty in future
channel states and feasible rates, leading to unknown QoI-
utility evolution for future states.

III. QOI OPTIMIZATION
We consider dynamically allocating resource and defining

the QoI-vector. From (6), it can be readily seen that the
effect of waiting for an additional slot has two opposing
effects on the QoI utility. The main question of interest is
to determine if the improvement in accuracy will prevail over
the overall degradation due to increased delivery time, i.e.,
timeless. Recall that us denotes the final QoI utility provided
to the end user for mission s, s ∈ {1, 2, 3, . . .}. The objective
is to maximize the time average QoI utility per mission, in
order to attain the OICC of the network as follows:

Maximize: lim
H→∞

1

H

H∑
s=1

E {us} (7)

Note that it is equivalent to maximize each mission sep-
arately to achieve the maximum in (7) since missions are
independent from each other and D ≤ T .

A. Single Link
Since separately maximizing QoI utility any mission is

equivalent to maximizing the long-term average of QoI utility,
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we focus on a single mission and drop the mission subscript s.
Also, for clarity for exposition we focus on the special case of
the first mission with b1 = 0, i.e. j = t. Then, (u, j) represents
the current state of the system where u denotes the QoI utility
state delivered to the destination and j denotes the number of
slots that have elapsed since the mission arrival. Let V (u, j)
represent the optimal value functions for state (u, j). Then,
∀j ≥ 0, Bellman’s equation for this system can be written as
[12]:

V (u, j) = max
[
u, E {V (d(j)u + g(j + 1)e(t), j + 1)}

]

(8)

The first term within the max operator in (8) represents the
utility if a stopping decision is taken at state (u, j). On the
other hand, the second term represents the expected utility to
be attained in the case of continuing. In the event of contin-
uing, the next state is given by (d(j)u + g(j + 1)e(t), j + 1)
with g(j)e(t) representing the random increase in QoI utility
due to newly delivered information at the current stage. Note
that we could have equivalently written e(j) instead of e(t) for
any mission since it only depends on the channel state at time
t. In essence, the optimal value function at (u, j) is given by
the maximum of these two terms, which implies that to stop
is the optimal decision at stage j with utility u when:

u ≥ E {V (d(j)u + g(j + 1)e(t), j + 1)} . (9)

Otherwise, the optimal decision is to continue with the in-
formation delivery, and the extra accuracy improvement is
expected to prevail over the extra time elapsing.
Recall that D is the expiration time in the sense that

information is useless afterwards. Each mission hence has a
practical deadline of D slots regardless of the next mission
arrival, and we have:

V (u,D) = 0, (10)
V (u,D − 1) = u, (11)

V (u, j) =max
[
u, E {V (d(j)u + g(j + 1)e(t), j + 1)}

]
,

(12)

with 0 ≤ j ≤ D−2. Thus, it is optimal to stop at stage D−2
(u,D − 2) if u ≥ eg(D−1)

1−d(D−2) . On the other hand, for stages
before D − 2, stopping is optimal when the utility exceeds
E {V (d(j)u + g(j + 1)e(t), j + 1)}. We next demonstrate the
OICC-achieving policy involves comparing utilities with stage
dependent thresholds τj .
Theorem 1: The OICC achieving optimal control policy is

of threshold-based with stage dependent thresholds τj : At any
stage j, stopping is optimal if the utility u ≥ τj , and if not the
optimal decision is to continue. Furthermore, these thresholds
decrease with stage j, i.e. τj > τj+1, ∀j.

Proof: Focusing on (9), the aim is to demonstrate that for
each utility value u, there exists only one point of intersection
with E {V (d(j)u + g(j + 1)e(t), j + 1)} at stage j. Using
induction, it can be shown that the value function V (u, j) is
convex and increasing in utility u for all stages j. Additionally,

Fig. 3. Decreasing Stage-dependent thresholds.

the maximum slope of V (u, j) is 1.
Due to the fact that V (u, j) has a maximum slope of 1,

it follows that the maximum slope of the function f(u) =
E {V (d(j)u + g(j + 1)e(t), j + 1)} is given by d(j) < 1.
Along with the fact that V (0, j) > 0, f(u) = u and
f1(u) = E {V (d(j)u + g(j + 1)e(t), j + 1)} intersect at only
one point (Fig.3), given by τj . Hence, the first statement of the
proof is verified. For all u exceeding τj , the optimal decision
is always to finish transmitting. Instead, ∀u less than τj , the
optimal decision is to continue sending extra information. In
other words, comparing the utility with a threshold is optimal.
Next, let us consider the second statement regarding the

relation between consecutive thresholds. First, we utilize the
following result:
Lemma 1: V (u, j) ≥ V (u, j + 1) ∀u, j

Proof: It is possible to achieve at least the same utility as
in (u, j + 1), i.e. V (u, j + 1) by the same decisions with the
same utility present at the previous stage, i.e., from (u, j).
Combining Lemma 1 with the fact that g(j + 1) > g(j + 2)
and d(j) > d(j + 1) from the degradation function prop-
erties, we have that E {V (d(j)u + g(j + 1)e(t), j + 1)} >

E {V (d(j + 1)u + g(j + 2)e(t + 1), j + 2)}. As a result, the
crossover point between f(u) = u and f1(u) =
E {V (d(j)u + g(j + 1)e(t), j + 1)}, i.e., τj strictly exceeds
the crossover point τj+1 of f(u) = u and f2(u) =
E {V (d(j + 1)u + g(j + 2)e(t + 1), j + 2)} (Fig. 3). This
equivalently implies that τj > τj+1.
We note that we have observed threshold-type behavior for

the different scenario and model in [5] as well, with focus
on network layer issues with no emphasis on physical layer
properties.

IV. SCHEDULING FOR TWO-HOP RELAY NETWORK

Even though we have demonstrated that the optimal policy
is threshold-based for the single link case, in practical systems
solving for the dynamic program is not tractable. Moreover,
it is well known that dynamic programming suffers from the
curse of dimensionality when the state dimension increases.
This is a drawback particularly for multihop scenarios, since
queue states should also be accounted for in the decision
making process as well in addition to QoI utility states.
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Hence, we resort to approximate solutions. In particular,
we follow the following adaptation of the one-time lookahead
approach [13], which estimate rewards from future states, to
our problem at each stage j:
• Compare current QoI-utility value with expected values
from future decision trajectories.

• If any future trajectory offers greater expected QoI-utility
than current QoI-utility, continue.

These future decision trajectories include all combinations of
stopping, link scheduling and rate allocation policies, and the
expectations are conditioned on the current QoI attribute states
and utilities.

A. Single Link
The only decision is whether to perform stopping or not.

B. Two-Hop Relay Network
In the two-hop relay network, with immediate forwarding, it

can be readily shown that the optimal time division parameter
between phases is given by:

Δ(t) =
c2(t)

c1(t) + c2(t)
, (13)

leading to an end-to-end rate of c1(t)c2(t)
c1(t)+c2(t)

. The immediate
forwarding structure is equivalent to the single hop case, with
the rate replaced by this maximum flow value each slot. Hence
the only decision is again whether to stop or continue.
On the other hand, with hop-by-hop scheduling and the

presence of the relay queue, there are two decisions to perform:
whether to stop or not, and if the decision is to continue, which
link to schedule. First, simply scheduling the second hop to
deliver information at the receiver whenever the relay queue is
non-empty is not an efficient way to utilize system resources
due to causality requirements. Note that link scheduling has
been widely studied in the opportunistic scheduling commu-
nity. In the case where the objective is to maximize long-
term throughput, it is well-known that max-weight algorithms
are sufficient [14]. Yet, our problem is involved with much
shorter time scales. Moreover, the source typically possess
significantly more information compared with the relay, which
would lead to strict prioritization at the first hop, which might
be intolerable for many applications. Strictly prioritizing best
links can lead to unbalanced resource allocation, and can
reduce overall net flow to the destination. In order to strike
a balance for link activation, we resort to a modified version
of the proportional fair queueing (PFQ) scheduling algorithm
[15]. Each slot t, if the decision is to continue, the controller
activates the link i, i = 1, 2 maximizing

min(ci(t), xi(t))

c̄i

. (14)

Hence, the overall Joint stopping-rate allocation algorithm
is given as follows. When mission r arrives, start by j=1:
1) if us(j) > E {us,m(j + k)}, ∀k = 1 . . . D − j, stop
2) else, continue with

r1(t) = c1(t), r2(t) = 0 if c1(t)
c̄1

>
min(c2(t),x(t))

c̄2

.;

r1(t) = 0, r2(t) = min(c2(t), x(t)) if c1(t)
c̄1

≤
min(c2(t),x(t))

c̄2

The computations of E {us,m(j + k)}, ∀k = 1 . . . D − j

involve evaluating expected utility values maximized over all
combinations of link activations among the two hops for the
next k slots after stage j, given us(j) for mission s. The
algorithm can perform decisions with a low search space if
any future stage with expected utility exceeding the current
utility is readily found, i.e., it is not necessary to evaluate the
optimizing configuration every stage.
We note that with a linear relationship assumption between

e(t) and r(t), mean values of channel gains are sufficient to
compute expected values for stopping decision. Even if these
are not available apriori, the values may be learned over time.
We also point out that the equivalent Joint stopping-rate

allocation algorithm for a single link involves only the first
step, with only expectations evaluated for the next k slots.

V. NUMERICAL RESULTS
We demonstrate the performance of the approximate al-

gorithms via simulation results. First, we consider Fig. 3,
which demonstrates the performance of different schedulers
for dynamic links where each link of a two-hop relay network
is ON or OFF with equal probability. The expiration deadline
D = 20s, and γ, the timeliness parameter is varying. Delivered
QoI utility increases with increasing γ, due to slower timeli-
ness degradation. We observe that the approximate schedulers
are near optimal for the immediate forwarding case, and
significantly outperform schemes which stop equally likely
at any time. Moreover, it is seen that the joint stopping-link
activation algorithm provides significantly higher delivered-
QoI utility with the aid of buffering compared with immediate
forwarding. We also observe that schemes which possess
knowledge of the channel state at the scheduling instant ad-
ditionally improves the performance. Next, we present results
for a tow-hop scenario with links subject to Rayleigh fading
in Fig. 4, with D = 20s. We again observe that queues at
relay nodes significantly improve delivered QoI utility.
Even with practical link schedulers, buffering demonstrates

very significant improvements in QoI output utility compared
with immediate forwarding. In fact, it is also seen that the
hop-by-hop policy exceeds the maximum attainable utility (the
OICC) achieved with immediate forwarding. Hence, similar to
our results regarding stability regions [7], deploying queues
at relay nodes also improves QoI utility via opportunistic
scheduling. We also observe that the extent of improvement
by hop-by-hop scheduling increases with greater variations in
the channel states.
Finally, in Fig. 6 we demonstrate the effect of the number

of hops on QoI utility. Scheduling is performed according to
the adaptation of the joint stopping-rate allocation algorithm
described in Section IV-B to more than two hops. While the
attained utilities reduce due to increased delivery time for
larger networks, we observe similar trends with the two-hop
case. It is also worth noting that the relative performance gain
due to buffering increases with number of hops. Flexibility in
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Fig. 4. QoI Utilities, ON-OFF links.
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Fig. 5. QoI Utilities, Rayleigh Fading Links.

scheduling and avoiding hops with undesired channel realiza-
tions prevails over the effect due to the increased number of
slots required to reach the final hop with buffering.

VI. CONCLUSIONS
In this paper, we focus on the effect of network delivery and

timeliness on information with specific input quality when the
underlying channels are time varying. We first characterize the
optimal solution for a single link, which is comparing the QoI
utility with stage-dependent thresholds. Next, we propose joint
QoI adaptation-link scheduling algorithms for multihop relay
networks. We demonstrate that QoI utility delivered can be
significantly increased by exploiting opportunistic scheduling
via storage of information at relay nodes.
Storing data at relays and scheduling transmissions results

in more flexibility to opportunistically exploit good channel
states. We have also observed that the performance gap be-
tween the two approaches reduces with more balanced channel
gain distributions, as immediate forwarding suffers less from
inferior channel states due to diversity.
The approximate scheduling methods applied in this work

can be readily generalized for multiuser scheduling in QoI-
based networks with dynamic links. Future work includes
extension of the policies to address cases where traffic arriving
to the sources are stochastic.
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