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Abstract—A common approach for introducing security at the
physical layer is to rely on the channel variations of the wieless
environment. This type of approach is not always suitable fo
wireless networks where the channel remains static for mosbf
the network lifetime. For these scenarios, a channel indepelent
physical layer security measure is more appropriate which wi
rely on a secret known to the sender and the receiver but
not to the eavesdropper. In this paper, we propose CD-PHY,
a physical layer security technique that exploits the constlation
diversity of wireless networks which is independent of the

channel variations. The sender and the receiver use a custom

words, a sequence of bits from the sender is converted into
symbols on the constellation space based on a mapping known
only to the sender and the intended receiver. Using the corre
mapping, the intended receiver will be able to decode the
signal and reconstruct the original message. However, the
eavesdropper will not even be able to decode the signal
correctly without the knowledge of constellation mappiteg,
alone reconstruction of the message.

The guarantee of security provided by CD-PHY is much

bit sequence to constellation symbol mapping to secure the Stronger than just keeping the modulation type (BPSK, QPSK,

physical layer communication which is not known a priori to the
eavesdropper. Through theoretical modeling and experimetal
simulation, we show that this information theoretic constuct
can achieve Shannon secrecy and any brute force attack from
the eavesdropper incurs high overhead and minuscule probality
of success. Our results also show that the high bit error ratalso
makes decoding practically infeasible for the eavesdroppethus
securing the communication between the sender and receiver

I. INTRODUCTION

and QAI\E, for example) a secret between the sender and the
receiver. Because, if the sender and receiver uses theastind
constellation mapping for these modulations, an eavegemop
can use advanced machine learning techniques [11], [12]
to identify the modulation type and then use the standard
mapping to decode the signal. In case of CD-PHY, the custom
constellation mapping is known only to the sender and the
receiver which is the basis of security for this information
theoretic construct.

In wireless networks, physical (PHY) layer security enable Our theoretical modelling, security analysis and expenime

nodes to communicate securely without using resource

tensive encryption mechanisms at the application layel PH
layer security measures are resource friendly due to their

information theoretic construct based perfect secrecyl]

in contrast with the computational hardness approadhes [2],
By introducing security at the PHY layer, communication
in wireless networks can avoid the stepping stone of most
attacks:eavesdroppingln general, the broadcast nature of the

tad simulation reveals the following about CD-PHY:

« For the eavesdropper, the probability of successfully
decode the symbols range from—3 at 10dB SN to
0.015 at 0dB SNR, which is very low (Section V),
CD-PHY achieves perfect secrecy as a cipher and has
a very high unicity distance which ensures that the
eavesdropper will not be able to find the correct decoding
regardless of the amount of ciphertexts it collects (Sec-

the communication makes wireless networks more vulnerable
to eavesdropping attacks than the wired counterpart. PHY,
layer security measures are able thwart such attacks to a
considerable extent[[3],[4].

Most of the existing PHY layer security schemes are based,
on the variation of channel characteristics [5], [6], [7]ow+
ever, without highly mobile or dynamic environment which
can introduce significant variation in channel charactiess
these schemes do not perform as expected [8]. Experimental
results show that in static scenarios, these scheme mostly

tion [V=4),

A brute-force key search attack on CD-PHY has complex-
ity #P (Sharp FE which is believed to be much harder
than polynomial time algorithms (Sectién \-B), and
Performance wise, in the presence of CD-PHY, regardless
of the location, the bit error rate at the eavesdropper is
always as high a$0% which is equivalent to random
guessing for the decoding purposes (Sedtioh VI).

Il. BACKGROUND AND OBSERVATIONS

provide keys with very low entropy which is not desired in a the physical layer, a modulation technique prepares the

many cases [6]. In this paper, we propose a PHY layer secur&%
technique, CD-PHY, based amonstellation diversitywhich is
not dependent on channel characteristics and the perf@eman
does not vary depending on static or mobile scenario.

ital bit sequences for transmission over the analoglesse
medium. A crucial part of this operation is to map the bit

1BPSK and QPSK refers to Binary and Quadrature Phase Shifingey

The underlying technique for CD-PHY is simple. At thaespectively. QAM refers to Quadrature Amplitude Moduati An overview

physical layer, the sender and the intended receiver usegfg

odulation schemes by Zeimer can be found_at [10].
ignal-to-noise ratio.

custom constellation m-applng [9] which acts as a secret keyﬁThe set of the counting problems associated with the decigioblems
to secure the communication from an eavesdropper. In otlethe set NP.
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sequences to symbols which can be represented as pohrsadversary can also measure the channel parameters. It
on a two dimensional complex plane called tmnstellation can exploit some machine learning techniques to identiéy th
diagram Figure[1 shows an example constellation diagramodulation type of the wireless communication, but it doets n
from 16-ary Quadrature Amplitude Modulation (16QAM cir-have prior knowledge of the constellation mapping between
cular). An alternate constellation diagram is shown in Fégguthe sender and intended receiver.
which is known as 16QAM rectangular. If the transmitter We also assume the eavesdropper’s computation and com-
wishes to send a bit sequence, it sets the real (x-axis) andnication capability as powerful as the sender and receive
imaginary (y-axis) part according to the constellatiorgdéan. The adversary can try to handle the original signal as noise
Mathematically, a signal can be expressed by the followiray try interference cancellation and joint decoding. Hinate
equation: assume that the adversary is passive and has no intention to
launch active attacks such as a man-in-the-middle attauk. T
s(t) = I(t).cos(27 fot) + Q(1).sin(2m fot) is a common assumption among most of the practical wireless

where I(t) and Q(t) are real and imaginary parts of the Symbaecurity schemes [8].

from the constellation diagram angdl, is the modulating IV. THEORETICAL MODELLING

frequency. The receiver recovers the real and imaginagesal | this section, we derive the probability of an eavesdroppe
after demodulation, and plots each symbol on the cons@llato correctly decode the message in the presence of gaussian
plane. To correctly decode the original message, the receiioise when it knows the modulation type but does not know
needs to know both the type of modulation as well as symb@le constellation mapping. A very intuitive example of this
to bit sequence mappifig case is the interaction between 16QAM circular and rectangu
When only the modulation type is the secret, the eavesdregr modulations discussed in Sectioh Il. We use this example
per can use machine learning based techniques [11], [12]t&0derive the probability measure of correct decoding when
identify the modulation type and use standard bit sequemcetfe sender modulation is 16QAM circular and eavesdropper
symbol mapping to decode the data. However, if the send@bdulation is 16QAM rectangular.
and receiver use a custom constellation mapping which is notas discussed in Sectidnl Il, each QAM symbol has a real
known to the eavesdropper, the complexity of correct dewpdiand imaginary value associated with it in the constellation
becomes very high. For an M-ary QAM, the eavesdropper hgsace. Mathematically, for an M-ary QAM, these real and
to try all M! mappings to find out the correct decoding, whicimaginary values can rangewa,...,+(2m — 1)a, where
is very impractical for scenarios when the valueldf> 8. m = log, M, a® = 1.5E,/(M —1) with E, being the symbol
Figure[3 shows the decoding failure when the eavesdraghergy [138]. Tabléll shows the bit sequence to constellation
per tries to decode an original 16QAM circular modulategymbol mapping in 16QAM circular and 16QAM rectangular
signal using different modulation types: BPSK, QPSK angcheme These values are further factored:by /E, /10 to
16QAM rectangular. The input data stream contained 8 bitsormalize the average symbol energy to 1.
01100101. In 16QAM, each symbol consists of 4 bits. So, The decision variable for demodulation in the presence of
two symbols will be received by the eavesdropper. The QPSiIditive white gaussian noisgn be obtained as
receiver decodes two symbols as 4 bits and the BPSK receiver Ya~X+n 1)
decodes it to 2 bits. Since the modulation classification was
wrong, obviously the mapping will also be wrong resultingvhere the noise ternu(t) is assumed with power spectral
to a decoding failure. In the case of 16QAM rectanguladiensity 2=, zero mean and variance of = N,. Thus, the
the receiver will correctly expand the symbols to 8 bitglecision variableY” is a complex gaussian with a complex
However, since the constellation mapping was difféfetite meanX and variancer®> = N,. In other wordsY has a two
final decoded data will be different from the input:110111. dimensional gaussian distribution in complex plane. Se, th
Another decoding failure, where the original symbols bgkeh real and imaginary parts 6f can be separated as independent

to 16QAM rectangular, is shown in Figuré 4. gaussian variables a8 andY; with means atRe(X) and
The intuitive design of CD-PHY is based on the abovém(X).
mentioned observations that without knowing the correct Y = Re(Y) = Re(X) +ng = Xr + ng

constellation mapping, it is not practically feasible fon a

eavesdropper to correctly decode the original message even Yr = 1Im(Y) = Im(X) +n; = X1 +nr

though it might have the knowledge of modulation type. whereny andn; are the components of noise along real and
imaginary axes with a mean zero and variange= o7 = 2.
Now, the probability density function dfy can be expressed

We assume that the adversary (eavesdropper) is ableat

IIl. ADVERSARIAL MODEL

detect and will try to decode the communication between vy — 1 (Yr — Xg)?
the sender and receiver. It can be either mobile or static. fYr) = Gy, exp —{ 952 }
R R
4Constellation mapping. _ 1 p— {(YR - XR)Z} (2)
SRefers to Figur&ll arid) 2. B V7N, P N,
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Fig. 3. Decoding failure when the original modulation is ¥8@ circular. Fig. 4. Decoding failure when the original modulation is ¥3® rectangular.

Similarly, the probability density function of; can also be A. Decoding of symbd000

expressed as: First, we consideS§ = 0000 being transmitted. From Table
[ the real and imaginary parts 6000 are
E E
1 (Yr — X1)* Xp=1531/=2 & X;=—3.69/—=
Y;) = _y— 3 R . I .
f( I) \/ﬂ'—JVO exrp { No } ( ) 10 10

The received symboY” has a complex gaussian distribution
as discussed earlier with the meanJat + jX;. Now, the
robability that the symbol” can be correctly decoded by

Now, to calculate the probability of the successful decgdi he eavesdropper using 16QAM rectangular decoder can be

at the eavesdropper with 16QAM rectangular scheme Wh%bnd based on the decision space £jr— 0000 in 16QAM

thi original f_sy;nbolsd ;/vere tr_gns?]ltted llan blﬁ_QAMt _g'(;(_;;_”aFectangular scheme. Formally, the probability that dedode
scheme, we first need to consider the probabilities at iddadi snymbol is.57 given S was transmitted is:

symbol level. These probabilities are then aggregatedgusi
the symmetry and mutual independence of the symbols. In P(Y = 5j|S§) =

the following derivations,S;” denotes a symbd¥; in 16QAM -
rectangular schemey? represents a symbd¥; in 16QAM P<7OO <Yr<-2 ?0) P(2 }120 <Y< OO)
circular scheme and four symbols are chosen from the censtel e

lation diagram in such a way that symmetrically they repnése P(Y = S7|S¢) = / 10
all sixteen points of a QAM scheme. oo e

J(Yr)dYr x /2 O;: F(Y)dY:

Fs
10



TABLE |
BIT SEQUENCE TO CONSTELLATION SYMBOL MAPPING INL6QAM CIRCULAR AND 16QAM RECTANGULAR SCHEME

Bit Sequence  16QAM Circular 16QAM Rectangular  Bit Sequence 16QAM Circular 16QAM Rectangular

0000 153 —3.69; —3+3j 1000 153 + 3.69; —3-3j
0001 76 — 1.84j —~1+3j 1001 76 + 1.845 —1-3j
0010 —1.53 + 3.69j 3+3) 1010 —1.53 — 3.69j 3-3j
0011 —.76 + 1.845 1435 1011 —.76 — 1.84j 1-3j
0100 3.69 — 1.53] —3+ 1100 3.69 + 1.53j -3
0101 1.84 — 765 —1+7 1101 1.84 + .76 —1-j
0110 —3.69 + 1.53j 347 1110 —3.69 — 1.53; 3—j
0111 —1.84 + .76j 14 1111 —1.84 — .76] 1—j
PY = 5;155) = P(0<Y1<2 %):17
2,/ s (Yr—1.534/E2)?
A SV eap — {FE VA vy L0 (Vi (=153 FN 4y
(Vi—(—=3.69/%))? NG o M N, b
KA [ eap — {0V IR gy, e SEmm2
VAN, J2¢/Es No 1 o (Y1—(=1.53v/78)))
" " + 7w Joymerr—{ N, Y]
Using the simplification of above integrals, P (0 Y, <2 %) — 1 lerfe <1 53, /B )
P(Y = S5|S5) L[~ {—t?}dt ")
= = — exr — —_=
VA 3.53,/ 1o b serfe (3 53\/ 108 )
1 [ 5 Using Equatioi6]7 on Equatidnh 5, we have the following:
Xﬁ _ exp{—z"}dz
509 1o P(Y = S7|ST) = 3erfc (5 69/ 104 ) X
P(Y = S§1S5) [1 - Serfe (15355 ) — Serse (35375 )]
= %erfc( .53 10N erfc (5 69 10N
= Jerfe(3.53\ /i) erfe (569 P(Y = S7185) = ferfe (5.69\ /1)
(4) —ierfc (5 69 10N ) erfc (1 53 10N )

Here,erfc() is the complementary error function

——erfc(569 10N>erfc(353 10N )) (8)

B. Decodi f bd100 .
ecoding o §ym ] ] C. Decoding of symbd101
Now, we consider the symbélf = 0100 being transmitted.

Similar to the previous example, Now, we considerSS = 0101 is being transmitted. In this
case:
b B Es B
Xpr =369 = X;=—1.53y/= —1.84¢/ = — _0.764/ 25
r = 3.69 0 & Xi 53 10 Xp=184 0 & X 0.76 0
So, the probability that the eavesdropper correctly destiile S, the probability that the eavesdropper correctly des e
symbol 0100 is: symbol is:
P(Y = 57157) = P(Y = 835|55) =
P(—OO<YR<—2 %>P<0<Y1<2 %) ®) P(fZ &<YR<0>P(0<Y,<2 E—> 9)
Now, the left part of the right hand side of Equation 5 glvewe first consider the left part of the right hand side of Ecprati
us the following: o:
B,
P(_°°<YR<_2 1—0) P(72 %<YR<O):1*P(YR>O7YR<*2 ’f—o)
= _f Vs exp— {7}%_3';&1 1) }dYr

= ferfe(560\/75:) (6) P( 2 <YR<O):1—
Next, the right part yields the following:

o 181y T )
[\/71-1T I exp—{m}dYR %

P(0<Y[<2 %)Zl*P(Y[<O7Y[>2\/?—6> f_z 10 erp — {(YR 184\/ 10) }dYR]




P<—2 %<YR<0>=1— P(2 %<Y1<oo>:—mf(<384 10N> (15)
1
2

erfc (3 84, /15%-) — %erfc( 1.84,/15%-)  (10) By combining the outcomes of Equatibn] 14] 15, we get the

Similarly, we consider the right part of the right hand side d°!lowing:

Equatior(9:
q P(Y = 8§I55) = Serfe (3.84,/1% )

—Lerfe (3.84\/35% ) erfe (276\/ 1% )
—fech<384 10N>erfc< 0.76 10N> (16)

P<0<Y1<2 %):1—P<Y1<0,Y1>2 ’f—0>

E.\ _
P<0<Y1<2 ﬁ)_l—

S As mentioned earlier, based on the symmetry of QAM con-
0 (Y1-(=0 76\/E—>>2 S : S
[\/WITO f_ooexp—{ - = tdY] stellation diagrams, other symbols will also have prolit

1 0 (Yr—(=0. 76\/_)) equal to one of the following symbols$y, S1, S2 or Ss. As-
TN, fz\/%exp_{ Y suming all symbols have equal probability of being generate

and transmitted i.eP(Sy) = 1/16 where(k = 0...15), the

P(O <Yr<2 %) =1-gerfc ( 0.761/ 1%, total probability P(C) that the data transmitted by 16QAM

y (11) circular transmitter and correctly decoded by 16QAM rectan
—yerfe ( 76\/ TN, ) gular eavesdropper is:
Thus, combining Equatidn 10, 111, we have:
" P(C) = P(Sy) x4 x [P(Y = S5§|S§) + P(Y = S7|S%)
P(Y = 5315) = oo He
_lerfe 1
[1-derse(3sa/id;) - serse(-184 /i) P(Y = S3|S5) + P(Y = S5|55)]
x[1-Serfe(-0.76, /15 )~ derfe(2.76, /15 )]
(12) 11 E, E,
P(C) = -[--erfc|5.69 erfc(1.53
D. Decoding of symbad001 4" 4 10N, 10N,
Finally, we consider symba$s = 0001 being transmitted. 1 F, E,
|n th|s case: +Z€7’fc —184 1ONO erfc 276 10N0
Es
X Xr=—1.84y/ —
r=0. 76\/ 0 & =185 +ie7’fc<—1.84 T erfc( 0.76 15N
So, the probability that eavesdropper correctly decodessy °

0001 is: 1 E, E
——erfc( 0.764 )/ —— ——erfc<2 76
P(Y:S§|S§)=P(f2 %<YR<O)P(2 %<Y1<oo) (13) 2 V 10N) 2 10N,

Considering the left part of the right hand side of Equation —|—1erfc 5.69 Es —lerfc —1.84 Es +1]
3 10N, ) 2 10N,

17
P<72\/ij5<YR<O):1fP<YR<72 %,YR>O) .
Here, N, is the power spectral density of the noise afig
P(—2\/E<YR<O> L is the sympol energy of the signal. Sq, the t_eEI’p/]\f0 is a
representative of the SNR at the receiver. Since Equatibn 17
. e containser fc() function, as we increase the value of SNR
[ [y W eap— in the er f¢() function, the probability will decrease. So, the
(YR—o.m\/%y}dY | probability of correct deco_ding is advgrsely aff(_acted bg Fh
N, R SNR of the wireless medium at receivers. This theoretical
fact is illustrated further in Figurgl5. The line with cirsle
(14) refers to the probability of correct decoding and the line
with crosses refers to the probability of error. 8B SNR,
the probability of error for the eavesdropper (1002. At

076 Eay2
{7(YR 0'17\2 16 YR
+—\/:TD foooeacp—{
P(—Q %<YR<O>—1——ech(2 761/ -

—%erfc( 0.76 1ON

Similarly, the right part yields: SNR values abov0dB, the probability of error is nearly
. 1 which makes the decoding almost infeasible in practice. In
P (2 1_5<Y1<°°) = comparison, for an intended receiver with 16QAM circular

scheme, the probability of error &8 SNR is around., and

—(—1.844/E2))2
ewp—{w}dlfz 0 for a SNR 0f204B [L3].

1 oo
\/w—fvofzx/%



. M-ary QAM, the plaintext can havé/ symbols, each of
which arelog, M bits. The key, mapping of bit sequences to
constellation points, hak!! variations. Now, we definperfect
10996 secrecyand unicity distancewhich is due to Shannonl[1].

0.016
0.014 10.998

0.012-

=}
o
=

10.994

Definition 1. A cipher achieves perfect secrecy, if without
knowing the secret key, the plaintektis independent of the
ciphertextC, formally:

0.008 10.992

0.006 - 10.99

PROBABILITY OF CORRECT DECODING
PROBABILITY OF ERROR

0.004 {o.088 prob(P = P|C = Ex(P)) = prob(P = P) (18)
000 1o Equivalently,
0 33.984
SNR(@B) prob(C = C|P = Ex'(C)) = prob(C=C)  (19)

Fig. 5. Probability that the eavesdropper decodes coyrecttl incorrectly
at different signal-to-noise ratio.

V. SECURITY ANALYSIS

In this section, we analyze CD-PHY in terms of information
theoretic security, security by complexity and resistatze
potential modulation classification schemes such as Auioma
Modulation Classification (AMC) [12] and Digital Modulatio
Classification (DMC)[[11].

The basis of information theoretic security is the fact that
the bit sequence to constellation symbol mapping is known
only to the sender and receiver(s). The eavesdropper daes no
have any a prior knowledge of the mapping. In the subsequent
section, by applying Shannon’s secrecy model (Fidure 6) to
CD-PHY, we show that it can in deed achieve information Fig. 7. An illustration of plaintext to ciphertext mapping.
theoretic security. In addition, any decoding attempt oa th
eavesdropper side incurs high complexity as it blindlysttie
find the mapping. Finally, we show how CD-PHY thwarts th
classification attempts by AMC and DMC.

gefinition 2. Unicity distance of a cipher is the minimum
amount of ciphertext needed for brute-force attack to sedce

Formally:
A. Information theoretic security U= H(K)/D (20)
where H(K) is the entropy is the key and D is the redundancy
N SOURCE. of the message.
AN ORVPTANALYST Definition[d leads us to the following theorem:
P

C .
+ Theorem 1. CD-PHY achieves perfect secrecy.
ENCIPHERER | CIPHER TEXT N DECIPHERER | PLAIN TEXT
i T P

Tk c c

Proof: Perfect secrecy requires that without the knowl-
ey A ey edge of th_e key, each C|pher.text is equally probably to.map
K[ g K to any plaintext of that domain. Since the symbols are inde-

pendent of each other and equally probable to map any of the
SO'BE.:CE constellation points, for an M-ary QAM scheme, we have the
following:

Fig. 6. Shannon’s Secrecy Model prob(C = C|P = E*(C)) = 1/M = prob(C =C) (21)

In CD-PHY, the act of finding the correct mapping from thevhich meets the requirements of perfect secrecy. In other
constellation points to bit sequences is essentially aptleci words, since the keyx is independent of plaintexP and
ing operation for the eavesdropper. Here, the transmitied fvllows uniform distribution, it leads us to:
sequences are plainteRt signal received by the eavesdropper
is the ciphertextC, the mapping is the keyk. For an prob(P = P|C = Ex(P)) =1/M =prob(P=P) (22)



More rigorouslyprob(P = P|C = C) From the definition of a complete bipartite graphli[14], it is

prob(P = P,C = C) straightforward to see the following theorem.
N prob(C = C) Theorem 3. The bit sequence to constellation point mapping
prob(C = C|P = P)prob(P = P) in CD-PHY is a complete bipartite graph.
Z prob(C = C|P = P")prob(P = P') Proof: A complete bipartite graph partitions the vertices
P'eP into two sets|Vi| = p and|V,2| = ¢. Now, we can see from
_ prob(K = C — P)prob(P = P) Figure[T that each plaintext (bit sequence) on the left side o
B Z prob(K = C' — P') prob(P = P') the graph can be considered a verteX’pfand each ciphertext
Prep (constellation points) on the right can be considered aexert
ﬁprob(P = P) of V5. Based on the key, it is possible to map every member
= 1 of V; to any member ofi;. Thus, it constitutes a complete
Z Mprob(P: P bipartite graph whereV;| = |Vi| = log, M for an M-ary
P'cP QAM scheme. [ |
= prob(P=P) (23) Now, to explain perfect matchind [15] of the complete

where K=C—P refers that keyK is a mapping between bipartite graph, we need the following definition.

plaintext P and ciphertext'. B Definition 4. A matching in a graph is a set of edges without
In addition, according toperfect cipher keyspace theo-common vertices. In a perfect matching, every vertex of the

rem [1] [, if a cipher is perfect, there must be at least agraph is connected to only one edge of the matching.

many keys {) are there are possible messages This leads

us to the following corollary: The counting version of complete bipartite graph perfect

matching problem returns the total number of perfect matghi
Corollary 1. Messages in CD-PHY with M-ary QAM schemeyhere each edge in the matching connects two unique vertices
should contain less than symbols such thad/! > M™ to  from V; and V,. Theoren{B and Definitiof] 4 leads us to the
maintain perfect secrecy. following theorem:

Definition[2 leads us to the following theorem: Theorem 4. The brute-force key search attack on CD-PHY is:
Theorem 2. The unicity distance of CD-PHY tends to infinity. 1) equivalent to counting version of complete bipartite

. graph perfect matching problem, and
Proof: For a CD—P_HY with M-ary QAM, entropy of the 2) in complexity classP (Sharp P) complete.

key H(K) ~ log M!. Since, the symbols are independent of
each other, the redundandy = 0 for the message. So, the  Proof: Based on Theorerl 3 and Defintibh 4, proof of
unicity distance i = (log M!/0) = cc. m part 1 is trivial. The problem of counting the number of

Unicity distance is a theoretical measure of how margerfect matching of a complete bipartite graph can be solved
ciphertexts are required to determine a unique plaintdxt. by computing the permanent of the bi-adjacency matrix [16]
one has less than unicity distance ciphertext, it is notiptess of the graph. The permanent of a matdx= n x n is defined
to identify if the deciphering is correct. In fact, when thes: "
rgdundancy approaches to zero, |t_|s hard to at_ta(_:k_ everlsimp perm(A) = Z H @i (i) (24)
cipher. For CD-PHY, a unicity distance of infinity means —
that the eavesdropper won't be able to determine whether . ) )
the deciphering is correct regardless of the number of th&1€reo is a permutation ovef1,2,...,n} . The complexity
ciphertexts it has in its possession. This is, in fact, a veR} COMPUting permanent of a matrix is in complexity class

strong information theoretic guarantee of CD-PHY security qgc%nplete, as proved by the seminal warkl[17] of Vziliant
in :

B. Security by complexity In general, computing the permanent of a matrix is believed

Now, we model the problem of brute-force key searcto be harder than its determinant. While one can compute the
attackl on CD-PHY as acomplete bipartite graph perfectdeterminant in polynomial time by Gaussian eliminatiore th
matchingproblem and analyze the algorithmic complexity ofame cannot be used to compute the permanent. Thus, the
it. computational complexity of the brute-force key searchciit

Definition 3. A complete bipartite graph is a bipartite graphon CD-PHY also adds to the security of the scheme.

where every vertex of the one set is connected to each verexDefense against modulation classification schemes
of the other_ set _For"_‘a”y' a complete bipartite grapih,_: The section explains where does CD-PHY stand when the
(ViUVa, E), is a bipartite gr"?‘ph such th"?‘t for any two Vert'ceseavesdropper tries to apply some modulation classification
v1 € V1 andv2 € V2, vlv2 is an edge inG. techniques such as AMC [12] and DMC [11].
6Als0 known asShannon bound AMC is based on cyclic feature detection technique consid-
Finding the bit sequence to constellation point mapping. ering thecyclostationaryproperty of the modulated signals.



It considers the fact that modulated signals in practiceehav The experimental scenario is shown in Figlre 14. We
parameters that vary periodically with time. These hiddadesignate a CD-PHY sender with 16QAM circular modulation
periodicities are used to classify the modulation techesqu scheme. The receivers are divided into three groups based on
Although, AMC is able to differentiate modulations such atheir distances from the sender. Group 1, group2 and group
BPSK, QPSK, and QAM based on large amount of training are at 10m, 50m and 100m distance, respectively. Each
data and supervised learning, it can not identify the shageoup has an intended CD-PHY receiver with 16QAM circular
of the constellation and constellation mapping of symbotcheme and three eavesdroppers with 16QAM rectangular,
to constellation points. Also, for higher order QAM, theQPSK and BPSK scheme.
complexity of AMC makes it practically infeasible even to We measure the BER at different receivers for different
classify the modulation. SNRs. Experimental scenarios contain both free space and
DMC uses constellation shape as the basis of modulatimdoor environments. Figurél Bl 9 arid] 10 show the measure-
classification. In this algorithm, the receiver construats ments from free space environment. For the CD-PHY receiver,
scatter diagram of the received noisy symbols in a complaith the increment of SNR, the bit error rate decreases fol-
plane and uses fuzzy c-means clustering to recover robuast cowing the usual pattern of wireless communication. Howeve
stellation. The modulation type is identified using maximurfor eavesdroppers with different schemes, the bit errog rat
likelihood (ML) classification with predefined constelti is more than50% regradless of the increment of SNR. The
templates. Similar to AMC, digital modulation classificati error rate is the highest in BPSK which is consistent with
also requires a large amount of training data and supervisagr analysis in Sectionlll. As the distance increases, BER of
learning to identify templates. Thus, although it can idfgnt BPSK scheme can go as high 3%, resulting in a near to
pre-defined constellation shapes, it is not able to identiffnpossible decoding process.
constellation mapping from symbols to constellation pmint  Figure [I1[ 1P and_13 show BER vs SNR for indoor envi-
In summary, CD-PHY can withstand existing modulationonment. The bit error rates of the eavesdroppers are also as
classification techniques and secure against the attapksiex high as50% throughout the measurements for different SNR
ing such techniques in practice. values. Similar to the free space environment, the distafice
the receivers also adversely affect the bit error rate.
Figure[I% aggregates the BER measurements for different

Groupt locations of the eavesdropper. The median BER is araofig
Sender Group 1 Receiver 1— 16QAMc . A
16QAMc [G1o1om | Receivers Eavesdropper — 160AMr and the range ig40% to 60%. It shows that in the presence of
Eavesdronperd — BPSK CD-PHY, the eavesdroppers experience such a high bit error
rate that it is almost equivalent of randomly guessing thg. bi
som50m Sam1o0m o . 160AME This is true for both indoor and free space environment and
E:zzzgggggzgﬁ gﬁpcgj(“'r ensures that the eavesdropper can not comprehend the signal
v Eavesdropper3 — BPSK when CD-PHY is in action.
Group 2 Groun3
: roup:
Receivers Groun 3 Receiver 1— 16QAMc 1
.p Eavesdropper1 — 16QAMr Freespace
Receivers Eavesdropper2 — QPSK z Indoor
Eavesdropper3 — BPSK 8 081
2
T o6l
Fig. 14. Simulated wireless network scenario. The sendes U$QAM g
circular scheme. At different distances, each group hastmded receiver 04t
with 16QAM circular scheme and three eavesdroppers eadh WEQAM =}
rectangular, QPSK and BPSK scheme. 2 02l
(6)
o ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1
VI. PERFORMANCE EVALUATION AND SIMULATION BIT ERROR RATE

RESULTS ) ] ) )
Fig. 15. Eavesdropper bit error rate from indoor and freesmgaperiments.

In this section, we show the impact of CD-PHY on the
network performance of the eavesdropper. A very intuitive
measure of such performance evaluation is to show how many VII. CONCLUSION
bits are received in error at different signal and noise powe CD-PHY is a simple mechanism that introduces channel
Typically, when the signal power increases, the receivable independent security at the physical layer of wireless com-
to decode the bits more accurately leading to a lower bitrernmunication. We have shown that in the presence of CD-PHY,
rate (BER). In the following experiment, we show that théhe eavesdropper has a very low probability of successfully
BER of CD-PHY receiver conforms to this pattern whereas tlecoding the signal. The scheme achieves Shannon secrecy as
BER of the eavesdroppers does not decrease even for higheipher and a brute-force key search attack on CD-PHY falls
signal power. under complexity clasg P which is believed to be harder than



Fig. 11. BERvs SNR fora = 1.4 andd = 10m
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Fig. 10. BER vs SNR fora = 2 andd = 100m
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polynomial time algorithms. Our experimental results confi
the theoretical derivations; the bit error rate at the ednogzper
is significantly high and it is practically infeasible to dele

the signal which ensures the communication secrecy betwegsm

the sender and the intended receiver.
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