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Abstract—The problem of distributed estimation of a paramet-
ric physical field is stated as a maximum likelihood estimation
problem. Sensor observations are distorted by additive white
Gaussian noise. Prior to data transmission, each sensor quan-
tizes its observation to M levels. The quantized data are then
communicated over parallel additive white Gaussian channels to
a fusion center for a joint estimation. An iterative expectation-
maximization (EM) algorithm to estimate the unknown param-
eter is formulated, and its linearized version is adopted for
numerical analysis. The numerical examples are provided for the
case of the field modeled as a Gaussian bell. The dependence of
the integrated mean-square error on the number of quantization
levels, the number of sensors in the network and the SNR in
observation and transmission channels is analyzed.

Index Terms—Distributed estimation, expectation-
maximization algorithm, maximum likelihood estimation,
distributed sensor network, sparse data

I. INTRODUCTION

Distributed sensor networks provide a platform for many
military and civilian applications. Examples include surveil-
lance, monitoring wildlife, or controlling the power grid.
Sensor networks built for these applications are intended to
solve various problems such as detecting, tracking, classifying,
counting, and estimating. They are also required to adhere to
a number of physical constraints including power, bandwidth,
latency, and complexity. Much research has been reported
on each of these topics over the past two decades. In the
field of distributed estimation, for example, various estimation
problems have been formulated and solved. Many works
choose either to optimize a distributed sensor network with
respect to energy consumption during transmission [1], [5] or
impose bandwidth constraints and thus focus on designing an
optimal quantization strategy for the distributed network [3],
[4]. There are few that involve both constraints (see [6] as an
example).

Among research groups working on the problem of dis-
tributed estimation, there are a few dealing with distributed
estimation of a field (a multidimensional function, in gen-
eral) [2], [7], [8]. Since in many real-world applications
distributed estimation of a multidimensional function may
provide additional information that aids in making a high-
fidelity decision or in solving another inference problem, we
contribute to this topic by formulating and solving the problem
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of a parametric field estimation from sparse noisy sensor
measurements. Distributed target localization is another active
area of research [4]. An iterative solution to this problem is a
second contribution of our work.

In this paper, the problem of distributed estimation of a
physical field from sensory data collected by a homogeneous
sensor network is stated as a maximum likelihood estimation
problem. The physical field is a deterministic function and has
a known spatial distribution parameterized by a set of unknown
parameters, such as the location of an object generating the
field and the strength of the field in the region occupied
by the sensors. Sensor observations are distorted by additive
white Gaussian noise. Prior to transmission, each sensor
quantizes its observation to M levels. The quantized data
are then communicated over parallel additive white Gaussian
channels to the fusion center where the unknown parameters
of the underlying physical field are estimated. An iterative
expectation-maximization (EM) algorithm to estimate the un-
known parameter is formulated, and a simplified numerical
solution involving additional approximations is developed. The
numerical examples illustrate the developed approach for the
case of the field modeled as a Gaussian bell.

The remainder of the paper is organized as follows. Sec. II
formulates the problem. Sec. III develops an EM solution. Sec.
IV provides numerical performance evaluation. The summary
of the developed results is provided in Sec. V.

II. PROBLEM STATEMENT

Consider a distributed network of homogeneous sensors
monitoring the environment for the presence of a substance
or an object. Assume that each substance or object is charac-
terized by a location parameter and by a spatially distributed
physical field generated by it. As an example, a ferromagnetic
object can be viewed as a single or a collection of dipoles
characterized by a magnetic field that they generate. This
field can be sensed by a network of magnetometers placed
in the vicinity of the object. Depending on the design of the
magnetometers, they may take measurements of a directional
complex valued magnetic field or of the magnitude of the field
only. The field generated by a dipole decays as a function
of the inverse cube of the distance to the dipole. The sensor
network does not know a priori the location of the dipole as
well as the type and size of the object. However, the type and
size of an object can be associated with the strength of the
magnetic field. Examples of other physical fields include (1) a
radioactive field that can be modeled as a stationary spatially
distributed Poisson field with a two-dimensional intensity
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Fig. 1. Block-diagram of the distributed sensor network.

function decaying according to the inverse-square law or (2) a
distribution of pollution or chemical fumes that, if stationary,
can often be modeled as a Gaussian bell.

Consider a network of K sensors distributed over an area
A. The network is calibrated in the sense that the relative
locations of the sensors are known. Sensors act independently
of one another and take noisy measurements of a physical
field G(x, y). A sample of G(x, y) at a location (xk, yk) is
denoted as Gk = G(xk, yk). The parametric field G(x, y) is
characterized by L unknown parameters θ = [θ1, . . . , θL]T .
To emphasize this dependence we will use both Gk and
G(xk, yk : θ) throughout the text. The sensor noise, de-
note it by Wk, k = 1, . . . ,K is known and modeled as
Gaussian distributed with mean zero and variance σ2. The
noise of sensors is independent and identically distributed.
Let Rk, k = 1, . . . ,K be the noisy samples of the field at
the location of distributed sensors. Then Rk is modeled as
Rk = G(xk, yk) +Wk.

Due to constraints that are imposed by practical technology,
each sensor may be required to quantize its measurements
prior to transmitting them to the fusion center (FC). Assume
that a deterministic quantizer with M quantization levels is
involved. Let ν1, ν2, . . . , νM be known reproduction points of
the quantizer. Denote by q(Rk) = qk the quantized version of
the measurement by the k-th sensor. These data are modulated
using a digital modulation scheme and then transmitted to the
FC over noisy parallel channels. The noise in channels is due
to quantization error and channel impairments, denote it by
Ñk, k = 1, . . . ,K. Denote by m(·) a modulation function
and by d(·) a demodulation function. Let Z1, . . . , ZK , be
noisy observations received by the FC. Then each Zk is given
by Zk = d(m(qk)) + Ñk, k = 1, . . . ,K. In this work we
assume that m(·) and d(·) are linear and that the demodulator
recovers the quantized signal by using a soft thresholding
rule. These assumptions allow Zk be approximated by its
asymptotic counterpart Zk = qk + Nk, where Nk is a white
Gaussian noise with variance η2.

Given the noisy measurements and the relative location of
the sensors in the network, the task of the FC is to estimate

the vector parameter θ. A block diagram of the distributed
network used for estimation of parameters of a physical field
is shown in Fig. 1.

In this work we adopt a maximum likelihood (ML) estima-
tion approach to solve the problem of distributed parameter
estimation. The joint likelihood function of the independent
quantized noisy measurements Z1, Z2, . . . , ZK can be written
as

l(Z) =

K∑
k=1

log

 M∑
j=1

pk,j exp

(
− (Zk − νj)2

2η2

) , (1)

where Z is the vector of measurements [Z1, Z2, . . . , ZK ]T ,
pk,j are the probabilities for the output of the sensor k to be
mapped to the j-th reproduction point during the encoding
process

pk,j =

∫ τj+1

τj

1√
2πσ2

exp

(
− (t−Gk)

2

2σ2

)
dt,

τj and τj+1, j = 1, . . . ,M are the boundaries of the j-
th quantization region. The ML solution θ̂ is the solution
that maximizes the expression (1). For a numerical example
in Sec. IV, the field is modeled as a Gaussian bell with
three unknown parameters: the strength of the field µ and the
location parameter (xc, yc).

III. ITERATIVE SOLUTION

Since the expression for the log-likelihood function (1)
is highly nonlinear in unknown parameters, we develop an
iterative solution to the problem. We first formulate a set
of Expectation-Maximization (EM) iterations [9] and then
involve a Newton’s linearization to solve for the unknown
parameters.

A. Expectation Maximization Solution

We select the pairs of random variables (Rk, Nk), k =
1, 2, . . . ,K as complete data. The complete data log-
likelihood, denote it by lcd(·), is given by

lcd(R,N) = − 1

2σ2

K∑
i=1

(Ri −Gi)2

+ terms not function of θ. (2)

The measurements Zi, i = 1, . . . ,K, form incomplete data.
The mapping from complete data space to incomplete data
space is given by Zk = q(Rk) + Nk, where q(.) is a known
quantization function.

Denote by θ̂(k) an estimate of the vector θ obtained at
the k-th iteration. To update the estimates of parameters we
alternate the expectation and maximization steps. During the
expectation step, we evaluate the conditional expectation of
the complete data log-likelihood:

Q(k+1) = E

[
− 1

2σ2

K∑
i=1

(Ri −Gi)2
∣∣∣∣∣Z, θ̂(k)

]
, (3)



where the expectation is with respect to the conditional
probability density function of the complete data, given the
incomplete data (measurements) and the estimates of the
parameters at the k-th iteration. During the maximization step
we maximize (3):

dQ(k+1)

dθt
= E

[
1

σ2

K∑
i=1

(Ri −Gi)
dGi
dθt

∣∣∣∣∣Z, θ̂(k)
] ∣∣∣

θ̂(k+1)
= 0,

t = 1, . . . , L. (4)

To find the conditional expectation we note that the condi-
tional probability density function (p.d.f.) of Zi, given Ri, is
Gaussian with mean q(Ri) and variance η2 and the p.d.f. of
Ri is Gaussian with mean Gi and variance σ2. We also note
that at the k-th iteration the conditional pdf of Ri, given Zi,
implicitly involves the estimates of the parameters obtained at
the k-th iteration.

Denote by G
(k)
i the estimate of the field G(x, y) at the

location (xi, yi) with the vector of parameters θ replaced by
their estimates θ̂(k). Then the final expression for the iterative
evaluation of the unknown parameters can be written as

K∑
i=1

dG
(k+1)
i

dθt
A(G

(k)
i )−

K∑
i=1

G
(k+1)
i

dG
(k+1)
i

dθt
B(G

(k)
i ) = 0,

t = 1, . . . , L, (5)

where

A(G
(k)
i ) =

M∑
j=1

exp
(
− (zi−νj)2

2η2

)
f
(k)
Zi

(zi)
√

2πη2

(√
σ2

2π
e−

(τj−G
(k)
i

)2

2σ2 (6)

−
√
σ2

2π
e−

(τj+1−G(k)
i

)2

2σ2 +G
(k)
i ∆Q(k)(j, i)

)
,

B(G
(k)
i ) =

M∑
j=1

exp
(
− (zi−νj)2

2η2

)
f
(k)
Zi

(zi)
√

2πη2
∆Q(k)(j, i), (7)

with ∆Q(k)(j, i) = Q

(
τj−G(k)

i

σ

)
−Q

(
τj+1−G(k)

i

σ

)
and

f
(k)
Zi

(zi) =

∫
f (k)(zi|r)f (k)(r)dr.

The expression Q(·) is used to denote the Q-function.

B. Linearization

The equations (5) are nonlinear in θ̂(k+1) and have to be
solved numerically for each iteration. To simplify the solution,
we linearize the expression in (5) by means of Newton’s
method. Denote by F(θ(k+1)) the vector form of the left
side in (5), which is a mapping from θ(k+1) to the range of
F(θ(k+1)). Let J

(
θ
(k+1)
n

)
be the Jacobian of the mapping.

The index n indicates the iteration of the Newton’s solution.
Then θ(k) solves the following linearized equation:

J
(
θ(k+1)
n

)(
θ
(k+1)
n+1 − θ(k+1)

n

)
= −F

(
θ(k+1)
n

)
. (8)

Fig. 2. Squared Gaussian field located at (xc, yc) = (4, 4) with peak
parameter 4 and variance 4.

IV. NUMERICAL ANALYSIS

In this section, the performance of the distributed ML
estimator in (5) is demonstrated on simulated data. A dis-
tributed network of K sensors is formed by positioning sensors
at random over an area A of size 8 × 8. The location of
each sensor is noted. A Gaussian field shown in Fig. 2 is
sampled at the location of the i-th sensor, i = 1, . . . ,K and
a sample of randomly generated Gaussian noise with mean
zero and variance σ2 is added to each field measurement. In
our simulations, K is varied from 5 to 200 and σ2 is selected
such that the total signal-to-noise ratio (SNR) of the local
observations defined as

SNRO =

∫ ∫
A
G2(x, y : θ)dxdy

Aσ2
(9)

is 15 dB. Each sensor observation is quantized to one of
M levels using a uniform deterministic quantizer. We set the
number of quantization levels to M = 8 and the quantization
step to 8. K parallel white Gaussian noise channels add
samples of noise with variance η2 selected to set the total
SNR during data transmission defined as

SNRC =

∫ ∫
A
E
[
q2(R(x, y : θ))

]
dxdy

Aη2
(10)

to 15 dB, and the FC observes the noisy quantized samples
of the field. The function q(R(x, y : θ)) in (10) is a quantized
version of R(x, y : θ) = G(x, y : θ) +W.

First, we illustrate the convergence of the EM algorithm.
The value of the ML estimate as a function of iteration is
shown in Figs. 4, 5 and 6 for the peak value of the field,
its x-location and its y-location, respectively. This illustration
is based on a single realization of the distributed network
with K = 10 and M = 8. We can observe that with the
initial values 9 for the peak of the field, 3 for the x-location
and 3 for the y-location, the algorithm takes about 600 EM
iterations to converge to the final values 7.90, 3.88, and 3.88,
respectively. The true values of these parameters are 8, 4, and



Fig. 3. The squared difference between the original and reconstructed fields.
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Fig. 4. Illustration of the EM convergence for M = 8. Peak parameter.
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Fig. 5. Illustration of the EM convergence for M = 8. X-location.

4. The discrepancy between the vectors of estimated and true
parameters are due to a low sensor density in the network,
relatively rough quantization, and the distortions due to sensor
and channel noise.

The square distance per pixel between the original and
reconstructed Gaussian fields is displayed in Fig. 3.

To further analyze the estimation performance, we evaluate
the mean square error (MSE) between the estimated and true
location parameters. The MSE is evaluated numerically by
means of 1000 Monte Carlo simulations. Each vector of esti-
mated parameters is substituted back in the expression for the
parametric field, and an integrated square error (ISE) between
the true and estimated fields is evaluated. The integrated square
error (ISE) is defined as
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Fig. 6. Illustration of the EM convergence for M = 8. Y-location.
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Fig. 7. A box plot of the SE between the estimated and true location of the
object displayed as a function of the number of sensors distributed over the
area A. The number of quantization levels is set to M = 8.
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Fig. 8. Dependence of the simulated ISE on the number of sensors distributed
over the area A for the case of M = 8.

ISE =

∫ ∫
A
|Ĝ(x, y)−G(x, y)|2dxdy∫ ∫

A
|G(x, y)|2dxdy

. (11)

The ISE statistically averaged over 1000 Monte Carlo simu-
lations is an approximation to integrated mean square error
(IMSE).

The dependence of the MSE on the number of sensors, K,
in the distributed network for the case of M = 8 quantization
levels is shown in Fig. 7. The dependence of the IMSE on the
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Fig. 9. Probability of outliers Poutliers(τ) = P [SE > τ ] (expressed
in percents) as a function of τ. The plot is based on 1000 Monte Carlo
simulations.
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Fig. 10. Probability of outliers (expressed in percents) as a function of
the threshold for different values of SNR in observation and transmission
channels.

number of sensors (sensor density) in the distributed network
for the same value of M is displayed in Fig. 8. The number of
sensors distributed over the area A is varied from 5 to 200 with
the step 5. Each box in Fig. 7 and Fig. 8 is generated using
1000 Monte Carlo realizations of the network and EM runs.
The central mark in each box is the median. The edges of the
box present the 25th and 75th percentiles. The dashed vertical
lines mark the data that extend beyond the two percentiles, but
not considered as outliers. The outliers are plotted individually
and marked with a “+” sign. The percentage of outliers due
to divergence of the EM algorithm is depicted in Fig. 9. Note
the large percentage of outliers for small values of K, K =
10, 15, 20. These correspond to the case when one of the three
parameters did not converge to its true value.

The results indicate that the location estimation and the field
reconstruction of a relatively good quality is possible with
M = 8 and the number of sensors equal or exceeding 20.

Fig. 10 compares the percentage of outliers plotted as a
function of varying threshold for three different realizations
of SNRO and SNRC . Note that for M = 8 the effect of the

Fig. 11. A box plot of the SE between the estimated and true location of
the object displayed as a function of the number of sensors distributed over
the area A. The number of quantization levels is set to M = 16.

Fig. 12. Dependence of the simulated ISE on the number of sensors
distributed over the area A. The number of quantization levels is set to
M = 16.

SNR in the observation channel is more pronounced compared
to the SNR in the transmission channel. The case of high
SNRO = 20 dB and low SNRC = 10 dB is preferred by the
estimator compared to the case of low SNRO = 10 dB and
high SNRC = 20 dB.

A set of box plots showing dependence of the SE and the
ISE on the number of sensors distributed over the area A
for M = 16 and M = 32 have been also generated. The
results are similar to those for the case of M = 8 with the
difference that the number of outliers as a function of the
threshold decays faster to zero (see Figs. 11, 12, 13, and 14)
for illustration).

V. SUMMARY

In this paper, a distributed ML estimation procedure for es-
timating a parametric physical field is formulated. An iterative
linearized EM solution is presented and numerically evaluated.
The model of the network assumed (1) independent Gaussian
sensor and transmission noise; (2) quantization of sensory data



Fig. 13. A box plot of the SE between the estimated and true location of
the object displayed as a function of the number of sensors distributed over
the area A. The number of quantization levels is set to M = 32.

Fig. 14. Dependence of the simulated ISE on the number of sensors
distributed over the area A. The number of quantization levels is set to
M = 32.

prior to transmission; and (3) parametric function estimation
at the FC. The stability of the EM algorithm has been
evaluated for three different values of SNRO and SNRC .
The results show that for a small number of quantization
levels (quantization error is large) SNRO dominates SNRC
in terms of its effect on the performance of the estimator.
Also, when the sensor network is sparse, K = 10, 15, 20
the EM algorithm produces a substantial number of outliers.
Denser networks, K > 20, are more stable in terms of reliable
parameter estimation. A similar analysis has been performed
for M = 16 and M = 32.

In the future, we plan to analyze the estimation abilities of
the network at low SNR values and develop a Cramer-Rao
bound on the estimated parameters.

APPENDIX A
This section provides details leading to the equation (5).

Consider the i-th term under the sum in (4):

E

[
(ri −Gi)

∂Gi
∂θt

∣∣∣∣ zi, θ̂(k)]

=

∫ +∞

−∞
(ri −Gi)

∂Gi
∂θt

exp

(
− (ri−G(k)

i )2

2σ2

)
f
(k)
Zi

(zi)
√

2πσ2

×
exp

(
− (zi−q(k)(ri))2

2η2

)
√

2πη2
dri

=

M∑
j=1

∫ τj+1

τj

(ri −Gi)
∂Gi
∂θt

exp

(
− (ri−G(k)

i )2

2σ2

)
f
(k)
Zi

(zi)
√

2πσ2

×
exp

(
− (zi−νj)2

2η2

)
√

2πη2
dri

=

M∑
j=1

exp
(
− (zi−νj)2

2η2

)
f
(k)
Zi

(zi)
√

2πη2

∂Gi
∂θt

×
∫ τj+1

τj

(ri −Gi)
exp

(
− (ri−G(k)

i )2

2σ2

)
√

2πσ2
dri.

Note that the difference (ri−Gi) in the last integral can be
rewritten as (ri −G(k)

i +G
(k)
i −Gi). Then

E

[
(ri −Gi)

∂Gi
∂θt

∣∣∣∣ zi, θ̂(k)] =

M∑
j=1

exp
(
− (zi−νj)2

2η2

)
f
(k)
Zi

(zi)
√

2πη2

∂Gi
∂θt

×

{
1√

2πσ2

∫ τj+1

τj

exp

(
− (ri −G(k)

i )2

2σ2

)
d

(ri −G(k)
i )2

2

+(G
(k)
i −Gi)

1√
2πσ2

∫ τj+1

τj

exp

(
− (ri −G(k)

i )2

2σ2

)
dri

}
.

Replacing the last integral with a difference of two Q-

functions Q
(
τj−G(k)

i

σ

)
and Q

(
τj+1−G(k)

i

σ

)
we obtain:

K∑
i=1

E

[
(ri −Gi)

∂Gi
∂θt

∣∣∣∣ zi, θ̂(k)] =

K∑
i=1

M∑
j=1

exp
(
− (zi−νj)2

2η2

)
f
(k)
Zi

(zi)
√

2πη2

∂Gi
∂θt

×

{
σ2

√
2πσ2

{
exp

(
− (τj −G(k)

i )2

2σ2

)
− exp

(
− (τj+1 −G(k)

i )2

2σ2

)}

+(G
(k)
i −Gi)

{
Q

(
τj −G(k)

i

σ

)

−Q

(
τj+1 −G(k)

i

σ

)}}∣∣∣∣∣
Gi=G

(k+1)
i

= 0.
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