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Abstract—This paper investigates the problem of adaptive Gaussian noise. This paper will address one of the mainsssue
power allocation for distributed best linear unbiased estmation jn the case of analog amplify-and-forward local processing
(BLUE) of a random parameter at the fusion center (FC) of \ypich js finding the optimal local amplification gains [1—4].
a wireless sensor network (WSN). An optimal power-allocatin Th | fth . t the instant t mér
scheme is proposed that minimizes thd.?>-norm of the vector € values o these gains set tne Ins an aneous_ rar_15 pow
of local transmit powers, given a maximum variance for the Of Sensors; therefore, we refel’ to the|r determ|nat|0n &s th
BLUE estimator. This scheme results in the increased lifethe optimal power allocation to sensors.
of the WSN compared to similar approaches that are based  Cui et al. [2] have proposed an optimal power-allocation
on the minimization of the sum of the local transmit powers. gcheme to minimize the sum of the local transmit powers,
The limitation of the proposed optimal power-allocation shieme . . timation distortion defined as th .
is that it requires the feedback of the instantaneous chanre given a maX|mum estimation distortion defined as the vaganc
state information (CSI) from the FC to local sensors, which § Of the BLUE estimator of a random scalar parameter at the
not practical in most applications of large-scale WSNs. Inhis FC of a WSN. Although optimal with respect to the total
paper, a limited-feedback strategy is proposed that elimiates transmit power in the network, this strategy could result in
this requirement by designing an optimal codebook for the FC  4qqianing very high transmit powers to sensors with high
using the generalized Lloyd algorithm with modified distortion lity ob fi dl . h | hil .
metrics. Each sensor amplifies its analog noisy observatiomsing qual y observations and Iess noisy ¢ ane S, while assign
a quantized version of its optimal amplification gain, whichis iNg zero power to other sensors. The direct consequence of
received by the FC and used to estimate the unknown parameter such power allocation is that some sensors will die quickly,

which could in turn result in a network partition, while the
, ! remaining sensors have either low observation quality or
(BLUE), generalized Lloyd algorithm, L?-norm, power alloca- ¢ - 9 icati h Is. | der to all q. ttyth'
tion, distributed estimation, parameter estimation, fusbn center, 00 hoisy communication ¢ anne_ S. In order 1o a_ewa e thi
wireless sensor networks. drawback, we propose an adaptive power-allocation styateg
that minimizes the.2-norm of the local transmit power vector,

I. INTRODUCTION given a maximum estimation distortion as defined above. This

Distributed estimation is a technology that enables a wi@Proach prevents the assignment of high transmit powers to
range of wireless sensor network (WSN) applications, ssch $ENSOrs by putting a higher penalty on them, which in itself
event detection, classification, and object tracking [146]a '€duces the chances of those sensors dying and the network
WSN performing distributed estimation, the first step is fopecor_nlng partrgoned. Furthgrmore, the total transmit @ow
the spatially distributed sensors to locally process theisy used n the entire n_etwork still stays bounded..
observations that are correlated with an unknown parametef*S it Will be seen in the next sections, the optimal local am-
to be estimated. Each sensor either transmits its analay Ide/fication gains found based on the proposed power-aiioeat

observations using an amplify-and-forward strategy [16#] scheme depend on the instantaneous fading coe_ff|C|ents of
the channels between the sensors and FC, as is the case

sends a quantized version of its local observations to thierfiu )
center (FC) [4-6]. In this paper, we will consider the formdP _[2]. Therefore, the FC must feed the exact channel fading

approach due to its simplicity and practical feasibilitylamill gans bac_k to Sensors thfough ir_1finite-rate, error-fr_eks_lin
concentrate on the best linear unbiased estimation (BLYE) BiS requirement is not practical in most WSN applications,
an unknown random parameter at the FC. In order to find thaPecially when the number of sensors in the network is large
BLUE estimator of the unknown parameter, the FC combind the remainder of this paper, we proposkraited-feedback
linearly processed, noisy observations of local sensaesved strategy to alleviate this requirement. The proposed approach

through orthogonal channels corrupted by fading and a;:elnlitiiS based on designing an optimal codebook using the general-

Index Terms—Limited feedback, best linear unbiased estimator

ized Lloyd algorithm with modified distortion functions, wh
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hy np 7T & Wi at the sensor and FC, and is the spatially independent
and identically distributed (i.i.d.) additive observatimoise
with zero mean and known varianeg. Note that no further
SYEEE - assumption is made on the distribution of the random param-
eter to be estimated and that of the observation noise. We
Fusion . define theozpservation signal-to-noise ratio (SNR) at sensoi
Center —0  asp; = L where|-| denotes the absolute-value operation.

o2 !
We assume that there is no inter-sensor communication
and/or collaboration among spatially distributed sendgesh
sensor uses amplify-and-forward scheme to amplify its local

X noisy observation before sending it to the FC as
t Sensor Ki
i = a;x; = ah0+ang, L =1,2,... K, 2
Fig. 1: System model of a WSN in which the FC finds an : it “ +ain ! 2)
estimate off. wherez; is the signal transmitted from sensioto the FC and

a; is the local amplification gain at sensér Note that the
In summary, the main contributions of this paper are asstantaneous transmit power of sensa@an be found as

follows: An adaptive power-allocation scheme is proposed t 9 9 ) 5 o
minimize the L2-norm of the local transmit power vector, P = q (|hi| +UO) = a;o5 (L+5:). ®)
given a maximum estimation distortion at the FC. This schemg it can be seen in (3), the value of the local amplification
alleviates the problem of assigning very high transmit p8Wegain at each sensor determines the instantaneous transmit
to some sensors, while turning off the other ones. Furtheemopower allocated to that sensor. Therefore, we will call any
a limited-feedback strategy is proposed to quantize théovecsirategy that assigns a set of local amplification gains to
space of the optimal local amplification gains. Appropriatgansors aower-allocation scheme.
distortion functions are defined for the application of the p locally processed observations are transmitted to e F
generalized Lloyd algorithm in the domain of adaptive powgfogh orthogonal fading channels. The received sigreah r

allocation for di_stributed _estimati_on.  sensori at the FC can be described as
The rest of this paper is organized as follows: In Section II,

the system model of the WSN under study is described. yi = gizitwi, i=12,... K, (4)

The proposed adaptive power-allocation strategy is derivghere, is the multiplicative fading coefficient of the channel
in Section I1l. A brief discussion on the motivation for andyenyeen sensarand the FC, andy; is the spatially indepen-
implementation of the limited feedback for the proposegent and identically distributed additive Gaussian noisg w
power-allocation scheme is presented in Section IV. De@lil ;610 mean and variane@. We assume that the FC can reliably
the implementation of the proposed limited-feedback se&hergsiimate the fading coefficient of the channel between each
are discussed in Section V. Section VI provides the numkricgnsor and itself. Note that in the above model, we have also
results to show the applicability of the proposed schemegs med that each sensor is synchronized with the FC. We
Finally, the paper is concluded in Section VII. define thechannel signal-to-noise ratio of the signal received
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[I. SYSTEM MODEL from sensor as~; = ‘gg—;
Consider a WSN composed ok spatially distributed
sensors, as depicted in Fig. 1. The goal of the WSN is to !!l- OPQT”V'A'- POWERALLOCATION WITH MINIMAL
reliably estimate an unknown random parameétat its fusion L7-NORM OF TRANSMIT-POWER VECTOR

center (FC) using_ linearly amplified versions of local noisy Given a power-allocation scheme and a realization of the
observations received through parallel (orthogonal) oeiie ¢, iy gains, the FC combines the set of received signats fro
channels corrupted by fading and additive Gaussian noise. fferent sensors to find thbest linear unbiased estimator

gxample of the ulnknown parameter to be estlmate.d.can be{ EUE) for the unknown paramete as [8, Chapter 6]
intensity of the signal broadcast by an energy-emittinge®u .

an(_:i sen_sed by a set of Iocally_ distributed signal detectors. . K h2a2g2 K hiaigiys c
This estimated variable along with the propagation model of = (5)
the given signal in the observation environment could then b _ _ _

used to estimate the location of the source. It is assumed twdiere the corresponding estimator variance can be found as

6 has zero mean and unit power, and is otherwise unknown. ( K 2,2, -
i % 9i )
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Suppose that the local noisy observation at each sensor is a var (g‘a’ g)

. . 2.2
linear function of the unknown random parameter as a;g;o3 + 08

i=1
T, = hlﬂ—l—nz, i:1,2,...,K, (1)

whereh; is the fixed local observation gain of sengpknown

—1
N —~ 1+ via?o? ’
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in whicha & [ah as, ..., GK] andg £ [91, g2, - - . 7gK] are ALGORITHM I: The water-filling-based iterative process tadithe

L e . . unique values for the number of active senshfrgs and the constankg.
column vectors containing the set of local amplificatiomngai

a; and fading coefficients of the channels respectively. Rleqltr’:irt?;"g’tiéfi}f{:1v and {7 };,.

A goal of this paper is to find the optimal local amplification 2. for i =1,2,.. o5 do
gains or equivalently, the optimal power-allocation schehat 4 end foréi  Bin
minimizes theL2-norm of the vector of local transmit powers s sort the sensors based on the ascending valugssaf thats; <
defined asP £ [Py, P, .. .,PK]T, given a constraint on the 0y < -0 <Ok
variance of the estimate as defined in (6). This objective cang' En dﬁti‘é@aﬁ 0
be formulated as the followingonvex optimization problem: 8. repeat

1 9. Using the given value foK'1, find the value of\ by solving (14).
K 2 10. Replace the value ofp in Eg. (12) and find the new values of
minimize Z P?
(P}i<, i=1

bivi=1,2,..., K.
subject to Var<§

(7) 11. K1+ K -1
12. until The values ob; do not change from the previous iteration. In
a, g) < Dy particular,b; > 0 for all + < K3, andb; = 0 for all : > K.
13. return K7 and \g.

By replacingP; and Var<7§|a, g ) from Equations (3) and (6), i L .
respectively, Equation (7) is converted to the followingnfip has a unique real root, which is in the intergak b; < §; as
whose optimization variables are the local amplificatiomga +

2T 52
B o B 1_aﬂz§w<l_§g/§zg) 2)
minimize [a;%02 (1+ﬁi)}2 0 054

0o

{a: YK i
' =1 (8) whereg; £ L5 i =1,2,... K, T; is defined as
K Biy
subjectto > Biviaios_ > b h
) £~ 1 +ya202 ~ Dy 88; 62
=1 111 = 1+ 1+ 27)\1 ) (13)
. . 0
Let b; be defined a$; £ % The above constrained L _ N _
optimization problem could be re-written as and the operatof]" is defined such thajz]" = z if = >
X , 0, and[z]" = 0 if 2 < 0. Note that in deriving (12), the
minimize Z bi (1+ ;) complementary slackness requirement (11c) is used based on
{b:}E P} (Bi — b;) vio2 which p; = 0 whenb; > 0, andb; = 0 wheny; > 0. It should
o also be noted that as the observation r channe
X (9) alsob d th he ob S8R ch | SNR
subject to Zbi > L AND 0<b; < B ~; decreases, the value &fincreases, which in turn increases
— Do - the value ofT; and decreases the value &f Therefore, if
the sensors are sorted so that < d; < --- < g, only

which is a convex optimization problem in terms lgf The

Lagrangian function for this optimization problem is the first K; sensors with the least values &f will have a

positive value forb;, andb; = 0 for all ¢ > K;. The values
K b; (1+ B:) 2 of the number of active sensof§, for which b; > 0, and the

L (b, Ao, p) = Z (W) equality-constraint Lagrangian multipliex, are unique and
i=1 i 0% can be found by replacing; from (12) into (11b) to derive

K K the following relationship between them:

+ o (Dio - Z@) - Zlﬂibi, (10) - ° P

K1
i=1 i 5| Bi 02 T; 2,867\ 1

. T 2o s ) L @
whereb = [by,bs,...,bk| is the column vector of target (= 0 0 = 0

. . A T .
optimized variables ange = [u1,p2,..., prc|” I8 the La- 1he yajues ofk, and A, can be found through the water-
grangian multiplier vector. The Karush-Kuhn-Tucker (KKT)jjjing.based iterative process summarized in Algorithrit!.

conditions for this optimization problem can be written as -4 he shown that the solution of the above iterative algorit

OL (b, Ao, ) 26:b; (1 + 51.)2 \ 0 (11 in terms of K1 and A\ always exists and is unique.
— — — Wy = , a )
ob; (Bs — bi)3 Y2od 0T H (112) Having found b; through the above process, the local
K amplification gaina; can be found as follows:
b= L (11b)
- 7 Dov 3 )\70
- e e Rl Y 15
:uibi = 01 121127"'1‘[{7 (llc) a; = 17% 3 f;_;"?_ : ( )
/1420 and bZZO, 221,2,,K (11d) 0, 1> Ky

It can be shown that the cubic equation defined in (11a) orljne above power-allocation strategy assigns a zero anagplific



tion gain or equivalently, zero transmit power to the ses$or optimal local amplification gain for sensér The proposed
which ¢, is large, because either the sensor’s observation Si§Rantization scheme could then be thought of as a mapping
or its channel SNR is too low. The assigned instantaneduem the space of channel state information to a discrete set
transmit power to other sensors is non-zero and based afre” lengthJ real-valued power-allocation vectors. Details
the value of§; for each sensor. Note that based on thef this quantization method are described in the next sectio
above power-allocation scheme, there is a unique oneo-on
mapping betweeg anda that could be denoted as= f (g). V. CODEBOOKDESIGNUSING LLOYD ALGORITHM

Let C = [a; a3 --- a,]” be a2 x K codebook matrix
of the optimal local amplification gains, whej€], , denotes

The optimal power-allocation scheme proposed in the prigs element in row¢ and columni as the optimal gain of
vious section is based on the assumption that the compleensori in codeword/. Note that eacha,, ¢ = 1,2,...,2%
forward channel state information (CSI) is available atalocis associated with a realization of the fading coefficierits o
sensors. In other words, Equation (15) shows that the optintlhe channels between local sensors and the FC. We apply the
value of the local amplification gain at sengas a function of generalized Lloyd algorithm with modified distortion megi
its channel SNRy;, which in itself is a function of the instan- to solve the problem of vector quantization in the space ef th
taneous fading coefficient of the channel between senand optimal local amplification gains. This algorithm desighs t
the FC. Therefore, in order to achieve the minimdfnorm optimal codebookC in an iterative process, as explained in
of the vector of local transmit powers, the FC must feed thbe following discussions.
instantaneous amplification gain back to each sensbiThis In order to implement the generalized Lloyd algorithm, a
requirement is not practical in most applications, esplgdia  distortion metric must be defined for the codebook and for
large-scale WSNs, since the feedback information is tyfgicaeach codeword. LeDg (C) denote the average distortion for
transmitted through finite-ratdigital feedback links. codebookC defined as

In the rest of this paper, we propose a limited-feedback
strategy to alleviate the above-mentioned requirement for
infinite-rate digital feedback links from the FC to the local ) , )
sensors. For each channel realization, the FC first finds mgereEa [] denotes the expectapon_opera_ﬂon with respect to
optimal power-allocation scheme using the approach pmpoghe optimal vecto_r of local amplification gains afty (af’_ a)
in the previous section. Note that the FC has access to [fgresents th_e distance between codewsgrdnd the optimal
perfectbackward CSI; i.e., the instantaneous fading gain Opower-allocatlon vectoa, defined as
the channel between each sensor and itself. Thereforenit ca Dw (ag,a) = |J(ap) — J(a)], (17)
find the exact power-allocation strategy of the entire network _ L _
based on (15), given any channel realization. In the next, StgvhereJ (-) is the optimization cost of the power-_allocanon
the FC sends back thedex of the quantized version of the Vector. LetP, andP be the vect(_)r_s OT local j[ran_sm|t POWETS,
optimized power-allocation vector to all sensors. when the vector of local .amphflf:atlor? gains #& Qand 2

In the limited-feedback strategy summarized above, the F pectively. The C.OSt functiah(a) is de_flned as t.hé -horm
and local sensors must agree oncadebook of the local of the corresponding vector of transmit powdsi.e.,
amplification gains or equivalently, a codebook of possible K 3 K 2
power-allocation schemes. The optimal codebook can be dg-(a) = (Z Pf) — (Z [a202 (1 + ﬁi)f) . (18)
signed offline by quantizing the space of the optimized pewer i=1 i=1

allocation vectors using thgeneralized Lloyd algorithm [9] Let A C RE+ be the K -dimensional vector space of the

with modified distortion metrics. Lef. be the number of a1 |ocal amplification gains, whose entries are chosen
feeplback bits that the FC_ uses to ql_Jantlz_e _th_e space of {6 the set of real-valued non-negative numbers. Given the
optimal Iocallpower-allocauon vectors ing% d'SJO",“ regions. gistortion function for the codebod® and that for each one of
Note thatL is the total number of fegdback bits broadcas{y -qgewords defined in Equations (16) and (17), respégtive
by the FC, andnot the number of bits fed back to €achyq 1y main conditions of the generalized Lloyd algorithm

sensor. A codeword is chosen in each quantization regiy 4 pe reformulated for our vector-quantization probkesn
The length of each codeword i, and its:th entry is a ¢,;ows [9, Chapter 11]:

real-valued number representing a quantized version of t

IV. LIMITED FEEDBACK FORPOWERALLOCATION

ry .
De(C) = Eal,  min o,

DW (ag, a) N (16)

earest—Neighbor Condition: This condition finds the opti-

INote that instead of feeding; back to each sensor, the FC could send
back the fading coefficient of the channel between each semsbthe FC.
However, the knowledge af; alone is not enough for sensoto compute the
optimal value of its local amplification gaia;. The sensor must also know
whether it needs to transmit or stay silent. There are twosvibgt the extra
data can be fed back to the sensors: This information coulenbeded in an
extra one-bit command instructing each sensor to tranansitay silent, or the
sensor could listen for the entire vector g@fsent by the FC over a broadcast
channel. Sending back each valueagfavoids this extra communication.

mal Voronoi cells of the vector space to be quantized,
given a fixed codebook. Based on this condition, given a
codebookC, the spaced of optimized power-allocation
vectors is divided int®2” disjoint quantization regions
(or Voronoi cells) with thefth region represented by
codeworda, € C and defined as

¢ = {a€ A: Dw(ay,a) < Dy (ax,a),Vk #£}. (19)



ALGORITHM II: The process of optimal codebook design basedie  gyer an error-free digital feedback channel to all sensers a
generalized Lloyd algorithm with modified distortion fuiwcts.

: i OPT
Require: K and L. { = arg min Dw (ak, a ) . (22)
Require: Fading model of the channel between local sensors and the FC. ke{1,2,...,2L'},a,€C

Require: M. > M is the number otraining vectors in spaceA. . . ) .
Require: e. > ¢ is the distortion threshold to stop the iterations. Upon reception of the index, each sensoi knows its

1. Initialization qguantized local amplification gain or equivalently, its mow
2. Gs «— A set of M length-K vectors of channel-fading realiza- g|location weight as[C]Z i where? and i are the row and

tions based on the given fading model of the channels betwee . ’ .
local sensors and the EC. b M > 2L, Tolumn indexes of the codebodk, respectively.
3. As <— The set of optimal local power-allocation vectors asso- VI. N R
ciated with the channel fading vectors ¢, found by applying : UMERICAL RESULTS
Eq. (15. b As is the set of fraining vectors, and, C A. In this section, numerical results are provided to assess th

2L . . . .
4. {a}},_, «— Rendomly select2” optimal power-allocation performance of the optimal power-allocation scheme pregos
vectors from the set; as the initial set of codewords. in Section 1ll and to verify the effectiveness of the limited

T .  ege . . . . .
5 CY«— [a? ay - agL] > C is the initial codebook.  feedback strategy proposed in Section V in achieving the
6. NewCos«t— Dg (C°) andj «—0. _ energy efficiency close to that of a WSN with full CSI
> The average distortion of codebook is found using Eq. (16). . . .
7. Endinitialization feedback. In this paper, the energy efficiency of a power-
8. repeat allocation scheme is defined as thé-norm of the vector of
1?)' JG —J +d1 g\nd Ié)]!dclostT NITWCOSt_tt-, he setd. into 2 local transmit powers formulated in (18).
. Iven codeboo — 7, optmally partition e SelAs Into . . : .
disjoint subsets based on thearest-Neighbor Condifion using In our simulations, theT Iocaliob_seryanon.galns are rangioml|
Eq. (19). Denote the resulted optimal partitions 4y ', ¢ = chosen from a Gaussian distribution with unit mean and
1,2,...,25 variance 0.09. In all simulations, the average powerhpf
1. for all AT e =1,2,...,28do _ . across all sensors is set to be 1.2. The observation andehann
12. a, +— Optimal codeword associated with partitios; noise variances are set & = 10 dBm ando? = —90 dBm,
found based on th€entroid Condition using Eq. (20). . . . . .
13.  end for . respectively. The following fading model is considered toe
14. CI+— [a{ aj - agL] > C7 is the new codebook.  channels between local sensors and the FC:
15. NewCost— Dg (C7) d;\ "¢
16. until OldCost— NewCost< ¢ g = nol|— fi 1=1,2,....K, (22)
17. return COPT «— (7. do
where 59 = —30dB is the nominal fading gain at the

reference distance set to kg = 1 meter,d; is the distance
Centroid Condition: This condition finds the optimal code-petween sensoi and the FC (in meters)p = 2 is the
book, given a specific partitioning of the vector spacgath-loss exponent, anf] is the independent and identically
to be quantized. Based on this condition, given a spgstributed (i.i.d.) Rayleigh-fading random variable hvitinit
cific partitioning of the space of the optimized poweryariance. The distance between sensors and the FC is uni-
allocation vectord A, As, ..., Ayc }, the optimal code- formly distributed between 50 and 150 meters. The size of the

word associated with each Voronoi cell, C A is the training set in the optimal codebook-design process desdri
centroid of that cell with respect to the distance functionn Algorithm 11 is set to A = 5,000, and the codebook-

defined in (17) as distortion threshold for stopping the iterative algorithim
a; = arg minEac, [Dw (ar, a)] (20) assumed to be= 10~%. The results are obtained by averaging
acE A, ‘ Y over 10,000 Monte Carlo simulations.
where the expectation operation is performed over the sefigure 2 illustrates the energy efficiency of the adaptive
of members of partitiond, power-allocation scheme proposed in Section Ill. The figure

depicts the averagé&?-norm of the vector of local transmit
owers versus the maximum distortion tar@gt for different

The optimal codebook is designed offline by the FC using the

above two conditions. It can be shown that the average Cogglues of the number of sensors in the netwdtk The

book distortion defined in (16) will monotonically decreasg < 9Y efficiency for the case of equal power allocation, i.e

through the iterative usage of the Centroid Condition ared ”?;f ;"g'gtgmot;agtsrm; plgz:verisrz?:(l)resdhégvr?CvCiﬁ]V?jégz dgll\i/rfen
Nearest-Neighbor Condition [9, Chapter 11]. Details of the g ’

. ) . . s a benchmark. As it can be seen in this figure, the energy
codebook-design process are summarized in Algorithm I& Th .. . .
. . . efficiency of the network improves as the number of sensors
optimal codebook is stored in the FC and all sensors.

increases. This is due to the fact that when there are fewer
Upon observing a realization of the channel fading vectsensors in the network, each one of them needs to transmit
g, the FC finds its associated optimal power-allocation wvectwith a higher power in order for the FC to achieve the same
a®PT using (15) to calculate each one of its elements. It thestimation distortion. Note that in our analysis, there @& n
identifies the closest codeword in the optimal codeb@bk constraint on the total transmit power consumed in the entir
to a®"T with respect to the distance metric defined in (17hetwork. Another observation from Fig. 2 is that the progbse
Finally, the FC broadcasts the-bit index of that codeword adaptive power allocation scheme achieves a higher energy
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Fig. 2: Average energy efficiency versus the target estimald- 3: Average energy efficiency of the proposed power

tion distortionD, for the proposed adaptive power-allocatiofllocation scheme versus the target estimation distorfion

there are = 50 sensors in the network.
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