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Abstract—This paper investigates the problem of adaptive
power allocation for distributed best linear unbiased estimation
(BLUE) of a random parameter at the fusion center (FC) of
a wireless sensor network (WSN). An optimal power-allocation
scheme is proposed that minimizes theL2-norm of the vector
of local transmit powers, given a maximum variance for the
BLUE estimator. This scheme results in the increased lifetime
of the WSN compared to similar approaches that are based
on the minimization of the sum of the local transmit powers.
The limitation of the proposed optimal power-allocation scheme
is that it requires the feedback of the instantaneous channel
state information (CSI) from the FC to local sensors, which is
not practical in most applications of large-scale WSNs. In this
paper, a limited-feedback strategy is proposed that eliminates
this requirement by designing an optimal codebook for the FC
using the generalized Lloyd algorithm with modified distortion
metrics. Each sensor amplifies its analog noisy observationusing
a quantized version of its optimal amplification gain, which is
received by the FC and used to estimate the unknown parameter.

Index Terms—Limited feedback, best linear unbiased estimator
(BLUE), generalized Lloyd algorithm, L

2-norm, power alloca-
tion, distributed estimation, parameter estimation, fusion center,
wireless sensor networks.

I. I NTRODUCTION

Distributed estimation is a technology that enables a wide
range of wireless sensor network (WSN) applications, such as
event detection, classification, and object tracking [1–6]. In a
WSN performing distributed estimation, the first step is for
the spatially distributed sensors to locally process theirnoisy
observations that are correlated with an unknown parameter
to be estimated. Each sensor either transmits its analog local
observations using an amplify-and-forward strategy [1–4]or
sends a quantized version of its local observations to the fusion
center (FC) [4–6]. In this paper, we will consider the former
approach due to its simplicity and practical feasibility and will
concentrate on the best linear unbiased estimation (BLUE) of
an unknown random parameter at the FC. In order to find the
BLUE estimator of the unknown parameter, the FC combines
linearly processed, noisy observations of local sensors received
through orthogonal channels corrupted by fading and additive
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Gaussian noise. This paper will address one of the main issues
in the case of analog amplify-and-forward local processing,
which is finding the optimal local amplification gains [1–4].
The values of these gains set the instantaneous transmit power
of sensors; therefore, we refer to their determination as the
optimal power allocation to sensors.

Cui et al. [2] have proposed an optimal power-allocation
scheme to minimize the sum of the local transmit powers,
given a maximum estimation distortion defined as the variance
of the BLUE estimator of a random scalar parameter at the
FC of a WSN. Although optimal with respect to the total
transmit power in the network, this strategy could result in
assigning very high transmit powers to sensors with high
quality observations and less noisy channels, while assign-
ing zero power to other sensors. The direct consequence of
such power allocation is that some sensors will die quickly,
which could in turn result in a network partition, while the
remaining sensors have either low observation quality or
too noisy communication channels. In order to alleviate this
drawback, we propose an adaptive power-allocation strategy
that minimizes theL2-norm of the local transmit power vector,
given a maximum estimation distortion as defined above. This
approach prevents the assignment of high transmit powers to
sensors by putting a higher penalty on them, which in itself
reduces the chances of those sensors dying and the network
becoming partitioned. Furthermore, the total transmit power
used in the entire network still stays bounded.

As it will be seen in the next sections, the optimal local am-
plification gains found based on the proposed power-allocation
scheme depend on the instantaneous fading coefficients of
the channels between the sensors and FC, as is the case
in [2]. Therefore, the FC must feed the exact channel fading
gains back to sensors through infinite-rate, error-free links.
This requirement is not practical in most WSN applications,
especially when the number of sensors in the network is large.
In the remainder of this paper, we propose alimited-feedback
strategy to alleviate this requirement. The proposed approach
is based on designing an optimal codebook using the general-
ized Lloyd algorithm with modified distortion functions, which
is used to quantize the space of the optimal power-allocation
vectors used by the sensors to set their local amplification
gains. In our previous work [7], we have addressed the same
drawback of the power-allocation scheme proposed in [2].

http://arxiv.org/abs/1309.3674v1


Fig. 1: System model of a WSN in which the FC finds an
estimate ofθ.

In summary, the main contributions of this paper are as
follows: An adaptive power-allocation scheme is proposed to
minimize theL2-norm of the local transmit power vector,
given a maximum estimation distortion at the FC. This scheme
alleviates the problem of assigning very high transmit powers
to some sensors, while turning off the other ones. Furthermore,
a limited-feedback strategy is proposed to quantize the vector
space of the optimal local amplification gains. Appropriate
distortion functions are defined for the application of the
generalized Lloyd algorithm in the domain of adaptive power
allocation for distributed estimation.

The rest of this paper is organized as follows: In Section II,
the system model of the WSN under study is described.
The proposed adaptive power-allocation strategy is derived
in Section III. A brief discussion on the motivation for and
implementation of the limited feedback for the proposed
power-allocation scheme is presented in Section IV. Details of
the implementation of the proposed limited-feedback scheme
are discussed in Section V. Section VI provides the numerical
results to show the applicability of the proposed schemes.
Finally, the paper is concluded in Section VII.

II. SYSTEM MODEL

Consider a WSN composed ofK spatially distributed
sensors, as depicted in Fig. 1. The goal of the WSN is to
reliably estimate an unknown random parameterθ at its fusion
center (FC) using linearly amplified versions of local noisy
observations received through parallel (orthogonal) coherent
channels corrupted by fading and additive Gaussian noise. An
example of the unknown parameter to be estimated can be the
intensity of the signal broadcast by an energy-emitting source
and sensed by a set of locally distributed signal detectors.
This estimated variable along with the propagation model of
the given signal in the observation environment could then be
used to estimate the location of the source. It is assumed that
θ has zero mean and unit power, and is otherwise unknown.

Suppose that the local noisy observation at each sensor is a
linear function of the unknown random parameter as

xi = hiθ + ni, i = 1, 2, . . . ,K, (1)

wherehi is the fixed local observation gain of sensori, known

at the sensor and FC, andni is the spatially independent
and identically distributed (i.i.d.) additive observation noise
with zero mean and known varianceσ2

o . Note that no further
assumption is made on the distribution of the random param-
eter to be estimated and that of the observation noise. We
define theobservation signal-to-noise ratio (SNR) at sensori
asβi =

|hi|
2

σ2
o

, where|·| denotes the absolute-value operation.
We assume that there is no inter-sensor communication

and/or collaboration among spatially distributed sensors. Each
sensor uses anamplify-and-forward scheme to amplify its local
noisy observation before sending it to the FC as

zi = aixi = aihiθ + aini, i = 1, 2, . . . ,K, (2)

wherezi is the signal transmitted from sensori to the FC and
ai is the local amplification gain at sensori. Note that the
instantaneous transmit power of sensori can be found as

Pi = a2i

(
|hi|

2
+ σ2

o

)
= a2iσ

2
o (1 + βi) . (3)

As it can be seen in (3), the value of the local amplification
gain at each sensor determines the instantaneous transmit
power allocated to that sensor. Therefore, we will call any
strategy that assigns a set of local amplification gains to
sensors apower-allocation scheme.

All locally processed observations are transmitted to the FC
through orthogonal fading channels. The received signal from
sensori at the FC can be described as

yi = gizi + wi, i = 1, 2, . . . ,K, (4)

wheregi is the multiplicative fading coefficient of the channel
between sensori and the FC, andwi is the spatially indepen-
dent and identically distributed additive Gaussian noise with
zero mean and varianceσ2

c . We assume that the FC can reliably
estimate the fading coefficient of the channel between each
sensor and itself. Note that in the above model, we have also
assumed that each sensor is synchronized with the FC. We
define thechannel signal-to-noise ratio of the signal received
from sensori asγi =

|gi|
2

σ2
c

.

III. O PTIMAL POWER ALLOCATION WITH M INIMAL

L2-NORM OF TRANSMIT-POWER VECTOR

Given a power-allocation scheme and a realization of the
fading gains, the FC combines the set of received signals from
different sensors to find thebest linear unbiased estimator
(BLUE) for the unknown parameterθ as [8, Chapter 6]

θ̂ =

(
K∑

i=1

h2
i a

2
i g

2
i

a2i g
2
i σ

2
o + σ2

c

)−1
K∑

i=1

hiaigiyi

a2i g
2
i σ

2
o + σ2

c
, (5)

where the corresponding estimator variance can be found as

Var
(
θ̂
∣∣a,g

)
=

(
K∑

i=1

h2
i a

2
i g

2
i

a2i g
2
i σ

2
o + σ2

c

)−1

=

(
K∑

i=1

βiγia
2
iσ

2
o

1 + γia
2
iσ

2
o

)−1

, (6)



in which a , [a1, a2, . . . , aK ]
T andg , [g1, g2, . . . , gK ]

T are
column vectors containing the set of local amplification gains
ai and fading coefficients of the channelsgi, respectively.

A goal of this paper is to find the optimal local amplification
gains or equivalently, the optimal power-allocation scheme that
minimizes theL2-norm of the vector of local transmit powers
defined asP , [P1, P2, . . . , PK ]

T , given a constraint on the
variance of the estimate as defined in (6). This objective can
be formulated as the followingconvex optimization problem:

minimize
{Pi}

K
i=1

(
K∑

i=1

P 2
i

) 1

2

subject to Var
(
θ̂
∣∣a,g

)
≤ D0

(7)

By replacingPi and Var
(
θ̂
∣∣a,g

)
from Equations (3) and (6),

respectively, Equation (7) is converted to the following form,
whose optimization variables are the local amplification gains:

minimize
{ai}

K
i=1

K∑

i=1

[
ai

2σ2
o (1 + βi)

]2

subject to
K∑

i=1

βiγia
2
iσ

2
o

1 + γia
2
iσ

2
o
≥

1

D0

(8)

Let bi be defined asbi ,
βiγia

2

iσ
2

o
1+γia

2

i
σ2

o
. The above constrained

optimization problem could be re-written as

minimize
{bi}

K
i=1

K∑

i=1

(
bi (1 + βi)

(βi − bi) γiσ2
o

)2

subject to
K∑

i=1

bi ≥
1

D0

AND 0 ≤ bi < βi

(9)

which is a convex optimization problem in terms ofbi. The
Lagrangian function for this optimization problem is

L (b, λ0,µ) =
K∑

i=1

(
bi (1 + βi)

(βi − bi) γiσ2
o

)2

+ λ0

(
1

D0

−
K∑

i=1

bi

)
−

K∑

i=1

µibi, (10)

whereb , [b1, b2, . . . , bK ]
T is the column vector of target

optimized variables andµ , [µ1, µ2, . . . , µK ]
T is the La-

grangian multiplier vector. The Karush-Kuhn-Tucker (KKT)
conditions for this optimization problem can be written as

∂L (b, λ0,µ)

∂bi
=

2βibi (1 + βi)
2

(βi − bi)
3
γ2
i σ

4
o

− λ0 − µi = 0, (11a)

K∑

i=1

bi =
1

D0

, (11b)

µibi = 0, i = 1, 2, . . . ,K, (11c)

µi ≥ 0 and bi ≥ 0, i = 1, 2, . . . ,K. (11d)

It can be shown that the cubic equation defined in (11a) only

ALGORITHM I: The water-filling-based iterative process to find the
unique values for the number of active sensorsK1 and the constantλ0.

Require: K, {βi}
K
i=1

, and{γi}
K
i=1

.
1. Initialization
2. for i = 1, 2, . . . , K do
3. δi ←−

1+βi
βiγi

4. end for
5. Sort the sensors based on the ascending values ofδi so thatδ1 ≤

δ2 ≤ · · · ≤ δK .
6. K1 ←− K
7. EndInitialization
8. repeat
9. Using the given value forK1, find the value ofλ0 by solving (14).

10. Replace the value ofλ0 in Eq. (12) and find the new values of
bi, i = 1, 2, . . . ,K.

11. K1 ←− K1 − 1

12. until The values ofbi do not change from the previous iteration. In
particular,bi > 0 for all i ≤ K1, andbi = 0 for all i > K1.

13. return K1 andλ0.

has a unique real root, which is in the interval0 < bi < βi as

bi = βi


1− 3

√
βi δ

2
i Ti

λ0

(
1−

2

3
3

√
βi δ

2
i

λ0T
2
i

)

+

, (12)

whereδi ,
1+βi

βiγi
, i = 1, 2, . . . ,K, Ti is defined as

Ti = 1 +

√

1 +
8βi δ

2
i

27λ0

, (13)

and the operator[·]+ is defined such that[x]+ = x if x >

0, and [x]
+

= 0 if x ≤ 0. Note that in deriving (12), the
complementary slackness requirement (11c) is used based on
whichµi = 0 whenbi > 0, andbi = 0 whenµi > 0. It should
also be noted that as the observation SNRβi or channel SNR
γi decreases, the value ofδi increases, which in turn increases
the value ofTi and decreases the value ofbi. Therefore, if
the sensors are sorted so thatδ1 ≤ δ2 ≤ · · · ≤ δK , only
the first K1 sensors with the least values ofδi will have a
positive value forbi, and bi = 0 for all i > K1. The values
of the number of active sensorsK1 for which bi > 0, and the
equality-constraint Lagrangian multiplierλ0 are unique and
can be found by replacingbi from (12) into (11b) to derive
the following relationship between them:

K1∑

i=1

βi
3

√
βi δ

2
i Ti

λ0

(
1−

2

3
3

√
βi δ

2
i

λ0T
2
i

)
=

K1∑

i=1

βi −
1

D0

. (14)

The values ofK1 and λ0 can be found through the water-
filling-based iterative process summarized in Algorithm I.It
can be shown that the solution of the above iterative algorithm
in terms ofK1 andλ0 always exists and is unique.

Having found bi through the above process, the local
amplification gainai can be found as follows:

a2i =





1

γiσ2
o




3

√

λ0

βi δ2
i
Ti

1− 2

3

3

√

βi δ2
i

λ0T2

i

− 1


 , i ≤ K1

0, i > K1

. (15)

The above power-allocation strategy assigns a zero amplifica-



tion gain or equivalently, zero transmit power to the sensors for
which δi is large, because either the sensor’s observation SNR
or its channel SNR is too low. The assigned instantaneous
transmit power to other sensors is non-zero and based on
the value of δi for each sensor. Note that based on the
above power-allocation scheme, there is a unique one-to-one
mapping betweeng anda that could be denoted asa = f (g).

IV. L IMITED FEEDBACK FORPOWER ALLOCATION

The optimal power-allocation scheme proposed in the pre-
vious section is based on the assumption that the complete
forward channel state information (CSI) is available at local
sensors. In other words, Equation (15) shows that the optimal
value of the local amplification gain at sensori is a function of
its channel SNRγi, which in itself is a function of the instan-
taneous fading coefficient of the channel between sensori and
the FC. Therefore, in order to achieve the minimumL2-norm
of the vector of local transmit powers, the FC must feed the
instantaneous amplification gainai back to each sensor.1 This
requirement is not practical in most applications, especially in
large-scale WSNs, since the feedback information is typically
transmitted through finite-ratedigital feedback links.

In the rest of this paper, we propose a limited-feedback
strategy to alleviate the above-mentioned requirement for
infinite-rate digital feedback links from the FC to the local
sensors. For each channel realization, the FC first finds the
optimal power-allocation scheme using the approach proposed
in the previous section. Note that the FC has access to the
perfectbackward CSI; i.e., the instantaneous fading gain of
the channel between each sensor and itself. Therefore, it can
find theexact power-allocation strategy of the entire network
based on (15), given any channel realization. In the next step,
the FC sends back theindex of the quantized version of the
optimized power-allocation vector to all sensors.

In the limited-feedback strategy summarized above, the FC
and local sensors must agree on acodebook of the local
amplification gains or equivalently, a codebook of possible
power-allocation schemes. The optimal codebook can be de-
signed offline by quantizing the space of the optimized power-
allocation vectors using thegeneralized Lloyd algorithm [9]
with modified distortion metrics. LetL be the number of
feedback bits that the FC uses to quantize the space of the
optimal local power-allocation vectors into2L disjoint regions.
Note thatL is the total number of feedback bits broadcast
by the FC, andnot the number of bits fed back to each
sensor. A codeword is chosen in each quantization region.
The length of each codeword isK, and its ith entry is a
real-valued number representing a quantized version of the

1Note that instead of feedingai back to each sensor, the FC could send
back the fading coefficient of the channel between each sensor and the FC.
However, the knowledge ofgi alone is not enough for sensori to compute the
optimal value of its local amplification gainai. The sensor must also know
whether it needs to transmit or stay silent. There are two ways that the extra
data can be fed back to the sensors: This information could beencoded in an
extra one-bit command instructing each sensor to transmit or stay silent, or the
sensor could listen for the entire vector ofg sent by the FC over a broadcast
channel. Sending back each value ofai avoids this extra communication.

optimal local amplification gain for sensori. The proposed
quantization scheme could then be thought of as a mapping
from the space of channel state information to a discrete set
of 2L length-K real-valued power-allocation vectors. Details
of this quantization method are described in the next section.

V. CODEBOOK DESIGN USING LLOYD ALGORITHM

Let C = [a1 a2 · · · a2L ]
T be a2L ×K codebook matrix

of the optimal local amplification gains, where[C]ℓ,i denotes
its element in rowℓ and columni as the optimal gain of
sensori in codewordℓ. Note that eachaℓ, ℓ = 1, 2, . . . , 2L

is associated with a realization of the fading coefficients of
the channels between local sensors and the FC. We apply the
generalized Lloyd algorithm with modified distortion metrics
to solve the problem of vector quantization in the space of the
optimal local amplification gains. This algorithm designs the
optimal codebookC in an iterative process, as explained in
the following discussions.

In order to implement the generalized Lloyd algorithm, a
distortion metric must be defined for the codebook and for
each codeword. LetDB (C) denote the average distortion for
codebookC defined as

DB (C) , Ea

[
min

ℓ∈{1,2,...,2L}
DW (aℓ, a)

]
, (16)

whereEa [·] denotes the expectation operation with respect to
the optimal vector of local amplification gains andDW (aℓ, a)
represents the distance between codewordaℓ and the optimal
power-allocation vectora, defined as

DW (aℓ, a) , |J (aℓ)− J (a)| , (17)

whereJ (·) is the optimization cost of the power-allocation
vector. LetPℓ andP be the vectors of local transmit powers,
when the vector of local amplification gains isaℓ and a,
respectively. The cost functionJ (a) is defined as theL2-norm
of the corresponding vector of transmit powersP, i.e.,

J (a) =

(
K∑

i=1

P 2
i

) 1

2

=

(
K∑

i=1

[
a2iσ

2
o (1 + βi)

]2
) 1

2

. (18)

Let A ⊆ R
K+ be theK-dimensional vector space of the

optimal local amplification gains, whose entries are chosen
from the set of real-valued non-negative numbers. Given the
distortion function for the codebookC and that for each one of
its codewords defined in Equations (16) and (17), respectively,
the two main conditions of the generalized Lloyd algorithm
could be reformulated for our vector-quantization problemas
follows [9, Chapter 11]:

Nearest–Neighbor Condition: This condition finds the opti-
mal Voronoi cells of the vector space to be quantized,
given a fixed codebook. Based on this condition, given a
codebookC, the spaceA of optimized power-allocation
vectors is divided into2L disjoint quantization regions
(or Voronoi cells) with theℓth region represented by
codewordaℓ ∈ C and defined as

Aℓ = {a ∈ A : DW (aℓ, a) ≤ DW (ak, a) , ∀k 6= ℓ} . (19)



ALGORITHM II: The process of optimal codebook design based on the
generalized Lloyd algorithm with modified distortion functions.

Require: K andL.
Require: Fading model of the channel between local sensors and the FC.
Require: M . ⊲ M is the number oftraining vectors in spaceA.
Require: ǫ. ⊲ ǫ is the distortion threshold to stop the iterations.
1. Initialization
2. Gs ←− A set ofM length-K vectors of channel-fading realiza-

tions based on the given fading model of the channels between
local sensors and the FC. ⊲ M ≫ 2L.

3. As ←− The set of optimal local power-allocation vectors asso-
ciated with the channel fading vectors inGs, found by applying
Eq. (15). ⊲ As is the set of training vectors, andAs ⊆ A.

4.
{

a0
ℓ

}2
L

ℓ=1
←− Randomly select 2L optimal power-allocation

vectors from the setAs as the initial set of codewords.

5. C0 ←−
[

a0
1

a0
2
· · · a0

2L

]T
⊲ C0 is the initial codebook.

6. NewCost←− DB
(

C0
)

and j ←− 0.
⊲ The average distortion of codebook is found using Eq. (16).

7. EndInitialization
8. repeat
9. j ←− j + 1 and OldCost←− NewCost.

10. Given codebookCj−1, optimally partition the setAs into 2L

disjoint subsets based on theNearest-Neighbor Condition using
Eq. (19). Denote the resulted optimal partitions byAj−1

ℓ
, ℓ =

1, 2, . . . , 2L.
11. for all Aj−1

ℓ
, ℓ = 1, 2, . . . , 2L do

12. a
j
ℓ
←− Optimal codeword associated with partitionAj−1

ℓ
found based on theCentroid Condition using Eq. (20).

13. end for
14. Cj ←−

[

a
j
1

a
j
2
· · · a

j

2L

]T
⊲ Cj is the new codebook.

15. NewCost←− DB
(

Cj
)

16. until OldCost− NewCost≤ ǫ
17. return COPT ←− Cj .

Centroid Condition: This condition finds the optimal code-
book, given a specific partitioning of the vector space
to be quantized. Based on this condition, given a spe-
cific partitioning of the space of the optimized power-
allocation vectors{A1,A2, . . . ,A2L}, the optimal code-
word associated with each Voronoi cellAℓ ⊆ A is the
centroid of that cell with respect to the distance function
defined in (17) as

a⋆ℓ = arg min
aℓ∈Aℓ

Ea∈Aℓ
[DW (aℓ, a)] , (20)

where the expectation operation is performed over the set
of members of partitionAℓ

The optimal codebook is designed offline by the FC using the
above two conditions. It can be shown that the average code-
book distortion defined in (16) will monotonically decrease
through the iterative usage of the Centroid Condition and the
Nearest-Neighbor Condition [9, Chapter 11]. Details of the
codebook-design process are summarized in Algorithm II. The
optimal codebook is stored in the FC and all sensors.

Upon observing a realization of the channel fading vector
g, the FC finds its associated optimal power-allocation vector
aOPT, using (15) to calculate each one of its elements. It then
identifies the closest codeword in the optimal codebookC

to aOPT with respect to the distance metric defined in (17).
Finally, the FC broadcasts theL-bit index of that codeword

over an error-free digital feedback channel to all sensors as

ℓ = arg min
k∈{1,2,...,2L},ak∈C

DW
(
ak, a

OPT
)
. (21)

Upon reception of the indexℓ, each sensori knows its
quantized local amplification gain or equivalently, its power-
allocation weight as[C]ℓ,i, where ℓ and i are the row and
column indexes of the codebookC, respectively.

VI. N UMERICAL RESULTS

In this section, numerical results are provided to assess the
performance of the optimal power-allocation scheme proposed
in Section III and to verify the effectiveness of the limited-
feedback strategy proposed in Section V in achieving the
energy efficiency close to that of a WSN with full CSI
feedback. In this paper, the energy efficiency of a power-
allocation scheme is defined as theL2-norm of the vector of
local transmit powers formulated in (18).

In our simulations, the local observation gains are randomly
chosen from a Gaussian distribution with unit mean and
variance 0.09. In all simulations, the average power ofhi

across all sensors is set to be 1.2. The observation and channel
noise variances are set toσ2

o = 10 dBm andσ2
c = −90 dBm,

respectively. The following fading model is considered forthe
channels between local sensors and the FC:

gi = η0

(
di

d0

)−α

fi, i = 1, 2, . . . ,K, (22)

where η0 = −30 dB is the nominal fading gain at the
reference distance set to bed0 = 1 meter,di is the distance
between sensori and the FC (in meters),α = 2 is the
path-loss exponent, andfi is the independent and identically
distributed (i.i.d.) Rayleigh-fading random variable with unit
variance. The distance between sensors and the FC is uni-
formly distributed between 50 and 150 meters. The size of the
training set in the optimal codebook-design process described
in Algorithm II is set to M = 5, 000, and the codebook-
distortion threshold for stopping the iterative algorithmis
assumed to beǫ = 10−4. The results are obtained by averaging
over 10,000 Monte Carlo simulations.

Figure 2 illustrates the energy efficiency of the adaptive
power-allocation scheme proposed in Section III. The figure
depicts the averageL2-norm of the vector of local transmit
powers versus the maximum distortion targetD0 for different
values of the number of sensors in the networkK. The
energy efficiency for the case of equal power allocation, i.e.,
the minimum transmit power required to achieve the given
target distortion at the FC, is also shown with dotted line
as a benchmark. As it can be seen in this figure, the energy
efficiency of the network improves as the number of sensors
increases. This is due to the fact that when there are fewer
sensors in the network, each one of them needs to transmit
with a higher power in order for the FC to achieve the same
estimation distortion. Note that in our analysis, there is no
constraint on the total transmit power consumed in the entire
network. Another observation from Fig. 2 is that the proposed
adaptive power allocation scheme achieves a higher energy
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Fig. 2: Average energy efficiency versus the target estima-
tion distortionD0 for the proposed adaptive power-allocation
scheme and the equal power-allocation strategy.

efficiency than the equal power-allocation strategy. As the
maximum distortion constraint at the FC is relaxed, i.e., the
value of D0 is increased, the gain in the energy efficiency
decreases slightly.

Figure 3 illustrates the effect ofL as the number of feedback
bits from the FC to local sensors on the energy efficiency of the
proposed power-allocation scheme. It should be emphasized
thatL is the total number of feedback bits broadcast by the FC,
and not the number of bits fed back to each sensor. This figure
depicts the averageL2-norm of the vector of local transmit
powers versus the maximum distortion targetD0 for different
values of the number of feedback bitsL, when there areK =
50 sensors in the network. As it can be seen in this figure, the
energy efficiency of the proposed adaptive power allocation
with limited feedback is close to that with full feedback, and
gets closer to it as the number of feedback bits is increased.

VII. C ONCLUSIONS

In this paper, an adaptive power-allocation scheme was
proposed that minimizes theL2-norm of the vector of local
transmit powers in a WSN, given a maximum variance for the
BLUE estimator of a random scalar parameter at the FC. This
approach results in an increase in the lifetime of the network
at the expense of a potential slight increase in the sum total
transmit power of all sensors. The next contribution of this
paper was to propose a limited-feedback strategy to eliminate
the requirement of infinite-rate feedback of the instantaneous
forward CSI from the FC to local sensors. This scheme
designs an optimal codebook by quantizing the vector space
of the optimal local amplification gains using the generalized
Lloyd algorithm with modified distortion functions. Numerical
results showed that the proposed adaptive power-allocation
scheme achieves a high energy efficiency, and that even with a
limited number of feedback bits (small codebook), its average
energy efficiency based on the proposed limited-feedback
strategy is close to that of a WSN with full CSI feedback.
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Fig. 3: Average energy efficiency of the proposed power
allocation scheme versus the target estimation distortionD0

for different values of the number of feedback bitsL, when
there areK = 50 sensors in the network.
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