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Abstract—Mobile micro-cloud is an emerging technology in
distributed computing, which is aimed at providing seamless
computing/data access to the edge of the network when a
centralized service may suffer from poor connectivity and long
latency. Different from the traditional cloud, a mobile micro-cloud
is smaller and deployed closer to users, typically attached to a
cellular basestation or wireless network access point. Due to the
relatively small coverage area of each basestation or access point,
when a user moves across areas covered by different basestations
or access points which are attached to different micro-clouds,
issues of service performance and service migration become
important. In this paper, we consider such migration issues. We
model the general problem as a Markov decision process (MDP),
and show that, in the special case where the mobile user follows
a one-dimensional asymmetric random walk mobility model, the
optimal policy for service migration is a threshold policy. We
obtain the analytical solution for the cost resulting from arbitrary
thresholds, and then propose an algorithm for finding the optimal
thresholds. The proposed algorithm is more efficient than standard
mechanisms for solving MDPs.

Index Terms—Cloud computing, Markov decision process
(MDP), mobile micro-cloud, mobility, service migration, wireless
networks

I. INTRODUCTION

Cloud technologies have been developing successfully in the
past decade, which enable the centralization of computing and
data resources so that they can be accessed in an on-demand ba-
sis by different end users. Traditionally, clouds are centralized,
in the sense that services are provided by large data-centers that
may be located far away from the user. A user may suffer from
poor connectivity and long latency when it connects to such a
centralized service. In recent years, efforts have been made to
distribute the cloud closer to users, to provide faster access and
higher reliability to end users in a particular geographical area.
A notable concept in this regard is the mobile micro-cloud,
where a small cloud consisting of a small set of servers is
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Figure 1. Application scenario with mobile micro-cloud.

attached directly to the wireless communication infrastructure
(e.g., a cellular basestation or wireless access point) to provide
service to users within its coverage. Applications of the mobile
micro-cloud include data and computation offloading for mobile
devices [1], [2], which is a complement for the relatively low
computational and data storage capacity of mobile users. It is
also beneficial for scenarios requiring high robustness or high
data-processing capability closer to the user, such as in hostile
environments [3] or for vehicular networks [4]. There are a few
other concepts which are similar to that of the mobile micro-
cloud, including edge computing [5], Cloudlet [3], and Follow
Me Cloud [6]. We use the term mobile micro-cloud throughout
this paper.

A significant issue in the mobile micro-cloud is service
migration caused by the mobility of users. Because different
micro-clouds are attached to different basestations or access
points, a decision needs to be made on whether and where
to migrate the service, when a user moves outside the service
area of a micro-cloud that is providing its service. Consider
the scenario as shown in Fig. 1, which resembles the case
where a micro-cloud is connected to a basestation that covers a
particular area, and these micro-clouds are also interconnected
with each other via a backhaul network. When a mobile user
moves from one area to another area, we can either continue
to run the service on the micro-cloud for the previous area,
and transmit data to/from the user via the backhaul network,
or we can migrate the service to the micro-cloud responsible
for the new area. In both cases, a cost is incurred; there is a
data transmission cost for the first case, and a migration cost
for the second case.
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In the literature, only a few papers have studied the impact
of mobility and its relationship to service migration for mobile
micro-clouds. In [7], analytical results on various performance
factors of the mobile micro-cloud are studied, by assuming a
symmetric 2-dimensional (2-D) random walk mobility model.
A service migration procedure based on Markov decision
process (MDP) for 1-D random walk is studied in [8]. It mainly
focuses on formulating the problem with MDP, which can then
be solved with standard techniques for solving MDPs.

In this paper, similarly to [8], we consider an MDP formu-
lation of the migration problem. In contrast to [8], we propose
an optimal threshold policy to solve for the optimal action
of the MDP, which is more efficient than standard solution
techniques. A threshold policy means that we always migrate
the service for a user from one micro-cloud to another when
the user is in states bounded by a particular set of thresholds,
and not migrate otherwise. We first prove the existence of an
optimal threshold policy and then propose an algorithm with
polynomial time-complexity for finding the optimal thresholds.
The analysis in this paper can also help us gain new insights
into the migration problem, which set the foundation for more
complicated scenarios for further study in the future.

The remainder of this paper is organized as follows. In
Section II, we describe the problem formulation. Section III
shows that an optimal threshold policy exists and proposes an
algorithm to obtain the optimal thresholds. Simulation results
are shown in Section IV. Section V draws conclusions.

II. PROBLEM FORMULATION

We consider a 1-D region partitioned into a discrete set of
areas, each of which is served by a micro-cloud, as shown
in Fig. 1. Such a scenario models user mobility on roads, for
instance. A time-slotted system (Fig. 2) is considered, which
can be viewed as a sampled version of a continuous-time
system, where the sampling can either be equally spaced over
time or occur right after a handoff instance.

Mobile users are assumed to follow a 1-D asymmetric
random walk mobility model. In every new timeslot, a node
moves with probability p (or q) to the area that is on the right
(or left) of its previous area, it stays in the same area with
probability 1 − p − q. If the system is sampled at handoff
instances, then 1 − p − q = 0, but we consider the general
case with 0 ≤ 1 − p − q ≤ 1. Obviously, this mobility model
can be described as a Markov chain. We only focus on a single
mobile user in our analysis; equivalently, we assume that there
is no correlation in the service or mobility among different
users.

The state of the user is defined as the offset between the mo-
bile user location and the location of the micro-cloud running
the service at the beginning of a slot, before possible service
migration, i.e., the state in slot t is defined as st = ut − ht,
where ut is the location (index of area) of the mobile user, and
ht the location of the micro-cloud hosting the service. Note
that st can be zero, positive, or negative. At the beginning of
each timeslot, the current state is observed, and the decision
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Figure 2. Timing of the proposed mechanism.

on whether to migrate the service is made. If migration is
necessary, it happens right after the state observation, i.e., at
the beginning of the timeslot. We assume that the time taken
for migration is negligible compared with the length of a slot.

We study whether and where to migrate the service when the
mobile user has moved from one area to another. The cost in a
single timeslot Ca(s) is defined as the cost under state s when
performing action a, where a represents a migration decision
for the service such as no migration or migration to a specified
micro-cloud. The goal is to minimize the discounted sum cost
over time. Specifically, under the current state s0, we would
like to find a policy π that maps each possible state s to an
action a = π(s) such that the expected long-term discounted
sum cost is minimized, i.e.,

V (s0) = min
π

E

[ ∞∑
t=0

γtCπ(st) (st)

∣∣∣∣∣s0
]

(1)

where E [·|·] denotes the conditional expectation, and 0 < γ < 1
is a discount factor.

Because we consider a scenario where all micro-clouds are
connected via the backhaul (as shown in Fig. 1), and the
backhaul is regarded as a central entity (which resembles
the case for cellular networks, for example), we consider the
following one-timeslot cost function for taking action a in state
s in this paper:

Ca(s) =


0, if no migration or data transmission
β, if only data transmission
1, if only migration
β + 1, if both migration and data transmission

(2)
Equation (2) is explained as follows. If the action a under state
s causes no migration or data transmission (e.g., if the node and
the micro-cloud hosting the service are in the same location,
i.e., s = 0, and we do not migrate the service to another
location), we do not need to communicate via the backhaul
network, and the cost is zero. A non-zero cost is incurred when
the node and the micro-cloud hosting the service are in different
locations. In this case, if we do not migrate to the current node
location at the beginning of the timeslot, the data between the
micro-cloud and mobile user need to be transmitted via the
backhaul network. This data transmission incurs a cost of β.
When we perform migration, we need resources to support
migration. The migration cost is assumed to be 1, i.e., the
cost Ca(s) is normalized by the migration cost. Finally, if
both migration and data transmission occur, in which case we
migrate to a location that is different from the current node



location, the total cost is β + 1.

Lemma 1. Migrating to locations other than the current
location of the mobile user is not optimal.

Proof: We consider an arbitrary trajectory of the mobile
user. Denote tu as the first timeslot (starting from the current
timeslot) that the mobile user is in the location indexed u.
Assume that the user is currently in location u0, then the current
timeslot is tu0

.

Case 1 – migrating to location u 6= u0 at tu0
: This incurs

a cost of β + 1 at timeslot tu0
, because tu > tu0

as a node
cannot be in two different locations at the same time. Define a
variable tm ∈ [tu0

+ 1, tu] being the largest timeslot index such
that we do not perform further migration at timeslots within the
interval [tu0 + 1, tm − 1], which means that either we perform
migration at tm or we have tm = tu. Then, we have a cost of
β at each of the timeslots t ∈ [tu0

+ 1, tm − 1].

Case 2 – no migration at tu0
: In this case, the cost at each

timeslot t ∈ [tu0
, tm − 1] is either β (if st = ut − ht 6= 0) or

zero (if st = 0). For the timeslot tm, we construct the following
policy. If tm < tu, we migrate to the same location as in Case
1, which means that the cost at tm cannot be larger than that
in Case 1. If tm = tu, we migrate to u, which can increase
the cost at tm by at most one unit compared with the cost in
Case 1. With the above policy, the costs at timeslots t > tm in
Cases 1 and 2 are the same.

The cost at tu0
in Case 1 is one unit larger than that in Case 2,

and the cost at tm in Case 1 is at most one unit smaller than that
in Case 2. Because 0 < γ < 1, Case 2 brings lower discounted
sum cost than Case 1. Therefore, there exists a better policy
than migrating to u 6= u0 at tu0

. This holds for any movement
pattern of the mobile user, and it ensures that the cost in any
timeslot is either 0, 1, or β.

From Lemma 1, we only have two candidate actions, which
are migrating to the current user location or not migrating.
This simplifies the action space to two actions: a migration
action, denoted as a = 1; and a no-migration action, denoted
as a = 0. In practice, there is usually a limit on the maximum
allowable distance between the mobile user and the micro-
cloud hosting its service for the service to remain usable. We
model this limitation by a maximum negative offset M and a
maximum positive offset N (where M < 0, N > 0), such
that the service must be migrated (a ≡ 1) when the node
enters state M or N . This implies that, although the node can
move in an unbounded space, the state space of our MDP for
service control is finite. The overall transition diagram of the
resulting MDP is illustrated in Fig. 3. Note that because each
state transition is the concatenated effect of (possible) migration
and node movement, and the states are defined as the offset
between node and host location, the next state after taking a
migration action is either −1, 0, or 1.

With the above considerations, the cost function in (2) can

be modified to the following:

Ca(s) =


0, if s = 0

β, if s 6= 0,M < s < N, a = 0

1, if s 6= 0,M ≤ s ≤ N, a = 1

(3)

With the one-timeslot cost defined as in (3), we obtain the
following Bellman’s equations for the discounted sum cost
when respectively taking action a = 0 and a = 1:

V (s|a = 0) =

{
γ
∑1
j=−1 p0jV (j), if s = 0

β + γ
∑s+1
j=s−1 psjV (j), if s 6= 0,M<s<N

(4)

V (s|a = 1) =

{
γ
∑1
j=−1 p0jV (j), if s = 0

1 + γ
∑1
j=−1 p0jV (j), if s 6= 0,M≤s≤N

(5)
where pij denotes the (one-step) transition probability from
state i to state j, their specific values are related to parameters
p and q as defined earlier. The optimal cost V (s) is

V (s) =

{
min{V (s|a = 0), V (s|a = 1)}, if M<s<N

V (s|a = 1), if s=M or s=N
(6)

III. OPTIMAL THRESHOLD POLICY

A. Existence of Optimal Threshold Policy

We first show that there exists a threshold policy which is
optimal for the MDP in Fig. 3.

Proposition 1. There exists a threshold policy (k1, k2), where
M < k1 ≤ 0 and 0 ≤ k2 < N , such that when k1 ≤ s ≤ k2,
the optimal action for state s is a∗(s) = 0, and when s < k1
or s > k2, a∗(s) = 1.

Proof: It is obvious that different actions for state zero
a(0) = 0 and a(0) = 1 are essentially the same, because the
mobile user and the micro-cloud hosting its service are in the
same location under state zero, either action does not incur
cost and we always have Ca(0)(0) = 0. Therefore, we can
conveniently choose a∗(0) = 0.

In the following, we show that, if it is optimal to migrate at
s = k1 − 1 and s = k2 + 1, then it is optimal to migrate at
all states s with M ≤ s ≤ k1 − 1 or k2 + 1 ≤ s ≤ N . We
relax the restriction that we always migrate at states M and
N for now, and later discuss that the results also hold for the
unrelaxed case. We only focus on k2 + 1 ≤ s ≤ N , because
the case for M ≤ s ≤ k1 − 1 is similar.

If it is optimal to migrate at s = k2 + 1, we have

V (k2 + 1|a = 1) ≤ β
∞∑
t=0

γt =
β

1− γ
(7)

where the right hand-side of (7) is the discounted sum cost of a
never-migrate policy supposing that the user never returns back
to state zero when starting from state s = k2 + 1. This cost is
an upper bound of the cost incurred from any possible state-
transition path without migration, and migration cannot bring
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Figure 3. MDP model for service migration. The solid lines denote transition under action a = 0 and the dotted lines denote transition under action a = 1.
When taking action a = 1 from any state, the next state is s = −1 with probability q, s = 0 with probability 1− p− q, or s = 1 with probability p.

higher cost than this because otherwise it contradicts with the
presumption that it is optimal to migrate at s = k2 + 1.

Suppose we do not migrate at state s′ where k2+1 < s′ ≤ N ,
then we have a (one-timeslot) cost of β in each timeslot until the
user reaches a migration state (i.e., a state at which we perform
migration). From (5), we know that V (s|a = 1) is constant for
s 6= 0. Therefore, any state-transition path L starting from state
s′ has a discounted sum cost of

VL(s
′) = β

tm−1∑
t=0

γt + γtmV (k2 + 1|a = 1)

where tm > 0 is a parameter representing the first timeslot that
the user is in a migration state after reaching state s′ (assuming
that we reach state s′ at t = 0), which is dependent on the state-
transition path L. We have

VL(s
′)− V (k2 + 1|a = 1)

= β
(1− γtm)

1− γ
−
(
1− γtm

)
V (k2 + 1|a = 1)

=
(
1− γtm

)( β

1− γ
− V (k2 + 1|a = 1)

)
≥ 0

where the last inequality follows from (7). It follows that, for
any possible state-transition path L, VL(s′) ≥ V (k2+1|a = 1).
Hence, it is always optimal to migrate at state s′, which brings
cost V (s′|a = 1) = V (k2 + 1|a = 1).

The result also holds with the restriction that we always
migrate at states M and N , because no matter what thresholds
(k1, k2) we have for the relaxed problem, migrating at states
M and N always yield a threshold policy.

Proposition 1 shows the existence of an optimal threshold
policy. The optimal threshold policy exists for arbitrary values
of M , N , p, and q.

B. Simplifying the Cost Calculation

The existence of the optimal threshold policy allows us
simplify the cost calculation, which helps us develop an al-
gorithm that has lower complexity than standard MDP solution
algorithms. When the thresholds are given as (k1, k2), the value
updating function (6) is changed to the following:

V (s) =

{
V (s|a = 0), if k1 ≤ s ≤ k2
V (s|a = 1), otherwise

(8)

From (4) and (5), we know that, for a given policy with
thresholds (k1, k2), we only need to compute V (s) with
k1−1 ≤ s ≤ k2+1, because the values of V (s) with s ≤ k1−1
are identical, and the values of V (s) with s ≥ k2 − 1 are
also identical. Note that we always have k1 − 1 ≥ M and
k2 + 1 ≤ N , because k1 > M and k2 < N as we always
migrate when at states M and N .

Define

v(k1,k2) = [V (k1 − 1) V (k1) · · ·V (0) · · ·V (k2) V (k2 + 1)]
T

(9)

c(k1,k2) =
[
1 ︸ ︷︷ ︸
−k1 elements

β · · · β 0 ︸ ︷︷ ︸
k2 elements

β · · · β 1
]T

(10)

P′(k1,k2) =



p0,k1−1 · · · p00 · · · p0,k2+1

pk1,k1−1 · · · pk1,0 · · · pk1,k2+1

...
...

...
p0,k1−1 · · · p00 · · · p0,k2+1

...
...

...
pk2,k1−1 · · · pk2,0 · · · pk2,k2+1

p0,k1−1 · · · p00 · · · p0,k2+1


(11)

where superscript T denotes the transpose of the matrix.
Then, (4) and (5) can be rewritten as

v(k1,k2) = c(k1,k2) + γP′(k1,k2)v(k1,k2) (12)

The value vector v(k1,k2) can be obtained by

v(k1,k2) =
(
I− γP′(k1,k2)

)−1
c(k1,k2) (13)

The matrix
(
I− γP′(k1,k2)

)
is invertible for 0 < γ < 1,

because in this case there exists a unique solution for v(k1,k2)

from (12). Equation (13) can be computed using Gaussian elim-
ination that has a complexity of O

(
(|M |+N)

3
)

. However,
noticing that P′(k1,k2) is a sparse matrix (because pij = 0 for
|j−i| > 1), there can exist more efficient algorithms to compute
(13).

C. Algorithm for Finding the Optimal Thresholds
To find the optimal thresholds, we can perform a search

on values of (k1, k2). Further, because an increase/decrease in
V (s) for some s increases/decreases each element in the cost
vector v due to cost propagation following balance equations



Algorithm 1 Modified policy iteration algorithm for finding
the optimal thresholds

1: Initialize k∗1 ← 0, k∗2 ← 0
2: repeat
3: k′∗1 ← k∗1 , k′∗2 ← k∗2 //record previous thresholds
4: Construct c(k∗1 ,k∗2) and P′

(k∗1 ,k∗2)
according to (10) and

(11)
5: Evaluate v(k∗1 ,k∗2)

from (13)
6: Extend v(k∗1 ,k∗2)

to obtain V (s) for all M ≤ s ≤ N
7: for i = 1, 2 do
8: if i = 1 then
9: if 1 + γ

∑1
j=−1 p0jV (j) < V (k∗1) then

10: dir ← 1, loopVec ← [k∗1 + 1, k∗1 + 2, ..., 0]
11: k∗1 ← k∗1 + 1
12: else
13: dir ← 0, loopVec ← [k∗1 − 1, k∗1 − 2, ...,M + 1]
14: end if
15: else if i = 2 then
16: if 1 + γ

∑1
j=−1 p0jV (j) < V (k∗2) then

17: dir ← 1, loopVec ← [k∗2 − 1, k∗2 − 2, ..., 0]
18: k∗2 ← k∗2 − 1
19: else
20: dir ← 0, loopVec ← [k∗2 + 1, k∗2 + 2, ..., N − 1]
21: end if
22: end if
23: for ki = each value in loopVec do
24: if dir = 0 then
25: if β + γ

∑ki+1
j=ki−1 pki,jV (j) < V (ki) then

26: k∗i ← ki
27: else if β + γ

∑ki+1
j=ki−1pki,jV (j)>V (ki) then

28: exit for
29: end if
30: else if dir = 1 then
31: if 1 + γ

∑1
j=−1 p0jV (j) < V (ki) then

32: k∗i ← ki − sign(ki)
33: else if 1 + γ

∑1
j=−1 p0jV (j) > V (ki) then

34: exit for
35: end if
36: end if
37: end for
38: end for
39: until k∗1 = k′∗1 and k∗2 = k′∗2
40: return k∗1 , k∗2

(4) and (5), we only need to minimize V (s) for a specific state
s. We propose an algorithm for finding the optimal thresholds,
as shown in Algorithm 1, which is a modified version of the
standard policy iteration mechanism [9, Ch. 3].

Algorithm 1 is explained as follows. We keep iterating until
the thresholds no longer change, which implies that the optimal
thresholds have been found. The thresholds (k∗1 , k

∗
2) are those

obtained from each iteration.
Lines 4–6 compute V (s) for all s under the given thresholds

(k∗1 , k
∗
2). Then, Lines 8–22 determine the search direction for

k1 and k2. Because V (s) in each iteration is computed using the

current thresholds (k∗1 , k
∗
2), we have actions a(k∗1) = a(k∗2) =

0, and (4) is automatically satisfied when replacing its left
hand-side with V (k∗1) or V (k∗2). Lines 9 and 16 check whether
iterating according to (5) can yield lower cost. If it does, it
means that migrating is a better action at state k∗1 (or k∗2),
which also implies that we should migrate at states s with
M ≤ s ≤ k∗1 (or k∗2 ≤ s ≤ N ) according to Proposition 1.
In this case, k∗1 (or k∗2) should be set closer to zero, and we
search through those thresholds that are closer to zero than
k∗1 (or k∗2). If Line 9 (or Line 16) is not satisfied, according
to Proposition 1, it is good not to migrate at states s with
k∗1 ≤ s ≤ 0 (or 0 ≤ s ≤ k∗2), so we search k1 (or k2) to the
direction approaching M (or N ), to see whether it is good not
to migrate under those states.

Lines 23–37 adjust the thresholds. If we are searching toward
state M or N and Line 25 is satisfied, it means that it is better
not to migrate under this state (ki), and we update the threshold
to ki. When Line 27 is satisfied, it means that it is better to
migrate at state ki. According to Proposition 1, we should also
migrate at any state closer to M or N than state ki, thus we
exit the loop. If we are searching toward state zero and Line 31
is satisfied, it is good to migrate under this state (ki), therefore
the threshold is set to one state closer to zero (ki − sign(ki)).
When Line 33 is satisfied, we should not migrate at state ki.
According to Proposition 1, we should also not migrate at any
state closer to zero than state ki, and we exit the loop.

Proposition 2. The threshold-pair (k∗1 , k
∗
2) is different in every

iteration of the loop starting at Line 2, otherwise the loop
terminates.

Proof: The loop starting at Line 2 changes k∗1 and k∗2
in every iteration so that V (s) for all s become smaller. It is
therefore impossible that k∗1 and k∗2 are the same as in one of
the previous iterations and at the same time reduce the value of
V (s), because V (s) computed from (13) is the stationary cost
value for thresholds (k∗1 , k

∗
2). The only case when (k∗1 , k

∗
2) are

the same as in the previous iteration (which does not change
V (s)) terminates the loop.

Corollary 1. The number of iterations in Algorithm 1 is
O(|M |N).

Proof: According to Proposition 2, there can be at most
|M |N + 1 iterations in the loop starting at Line 2.

If we use Gaussian elimination to compute (13), the time-
complexity of Algorithm 1 is O

(
|M |N (|M |+N)

3
)

.

IV. SIMULATION RESULTS

We compare the proposed threshold method with the standard
value iteration and policy iteration methods [9, Ch. 3]. Simula-
tions are run on MATLAB, on a computer with 64-bit Windows
7, Intel Core i7-2600 CPU, and 8GB memory. The value
iteration terminates according to an error bound of ε = 0.1
in the discounted sum cost. Note that the proposed method and
the standard policy iteration method always produce the optimal
cost. The number of states |M | = N = 10. The transition



0 0.5 1 1.5 2 2.5
10

−4

10
−3

10
−2

β

R
un

ni
ng

 ti
m

e 
(s

)

 

 

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

β

D
is

co
un

te
d 

su
m

 c
os

t

 

 

Proposed
Policy iteration
Value iteration

Optimal
Never migrate
Always migrate

(a)

0 0.5 1 1.5 2 2.5
10

−4

10
−3

10
−2

10
−1

β

R
un

ni
ng

 ti
m

e 
(s

)

 

 

Proposed
Policy iteration
Value iteration

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

β

D
is

co
un

te
d 

su
m

 c
os

t

 

 
Optimal
Never migrate
Always migrate

(b)

0 0.5 1 1.5 2 2.5
10

−4

10
−3

10
−2

10
−1

10
0

β

R
un

ni
ng

 ti
m

e 
(s

)

 

 

Proposed
Policy iteration
Value iteration

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

β

D
is

co
un

te
d 

su
m

 c
os

t

 

 
Optimal

Never migrate

Always migrate

(c)

Figure 4. Performance under different β: (a) γ = 0.5, (b) γ = 0.9, (c) γ = 0.99.

probabilities p and q are randomly generated. Simulations are
run with 1000 different random seeds in each setting to obtain
the average performance. The running time and the discounted
sum costs under different values of β are shown in Fig. 4.

The results show that the proposed method always has lowest
running time, and the running time of the standard policy
iteration method is 2 to 5 times larger than that of the proposed
algorithm, while the value iteration approach consumes longer
time. This is because the proposed algorithm simplifies the
solution search procedure compared with standard mechanisms.
The results also show that the proposed method can provide the
optimal cost compared with a never-migrate (except for states
M and N ) or always-migrate policy. It is also interesting to
observe that the optimal cost approaches the cost of a never-
migrate policy when β is small, and it approaches the cost of an
always-migrate policy when β is large. Such a result is intuitive,
because a small β implies a small data transmission cost, and
when β is small enough, then it is not really necessary to
migrate; when β is large, the data transmission cost is so large
so that it is always good to migrate to avoid data communication
via the backhaul network.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a threshold policy-based
mechanism for service migration in mobile micro-clouds. We
have shown the existence of optimal threshold policy and
proposed an algorithm for finding the optimal thresholds. The
proposed algorithm has polynomial time-complexity which
is independent of the discount factor γ. This is promising

because the time-complexity of standard algorithms for solving
MDPs, such as value iteration or policy iteration, are generally
dependent on the discount factor, and they can only be shown
to have polynomial time-complexity when the discount factor
is regarded as a constant1 [10]. Although the analysis in this
paper is based on 1-D random walk of mobile users, it can serve
as a theoretical basis for more complicated scenarios, such as
2-D user-mobility, in the future.
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