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Abstract— Wireless sensor networks have been widely used in
scientific research, industrial manufacturing, and environmental
monitoring over the past decade. Using pre-existing networks to
assist in responding to disaster events can be cost-effective. In
this paper, we present Alert, a software framework for retasking
wireless sensor networks, enabling these networks to respond
rapidly to unexpected events without neglecting their originally
assigned tasks. Alert, built upon Deluge [1], is a wireless network
code distribution protocol enabling node group management,
selective node and group reprogramming, and network state
monitoring. We used a testbed of 25 Tmote Sky nodes to evaluate
the reprogramming performance and space overhead of Alert
under different network sizes and densities.

I. INTRODUCTION

Natural and man-made disasters threaten human lives,
public infrastructure, supply lines, and economic productivity.
The damage can have a profound and lasting effect on the
population and the economy. Efficient emergency response
systems are crucial for reducing the impact of disasters. To
be effective, such systems must enlist modern technological
advances and use them wisely to mitigate the effects of such
scenarios. One technology that is widely available but not yet
widely used in emergency response systems is wireless sensor
network technology [2], [3].

In the past decade, wireless sensor network (WSN) technol-
ogy has evolved significantly. As the technology advances and
hardware costs continue to fall, WSNs are increasingly used in
a range of applications, including surveillance, environmental,
industrial, agricultural, and structural monitoring. However,
most applications involve static deployments, where large
numbers of unattended, resource-constrained computing nodes
cooperate on a single application for extended periods of time,
e.g., a network of temperature sensors used to monitor the
efficiency and status of a heating and cooling system. If a
critical condition not part of the original task is detected,
the capabilities of these networks cannot be used to assist in
responding. Retasking WSNs, capable of changing behavior
rapidly, would be beneficial. Remotely distributing new code
through a wireless network is a particularly effective approach
to retasking because of the behavioral flexibility it affords.
Deluge [1] is one of the approaches used to realize this
concept.

Deluge is a reliable and robust data dissemination protocol
for remotely reprogramming wireless sensor networks. How-
ever, it presents several limitations. First, Deluge is limited
only to network-wide dissemination of program binaries. Every
node within the network stores and runs the same image. Del-
uge does not allow different program binaries to execute within
a network at the same time. However, when an unexpected
event occurs, the nodes that are distant from the disaster site
should continue their original tasks, limiting the retasking load
to nodes near the event site. Selective retasking is important.
Second, Deluge does not provide feedback about the state
of the network. When an unexpected event occurs, nodes
near the disaster site will be reprogrammed to execute new
tasks. Feedback from these nodes is required to verify that the
desired programs are running properly and that sensor nodes
are assisting in the response effort. Network status monitoring
is essential.

In this paper, we present Alert, a software framework
for retasking wireless sensor networks. Alert provides node
group management, selective node and group reprogramming,
and network state monitoring. The main contributions of this
paper are as follows. (i) We describe a significant extension to
Deluge, enabling wireless sensor network group management,
selective node and group reprogramming, and network status
monitoring. (i) We implement a cross-platform Java user
interface, Deluge-Visualizer, to visually administer Deluge
commands and monitor the status of a deployed network. (iii)
We evaluate code size overhead and retasking performance
using two representative applications. A testbed consisting
of 25 Tmote Sky [4] nodes is used to evaluate the code
distribution performance of our framework under different
network sizes and densities.

The remainder of the paper is structured as follows: Section
II provides relevant background material. Section III describes
the design and implementation of Alert. Section IV presents
an evaluation of Alert in term of code size overhead and code
distribution performance under different network sizes and
densities. Section V summarizes key elements of related work.
Finally, Section VI concludes with a summary of contributions
and pointers to future work.



II. BACKGROUND

Our work is built on Deluge for TinyOS 2.x [5]. Platforms
compatible with this distribution (i.e., Telosb [6], MicaZ [7],
Iris [8], and mulle [9]) can use the framework to realize
selective retasking and monitoring. In this section, we survey
the architecture and dissemination protocol of Deluge.

A. Deluge

Deluge is a nesC module designed to wirelessly distribute
and install program binaries within a WSN. Up to four
program binaries can be distributed and stored, but only one
may be activated (throughout the network) at any time. The
Deluge framework is composed of three core components:
DelugeC, tos-deluge, and TOSBoot. DelugeC contains the
core functionality of the Deluge framework, enabling code
distribution and reprogramming. DelugeC is a non-interactive
service added to a user’s application and runs parallel to the
application logic. tos-deluge is a Python script that delivers
serial-based commands to a base-station node. A base-station
node is a sink node serially-connected to a PC. It receives
the program binaries via the serial port, and then disseminates
them to the rest of the network. tos-deluge is responsible for
controlling the binary distribution and reprogramming features
of nodes running DelugeC. TOSBoot is a bootloader executed
when a wireless node is reset or powered on. When TOSBoot
starts execution, it checks to see if the currently loaded appli-
cation (in program flash) is the desired application based on
boot arguments saved to flash. If TOSBoot detects the correct
application, the application is executed. If the application does
not match, TOSBoot copies the new application from external
flash to the MCU?’s internal flash. After the copy is complete,
TOSBoot executes the newly loaded application. Figure 1
illustrates the Deluge TOSBoot memory model.

When nodes are configured to use the Deluge framework,
they are either programmed as clients or base-stations. In most
cases, a network is composed of only one base-station node
and many client nodes. A base-station node is responsible
for receiving Deluge commands from the tos-deluge Python
script via a serial port and sending Deluge commands to client
nodes for binary distribution and network reprogramming via
radio.

In Figure 2, a sensor network containing a base-station
node and four client nodes is configured with the Deluge
framework. Sensor nodes that run Deluge will include the
DelugeC and TOSBoot components. Serial Deluge commands
are sent from the tos-deluge script on a PC to a base-station
node. The base-station node receives the serial messages and
repackages the Deluge commands for wireless communication
to the client nodes.

B. Dissemination

The Deluge framework uses the TinyOS Dissemination
Protocol to reliably send commands to all client nodes within
the sensor network. A protocol called Drip [10], which is based
on the Trickle [11] epidemic algorithm, is used. In Deluge,
a program binary is represented as a set of small, fixed-size
structures called pages. Nodes running Deluge periodically
broadcast a code summary to their neighbors, advertising the
available pages for the currently executing binary. If a node
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Fig. 2: Deluge Overview

receives an advertisement for an older program binary version
than its own, it broadcasts an update. If a node receives a
summary identical to its own, it stops broadcasting for a fixed
period. In the Drip algorithm, three different node states are
defined: IDLE, RECV, and PUB. IDLE denotes that a node is
running the correct program required by the base-station and
is periodically broadcasting its code summary. RECV denotes
that a node is requesting a page for its incomplete image file.
PUB denotes that a node is broadcasting its stored image. With
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this algorithm, nodes within the network keep their program
binaries up to date by transmitting small numbers of messages
instead of flooding the network.

III. DESIGN AND IMPLEMENTATION

The primary limitations of Deluge include a lack of support
for selective network reprogramming and feedback about net-
work status. To mitigate these limitations, selective retasking
using node and group identification was integrated, as well as
sensor device monitoring using the Collection [12] interface.
In this section, we present the design and implementation of
these features.

A. Selective Retasking using Node ID

To allow users to selectively retask specific nodes within
a sensor network, two identification strategies are supported.
The first strategy uses each device’s TOS_NODE_ID, which is
typically set during program installation and is used to identify
the node in packet transmissions. The tos-deluge script
is modified to support a selective node ID reprogramming
command. When the command is initiated, a node ID bitmask
is included with the command message. This 32-bit bitmask
supports up to 32 devices, where each bit represents a distinct
node ID. The DelugeC component is also modified. When a
node running the modified DelugeC receives this command,
it checks to see if its TOS_NODE_ID is set within the mask.
If it is, the command is executed; otherwise, the command is
ignored.

Figure 3 illustrates a node ID retasking example. The dis-
seminate and reprogram command is initiated using the mod-
ified tos-deluge Python script. The modified tos-deluge
sends a serial command to the base-station, which then dis-
seminates the equivalent command to the sensor network. The
command is set to disseminate and reprogram with the node
ID bitmask field set to 2594 (101000100010). The bitmask
corresponds to nodes with TOS_NODE_ID set to 1, 5, 9, and
11 (green). These nodes will be reprogrammed with the new
image, while the remaining nodes (yellow) will continue to
run their current application.

B. Selective Retasking using Group ID

The second retasking strategy assigns each node to a group
using a group ID. A new field, DELUGE_GROUP_ID, is added
to the DelugeC component. DELUGE_GROUP_ID is typically
set in the MAKEFILE of an application and represents the
group a node is associated with. It is used to group nodes
based on similar tasks or responsibilities and to retask these
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Fig. 4: Retasking Group of Nodes using Group ID

groups uniformly when an unexpected event occurs. When the
disseminate and reprogram command is initiated by the mod-
ified tos-deluge script, a group ID field is included. When a
node running the modified DelugeC component receives this
command, it checks to see if its DELUGE_GROUP_ID matches
the group ID within the command. If it is, the command is
executed; otherwise, the command is ignored.

Figure 4 illustrates a group ID retasking example. The
disseminate and reprogram command is initiated using the
modified tos-deluge Python script. The process is analogous
to the node ID case. Nodes that have their group ID set to 1
(green) will be reprogrammed with the new image, while the
remaining nodes (yellow) will continue to run their current
application.

C. Updating Groups

To update node groups post-deployment, the update group
command was created. Using this command, a sensor net-
work’s group topology can be configured dynamically. When
the command is initiated, either in add or remove mode, the
node ID bitmask and group ID field are included. When a node
running DelugeC receives this command, it checks to see if
its TOS_NODE_ID is set within the mask. If it is, the command
is executed; otherwise, the command is ignored. This enables
nodes to be added or removed from a particular group.

D. Network Status Monitoring

To provide real-time feedback on a sensor network’s op-
eration, the Collection component was added to the Deluge
framework. Collection implements a protocol based on a
tree topology using a link estimator to build efficient and
reliable routes between client nodes and a base-station. In this
context, Collection is used to gather information about the
sensor network and to deliver node status messages from client
nodes to the base-station. Each client node periodically sends
a status message containing the following fields: Node ID
(TOS_NODE_ID), Group ID (DELUGE_GROUP_ID), State (IDLE,
RECV, and PUB), App UID (a unique ID generated when an
application is compiled), App Name (the currently running
application’s name), and App TimeStamp (denoting when the
running application was compiled).

Figure 5 illustrates the updated Deluge framework. The
Collection component provides a feedback channel (red
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arrow) back to the base-station, and ultimately, a serially-
connected PC. The messages are then parsed, processed,
and analyzed by the Deluge Visualizer, a Java user interface
running on the PC, using tinyos.jar, the Java SDK for
TinyOS. This is detailed in Section III-E.

E. Deluge Visualizer

The Deluge Visualizer was developed to automate Deluge
command-line tasks, and to monitor and analyze the status of
a sensor network. The Visualizer provides a front-end GUI to
the tos-deluge Python script. Users can easily initiate and
verify Deluge commands while monitoring the state of their
network. As commands are executed by the user, all status
messages and associated information are displayed in the status
window, notifying the user of any problems or exceptions. The
Visualizer also communicates with the base-station node to
receive and parse status messages transmitted by client nodes

(via Collection). Each status message is presented within
a dynamic table that displays each field of the message. As
shown in Figure 6, Node 1, associated with Group 5, and Node
7, associated with Group 22, are running the GoldenImage
application and are in the IDLE state. The last times the base-
station received status messages from these nodes are shown in
the Last Updated column. The first tab, Install, in the Deluge
Visualizer, is used to issue a command to inject program
images to a base-station node. The Ping tab is used to query
the status of the images in external flash (i.e., Program Name,
UID, Compilation Time, Platform, User ID, Host Name, User
Hash, Size, Number of Pages). The Disseminate-Reboot tab is
used to disseminate an image (already) in external flash, and
to reprogram the network. The Disseminate-Reboot-Nodes tab
is used to selectively disseminate an image in external flash
to specific nodes, and to reprogram them. The Disseminate-
Reboot-Group tab is used to selectively disseminate the image
in external flash to a specific group, and to reprogram the nodes
in that group. The Update-Group tab is used to update node
groups within the network. The Visualizer reduces the learning
curve to interact with the Deluge framework and with networks
that rely on it.

IV. EVALUATION

In this section, we present our evaluation of Alert. We
first analyze the code size overhead for two representative
applications using Tmote Sky motes. We then measure the
retasking performance of Alert under different network sizes
and densities using a physical sensor network testbed. This
testbed is tailored to support system debugging, profiling,
and experimentation and consists of 25 Tmote Sky sensors
accessible via a web interface [13]. The experiments were run
on a machine running Ubuntu 12.04, with Linux kernel version
3.2, and TinyOS 2.1.2.

A. Space Overhead

To analyze the code size overhead of Alert, the Blink appli-
cation and the Basestation application, included in the TinyOS
distribution, were used. We first compiled both applications
using the original Deluge framework, and then measured the
ROM and RAM usage to establish a baseline. We then recom-
piled the applications using our framework with and without
the Collection component and measured the ROM and RAM
usage again for comparison with the baseline. The results
are shown in Table I. Table I(a) summarizes the ROM and
RAM usage of the two applications when compiled using the
original Deluge framework. Table I(b) summarizes the ROM
and RAM usage when compiled with the Alert framework,
without the Collection component. From Table I(b), we can
see that the ROM and RAM overhead both increase by approx-
imately 1% when the Collection component is not included.
Table I(c) summarizes the ROM and RAM usage when the
Collection component is included in the application. The
ROM overhead increases by approximately 20%, and the RAM
overhead increases by over 80%. Based on these results, adding
network status feedback to the Deluge framework has a high
impact on the resulting memory footprint. This is because
the Collection component requires additional RAM space to
support its link estimation and route construction algorithms
[4]. Still, the overhead is manageable given the available
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ROM/RAM capacity (48K bytes and 10K bytes, respectively,
for Tmote Sky Motes). For many applications and disaster
scenarios, the benefits significantly outweigh the memory cost.

B. Retasking Performance

We next evaluate the code dissemination and reprogram-
ming performance of the framework as a function of network
size and density. A physical testbed consisting of 25 Tmote
Sky motes was used. Network sizes of 1, 4, 9, 16, and 25 were
considered. Nodes were deployed in a regular grid, with nodes
spaced approximately 12 inches apart. To ensure fairness,
radio power was set to the maximum for all nodes, allowing
single-hop communication for all network sizes considered. To
measure code dissemination and reprogramming performance
under different network densities, 25%, 50%, 75%, and 100%
of the available nodes were targeted for reprogramming in each
network setup. The Deluge Visualizer was used to measure
code dissemination and reprogramming time. Each time a
reprogramming command was sent to the base-station node
through the Visualizer, the system time was recorded. After
all the target nodes finished receiving (RECV) and transitioned
to PUB, the system time was recorded again. The time spent
for code dissemination and reprogramming is the time elapsed
between these two timestamps.

Figure 7 summarizes the selective reprogramming per-
formance using group ID as a function of the percentage
of targeted nodes in the network. The X-axis represents the
percentage of targeted nodes in the network. The Y-axis
represents the time required, in seconds, for all targeted nodes
to finish retasking. Figure 8 similarly summarizes the selective
reprogramming performance using node ID as a function of
the percentage of targeted nodes in the network. The X-axis
represents the percentage of targeted nodes in the network, and
the Y-axis represents the time required for all targeted nodes
to finish retasking.
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From Figures 7 and 8, we observe that as the size of the
network increases, the overall code dissemination and repro-
gramming time increases. This is because the probability of
message collision increases as network size grows, decreasing
the performance of the network. However, as the percentage
of targeted nodes increases, the overall code dissemination and
reprogramming time decreases. This is a surprising result. It is
explained as follows: Nodes that are targeted for retasking will
transition to RECV and stop sending their status to the base-
station, decreasing the number of messages in the network,
increasing retasking performance. The results reveal an inter-
esting trade-off among network size, percentage of targeted
nodes, and retasking performance during unexpected events.
Increasing network size offers better coverage for disaster
events, but reduces retasking performance, leading to increased
response time during emergencies. Increasing the percentage
of targeted nodes during retasking offers better performance,
but neglects more originally assigned tasks. Knowledge of this
trade-off can be used to help WSN managers balance network
retasking performance and resource utilization.

V. RELATED WORK

Levis et al. present TinyOS [14], which uses Crossbow
Network Programming (XNP) [15][16] as its network repro-
gramming protocol. XNP transmits a complete program image
to nodes within the radio communication range of the base-
station. Hui et al. present Deluge [1], which addresses many
of the drawbacks of XNP. Deluge supports multi-hop code
distribution through epidemic dissemination. Deluge provides
redundant data integrity checks and an improved bootloader
(TOSBoot), with a lower RAM footprint than XNP [17].
Neither approach can control the scope of code distribution
as ours do.

Maté [18] transmits byte code for execution on a virtual
machine, enabling significantly faster reprogramming. It is not,



however, useful when the virtual machine itself needs to be
reprogrammed. Trickle [11] is used to transmit Maté virtual
machine scripts, which are significantly smaller. However,
Maté scripts are limited to the functions of the virtual machine,
and are not as flexible as nesC/C constructs, which are used
by our approach.

Stathopoulos et al. present Multihop Over-the-Air Pro-
gramming (MOAP) [19], which uses a data dissemination
protocol called Ripple to distribute code among sensor devices.
Ripple selectively forwards packets to nodes while utilizing a
sliding window protocol for controlling retransmissions. Nodes
have the ability to transmit segments of the program code they
have already received to new nodes, while waiting for retrans-
mission of lost packets. Sprinkler [20] and Firecracker [21]
both use a hierarchical reprogramming strategy. They first send
code updates to nodes in the upper layer of the node hierarchy
(i.e., super nodes), and these nodes reprogram other nodes in
their local areas. Super nodes can be cluster heads, or a set of
connected dominating nodes that can cover the whole network,
as in Sprinkler. Super nodes in Firecracker are “corner” nodes,
or are randomly selected. None of these approaches consider
dissemination scope.

VI. CONCLUSIONS

Retaskable WSNs offer an effective and efficient solution
to responding rapidly to disaster events. In this paper, we
presented Alert, a software retasking framework for WSNs,
enabling these networks to respond rapidly to unexpected
events without neglecting their originally assigned tasks. Alert
provides node group management, selective node and group
reprogramming, and network state monitoring for wireless sen-
sor networks. We presented the design and implementation of
these features, as well as a Java user interface used to simplify
interaction with the network. We also presented an evaluation
of memory overhead and retasking performance under different
network sizes and densities. Experimental results show that our
framework can efficiently retask wireless sensor networks with
tolerable memory overhead.

Our future work spans four paths. The first path is focused
on improving the space usage of the framework. As shown
in Table I, ROM and RAM overhead is fairly high (though
still tolerable) when the Collection component is included
in the user application to support network status monitor-
ing. To address this problem, the Collection component
must be optimized or replaced. In the evaluation section,
we noticed that the overhead traffic from status messages
affected reprogramming performance. This leads us to the
second path, which is focused on investigating the trade-offs
between status messages size, intervals, etc and reprogramming
performance to improve the Alert’s performance The third
path is focused on modifying the Deluge framework. The
current Deluge framework acts as an independent service
layer running by itself, offering no external control, which
is limiting. It offers no external facing API to be used as
a control interface within an application. This would make
Deluge a more flexible and reusable library, allowing for looser
coupling and tighter integration with application functionality.
The third path is focused on removing the dependency on
tos-deluge to directly command the base-station node from
the Deluge Visualizer. Further, if the TinyOS SDK is ported to

a smartphone-based operating system, such as Android, Deluge
commands can be issued from a tiny mobile device, instead
of a PC, offering benefits to emergency responders.
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