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Abstract—Hybrid networks consisting of MANET nodes and
cellular infrastructure have been recently proposed to improve the
performance of military networks. Prior work has demonstrated
the benefits of in-network content caching in a wired, Internet
context. We investigate the problem of developing optimal routing
and caching policies in a hybrid network supporting in-network
caching with the goal of minimizing overall content-accessdelay.
Here, needed content may always be accessed at a back-end
server via the cellular infrastructure; alternatively, content may
also be accessed via cache-equipped “cluster” nodes withinthe
MANET. To access content, MANET nodes must thus decide
whether to route to in-MANET cluster nodes or to back-end
servers via the cellular infrastructure; the in-MANET clus ter
nodes must additionally decide which content to cache. We model
the cellular path as either i) a congestion-insensitive fixed-delay
path or ii) a congestion-sensitive path modeled as an M/M/1
queue. We demonstrate that under the assumption of stationary,
independent requests, it is optimal to adopt static caching(i.e.,
to keep a cache’s content fixed over time) based on content
popularity. We also show that it is optimal to route to in-
MANET caches for content cached there, but to route requests
for remaining content via the cellular infrastructure for t he
congestion-insensitive case and to split traffic between the in-
MANET caches and cellular infrastructure for the congestion-
sensitive case. We develop a simple distributed algorithm for the
joint routing/caching problem and demonstrate its efficacyvia
simulation.

I. I NTRODUCTION

Future military operations envision processor- and data-
intensive real-time applications, including multimedia analyt-
ics, situational awareness, location tracking, intrusiondetec-
tion, and context sharing to aid data-to-decision at the tactical
edge. These services provide situational awareness in the field
and information relevant for mission-critical decisions.Increas-
ingly, these applications will operate in hybrid networks con-
sisting of field-deployed tactical MANET nodes and cellular
infrastructure. MANET nodes, equipped with heterogeneous
processing and storage capabilities, can communicate among
themselves as well as with back-end servers, accessible via
the cellular base station. We consider a hybrid network that
supportsin-network caching– content may always be accessed
at a back-end server via the cellular infrastructure but may
also be cached at cluster nodes within the MANET. Although
prior work has demonstrated the benefits of in-network content
caching in a wired, Internet (e.g., CDN) context [1], there
is limited research understanding the challenges and potential
benefits introduced by caching in hybrid networks [2]–[4].

To illustrate the inter-related routing and caching chal-
lenges in such a hybrid network, let us consider a
data-streaming object/face recognition scenario. Here, field-
deployed MANET nodes continuously capture images of their
surroundings and generate a stream of image-based requests

(e.g., containing features extracted from the image, a times-
tamp, physical location, queries), which must then be pro-
cessed in conjunction with archived images for identification.
For example, a node might identify an object in an image,
and want additional information such as the object’s ‘type’or
additional attributes. A MANET node must decide whether
to route such an object-identification request to the back-
end servers via the cellular infrastructure or to cluster nodes
equipped with a cache (Figure??). An ‘object identification
module’ (executing at both the back-end server(s) accessible
via cellular infrastructure and at the in-MANET cache) re-
sponds to these requests. At the in-MANET cache, if needed
content is available in the cache, the module can immediately
return a reply. Otherwise, additional needed content must
be downloaded (incurring additional delay); the computation
can then be performed and replies can then be returned.
Additionally, the cache must decide whether or not to store
the downloaded content.

The fundamental question we address in this paper is the
following – how should nodes route their requests between
the cellular infrastructure and the in-MANET cache, and what
in-MANET caching policy should be adopted to minimize
expected overall network delay?We consider two scenarios,
modeling the cellular path as either(i) a congestion-insensitive
fixed-delay path or(ii) a congestion-sensitive path modeled as
an M/M/1 queue. Our goal is to develop delay-minimizing
caching and routing policies for this joint routing/caching
problem. Our contributions are as follows.

i) We prove under the assumption of stationary, indepen-
dent content requests that it is always optimal to adopt static
caching (i.e., to keep the cache’s content fixed over time)
based on content popularity (Section V). For the case of fixed
delays through the cellular infrastructure, we show that itis
always optimal to route to the cache for the cached content
and to route requests for the remaining content via the cellular
infrastructure. For the case of congestion-sensitive cellular-
access delays, we show that while requests for the cached
content should still be routed to the cache, the remaining
requests should be split between the cellular infrastructure and
the cache; we also determine the optimal split ratio.

ii) We present a distributed algorithm (Section VI) for
the joint routing/caching problem, and discuss how both the
nodes and the cache must necessarily be involved in solving
this problem. In our distributed algorithm, nodes help the
cache infer content popularity; the cache then uses content
popularity to determine what content to cache. Nodes, in turn,
determine their routing strategy based on the cached content.
Our distributed algorithm seamlessly adapts to changes in
content popularity.

iii) We perform extensive simulations (Section VII) that
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demonstrate that our distributed algorithm provides delay
performance comparable to that of the optimal centralized
solution.

II. RELATED WORK

Caching of web-based content has been extensively studied
[1], [5], [6]. Recently, there have also been proposals for
designing network-wide caching systems such as Informa-
tion/Content Centric Networks [7]. In [8], the authors develop
optimal strategies to provision the storage capacity of routers,
balancing the tradeoff between network delay and provisioning
cost. However, the design and analysis of network-level joint
caching and routing algorithms, particularly in context of
wireless networks, remains an open research problem.

Prior work has determined efficient caching and routing
policies in cache networks (where every node in the network
can cache content and also generate requests for content)
[9]–[13]. In [10], the authors investigate whether a universal
network-wide caching policy is beneficial and quantitatively
demonstrate that caching only at a subset of nodes based
on network centrality can provide improved performance.
Probabilistic caching of content based on parameters such as
last requested time and content diversity has been adopted
in [11]; the authors show via simulations that such a strategy
can provide superior performance. Azimdoostet al. [4] demon-
strate that the asymptotic throughput capacity of a networkis
significantly increased by adding caching capabilities to the
nodes. In contrast to the above mentioned works, we consider
a system where nodes have two paths (one cached and one
uncached) and determine optimal caching and routing policies
in this setting.

Our work is closest to [2], [3], where the authors consider
the content placement and routing problem in a hybrid net-
work consisting of multiple femtocell caches and the cellular
infrastructure with the objective of minimizing delay. Both pa-
pers address the congestion-insensitive case where users have
homogeneous delays to the caches, show that their respective
problems are NP-hard and propose centralized bounded ap-
proximate solutions. In contrast, we consider a single MANET
cache and cellular infrastructure, explicitly model different
delays between users and the cache, consider congestion-
sensitive cellular path delay and propose a practical distributed
algorithm for our joint caching and routing problem. Our
caching framework builds on work done for web caches by
Liu et al. where the authors show that highest cache hit rates
are obtained for a static caching policy under independent and
stationary request processes [5].

III. N ETWORK MODEL AND PROBLEM STATEMENT

In this section, we abstract the system described in Sec-
tion I. We consider a system ofN users that generate requests
for a set ofK unique filesF = {f1, f2, . . . , fK} of unit
size. We use the terms content and file interchangeably.

A user i generates requests for the files inF according to
a Poisson process of aggregate rateλi. We denote byqij the
probability that useri generates a request for filej (referred
to as thefile popularity). Note that the popularity of the same
file can vary from one user to another.

All files are available at the back-end server and users
are connected to the server via a cellular infrastructure. We
refer to the cellular path between the user and the back-end
server as theuncached path. Each user can also access an in-
MANET cache where the content might be cached. LetC be
the capacity of the cache measured by the maximum number
of files it can store (C < K). If user i requests filej and it
is present in the cache, then request for filej will be served
immediately. We refer to this event as a cache hit. However, if
contentj is not present in the cache, then the cache forwards
the request to the back-end server, downloads filej from the
back-end server and forwards a reply to the user. We refer to
this event as a cache miss, since it was necessary to download
content from the back-end server in order to satisfy the request.

Let dhi anddmi denote the delays incurred by useri in the
event of a cache hit or miss, respectively. We assume without
loss of generality thatdmi > dhi , i.e., cache misses always
incur greater delays than cache hits. We model the cellular
path as(i) a congestion-insensitive constant delay path or(ii) a
congestion-sensitive path modeled as an M/M/1 queue with
service rateµ. In the congestion-insensitive case, the delay
experienced by a request sent by useri is denotedd0i . We also
assumedhi < d0i < dmi , for all usersi. This is a reasonable
assumption because ifd0i < dhi , then all traffic for useri will be
routed through the uncached path. On the contrary, ifd0i > dmi ,
then all traffic for useri will be routed through the cached
path. In the congestion-sensitive case, the delay experienced
by requests depends on the total incoming traffic arrival rate
and the service rate of the queue (we defer discussion of the
M/M/1 queue case until Section V-B).

In this work we consider a joint caching and routing
problem with the goal of minimizing average content access
delay over the requests of all users for all files. The solution to
this problem requires addressing two closely-related questions
1) How should cache contents be managed – which files should
be kept in the cache, and which cache replacement strategy
should be used? and2) How should the users route (i.e.,
split their traffic for the various files between the cached and
uncached paths)?

IV. D EFICIENCY OFCACHE-AGNOSTIC ROUTING

Traditional routing protocols are typically designed to opti-
mize the performance ofcurrent traffic load. We define cache-
agnostic routing as the request-routing strategy that routes
a request to the (cached or uncached) path that yields the
minimum delay given the current cache content. Consider the
case of the congestion-insensitive uncached path. It is easy to
see that for given content in the cache, cache-agnostic routing
will forward the requests for cached content to the cache, and
route the remaining requests to the uncached path. We call this
the greedy request routing.

The greedy nature of cache-agnostic routing makes the
system heavily depend on the initial cache content, since the
set of requests that will be routed to the cache depends entirely
on files that are already in the cache. Hence, in cases when
the cache is preloaded with unpopular files, greedy routing
can perform rather poorly. This phenomenon has also been
observed in other cache networks [14].



The deficiency of cache-agnostic routing can be interpreted
from a game-theoretic perspective. Consider each user as a
player in a request routing game where users compete for the
limited cache space to minimize their own delays. Assume
the user population is large so that a single user’s decision
has negligible impact on the cache state. Then we observe the
following:

Proposition 1. Given any cache state, greedy routing
achieves a locally optimal solution.

This statement is directly implied by the definition of
greedy routing because given any cache state, each useru
must route according to the locally optimal solution, whichis
given by greedy routing. The routing game does not have a
single local minimum; in fact, each different initial cachestate
may lead to a different local minimum. In the next section, we
will prove the following proposition.

Proposition 2. Under the optimal cache state, greedy
routing achieves a globally optimal solution.

The above proposition implies that the global optimum can
be achieved by a two-part solution consisting of centralized
cache allocation and distributed greedy routing. This willbe
the basis of our distributed algorithm described in SectionVI.

V. OPTIMAL CACHING AND ROUTING

In this section, we determine the optimal caching and
routing strategies considering that the uncached path is either
i) congestion-insensitive, orii) congestion-sensitive. Overall,
we show that it is always optimal to adopt static caching based
on a content popularity metric and to route requests for cached
content to the cache. Requests for the remaining files shouldbe
routed to the uncached path for the congestion-insensitivecase,
and should be split between the uncached path and the cache
for the congestion-sensitive case, for which we determine the
optimal split ratio.

A. Congestion-insensitive uncached path

We first consider the case that delays on the uncached
path, d0i (d0i > dhi ) do not depend on traffic rates. Let

qj =

N
∑

i=1

λiqij(d
0

i − dhi ) be the weighted popularity of file

j. We sort the files in decreasing order of weighted popularity
(qj); let Q be the set ofC files with the highest weighted
popularity. We claim that the optimal caching and routing
strategy is to statically cache the files inQ, route requests
for these files to the cache, and route the remaining requests
to the uncached path. LetDO be the average delay under the
optimal policy:

DO =
N
∑

i=1

λi

(

∑

j∈Q

qijd
h
i +

∑

j 6∈Q

qijd
0

i

)

.

Consider any non-anticipative caching policyH , and letpij
be the fraction of traffic from useri for file j that is routed
to the cache. Lethj be the hit probability for filej under
policy H , and letDH denote the average delay achieved by
the non-anticipative caching policyH . It is assumed that a file
is immediately available at the cache, even though there is a

delay experienced by the user. For the average delay fromH
we have

DH =

N
∑

i=1

K
∑

j=1

λiqij

(

pij(hjd
h
i + (1− hj)d

m
i ) + (1− pij)d

0

i

)

,

wherepij(hjd
h
i +(1−hj)d

m
i ) and(1−pij)d

0
i are the average

delays for requests from useri and file j routed to the cache
and the uncached path, respectively. To demonstrate optimality,
we state the following lemma. The proof is given in the
appendix.

Lemma 1. DH ≥ DO.

Our proof borrows ideas from prior work [5], where the
authors prove that given the traffic access rates for files,
statically caching theC files with the highest popularity will
result in the highest hit rate. Note that a corollary to Lemma1
is that optimal delay can be achieved by loading the cache
with theseC most popular files and having the users greedily
route requests for content.

B. Congestion-sensitive uncached path

Let us next consider the case where delays on the uncached
path are congestion-senstitive,i.e., they depend on the request
rate on that path. We assume that hit and miss delays are equal
among all users,i.e., dhi = dh anddmj = dm, respectively. The
uncached path is modeled as an M/M/1 queue with service rate
µ. We assume that the average service time in the queue lies
between the hit and miss delays,i.e., dh < 1/µ < dm. We note
that the average delay through an M/M/1 queue with incoming
rateλ and service rateµ is given by1/(µ− λ) whenλ < µ.

Let qj =

N
∑

i=1

λiqij denote the overall popularity of filej.

We sort the files in decreasing order of overall popularity (qj);
let Q be the set ofC files with the highest overall popularity.
Since the hit delay is smaller than the miss delay and delay
from the uncached path, a reasoning similar to that in V-A
again implies that it is optimal to have the files inQ in the
cache, and route requests for those files to the cache.

In the remaining, we show that to achieve optimal delay
it is necessary to split the traffic for the uncached content
between the cache and the uncached path. Note that when the
uncached path is congestion-sensitive, sending all the traffic for
uncached files could potentially congest that link, resulting in
a large delay. Therefore, a portion of the traffic for uncached
files should be directed to the cache, incurring a miss there
and the consequently an access delaydm. It is important to
note that the cache content isnot updated in case of a cache
miss. Assume that useri routes a fractionpij of the traffic for
the uncached filej to the cache. The expected delay can be
expressed as

DO =

N
∑

i=1

∑

j∈Q

λiqijdh +

N
∑

i=1

∑

j 6∈Q

λiqijpijdm



+

N
∑

i=1

∑

j 6∈Q

λiqij(1 − pij)

µ−
N
∑

i=1

∑

j 6∈Q

λiqij(1− pij)

The above function is convex and can be differentiated with
respect topij :

∂DO

dpij
= λiqijdm −

µλiqij

(µ−

N
∑

i=1

∑

j 6∈Q

λiqij(1− pij))
2

Equating the derivative to zero we get

N
∑

i=1

∑

j 6∈Q

λiqij(1 − pij) = µ−

√

µ

dm
(1)

In the above formulation, the optimal solution depends only
on the amount of traffic being routed through the congestion-
sensitive link and not the type of the file being routed to the
uncached path. The optimal delay is achieved for any values
of pij that satisfy (1), and different sets of routing probabilities
will yield in this (same) optimal delay value. One such solution
occurs whenpij = p, and from (1) we get

p = 1−
µ−

√

µ
dm

N
∑

i=1

∑

j 6∈Q

λiqij

. (2)

VI. D ISTRIBUTED ALGORITHM

Based on our analysis in the previous section, the global
optimum can be reached by a two-step solution consisting of
a centralized static cache allocation followed by distributed
greedy routing. The centralized caching solution relies on
the existence of a central authority that oversees all the user
demands and controls all the caches. This approach may
be difficult to apply in a MANET environment where it is
desirable to have a distributed solution that only relies onlocal
information. Furthermore, in practice user demand can change
over time due to user mobility or changes in file popularity.
Therefore, a challenge in solving the joint routing and caching
problem in a distributed manner is for the cache to infer the
file popularities (from the individual file popularities of users)
in order to decide which files to cache; the routing of requests
will in turn depend on the cached files.

In what follows, we present a Distributed Caching and
Routing (DCR) algorithm, which aims to emulate the behavior
of the optimal joint caching and routing policies and to
seamlessly adapt to changes in content popularities. Due to
space limitations and for clarity purposes, we present the
algorithm for the case wherethe delays are equal across
different users. Our algorithm can be easily generalized to the
case of different delays for different users.

The distributed algorithm consists of twophases. The first
phase corresponds to the state when the cache has an inaccurate
estimate of the file popularities, during which it will observe
a fixed portion of the traffic for all files. We call this state

the “caching phase” and require the users to send a specific
fraction,α, of their traffic to the cache. This allows the cache
to estimate the file popularities as well as the aggregate request
rate of the users. We determine the value ofα such that the
average delay during the caching phase is minimized.

The second phase, called the “routing phase”, begins after
the cache gathers enough data regarding user traffic. At this
point the cache is able to estimate file popularity and update
the cache content. Note that users can learn whether a content
is stored in the cache or not based on the difference between
the hit and miss delays. If users learn that some content is
in the cache, they will always forward their traffic for those
content to the cache. However, for content that is known not
to be in the cache, a fractionp (specified by the cache) of
the traffic gets forwarded to the cache, and the remaining is
routed to the uncached path. The reason for splitting the traffic
for uncached content is twofold: 1) it provides a means for
the cache to estimate the traffic for uncached content when
popularities change over time, and 2) avoids congesting the
uncached path in the congestion-sensitive case.

Note that in the caching phase the cache can observe a
fixed fraction of the traffic for all files, and can estimate
content popularity based on the incoming traffic. The cache
estimates the aggregate arrival rateλ̂ by dividing the number
of observed arrivals per time unit byα. Note that in the routing
phase only a fractionp of the traffic for the uncached content
is observable to the cache. Since this portion of the traffic
mainly corresponds to the misses at the cache, the cache can
estimate file popularitieŝq = 1

Λ
(nh + nm/p), wherenh and

nm denote vectors containing the number of observed requests
resulting in hits and misses for different files, andΛ is a
normalizing constant. More sophisticated techniques can be
used to estimate popularities (e.g., see [15]), but we will see
in the next section that this simple approach suffices in our
case.

Algorithm 1 summarizes the steps for the distributed
caching and routing described above. Note that at any point
in time, the cache can start the caching or routing phase by
broadcasting a message to users. We discuss next how to select
the two parametersα andp.

Algorithm 1 Distributed Caching and Routing (DCR)
// Caching Phase

1: Cache broadcasts the “caching phase” message with pa-
rameterα.

2: Users send requests to the cache with probabilityα, and
to the back-end server with probability1− α.

3: Cache estimates the file popularities and aggregate request
rate.
// Routing Phase

4: Cache broadcasts the “routing phase” message with pa-
rameterp.

5: Based on response times from the cache, users decide
whether a file is in the cache or not.

6: For the files that (users think) are in the cache, users send
their requests to the cache.

7: For the files not in the cache, users send requests to the
cache with probabilityp, and to the back-end server with
probability 1− p.



A. Congestion-insensitive uncached path

Let d̄c be the average delay assuming that all users route
their entire traffic to the cache. During the caching phase, as
users routeα portion of their traffic to the cache, the average
delay (D) is given byD = αd̄c + (1 − α)d0. It is easy to
see that the average delay is minimized forα = 0 if d̄c > d0,
and forα = 1, otherwise. Since, for estimation purposes, we
requireα to be greater than zero, we chooseα = 0.5 noting
that it results in a delay no more than a factor two of the
optimal.

For the routing phase, it can be easily seen that the optimal
delay is achieved by havingp = 0. However, this optimality is
achieved under the assumption of static content popularities.
In order to make it possible for the cache to estimate the traffic
for uncached content and track changes in content popularity,
we fix this parameter atp = 0.1 to direct 10% of the traffic
for uncached content to the cache.

B. Congestion-sensitive uncached path

For the congestion-sensitive case, the average delay (D)
over the caching phase can be written as

D = αd̄c +
1− α

µ− (1− α)λ
,

whereλ is the aggregate request rate,µ is the service rate of
the uncached path, and̄dc is the expected delay from the cache
and can be estimated as̄̂dc = (λ̂′dh + (λ̂ − λ̂′)dm)/λ̂, where
λ̂ and λ̂′ are estimates of the aggregate request rate and the
request rate for the cached content, respectively.λ̂′ is estimated
similar to λ̂. Assuming thatµ is known to the cache,α can
be computed as

α =
1

λ̂
(

√

µ

ˆ̄dc
− µ+ λ̂),

to minimizeD. If the cache does not have any (or accurate)
estimates forλ or λ′, it is desirable to start with a fairly large
value forα to prevent congesting the uncached path.

For the routing phase, the parameterp can be computed
based on (2). However, to prevent the uncached path from
getting congested, we always take the valuep = max(0.1, p′)
wherep′ is computed using (2).

VII. PERFORMANCEEVALUATION

In this section, we use simulation toi) demonstrate the im-
portance of jointly optimizing caching and routing rather than
optimizing with respect to just one of these considerations, and
ii) demonstrate the efficacy of DCR by showing that its delay
performance is comparable to the optimal algorithm.

A. Centralized Solution

To show the need for jointly optimizing caching and
routing, we consider a caching system with a congestion-
insensitive path to the base station, and evaluate the average
delay achieved under various caching and routing policies.
The policies outlined below are centralized and we consider
policies which optimize over neither, either or both caching
and routing.

LRU: We assume that the cache implements the Least-
Recently-Used replacement policy. The routing is simple, with
users sending all traffic to the cache (note that the uncached
path is not utilized here). We use this scenario as a baseline
case for evaluation of the distributed algorithm.

Optimized Caching:We assume that the cache statically caches
the most popular files, and that all requests are routed to the
cache. Note that the caching policy here corresponds to the
optimal caching policy, while the routing policy is naive.

Optimized Routing:In this case, the cache replacement policy
is LRU. To determine the routing strategy, users determine the
expected delay of requests to the cache assuming that all traffic
is routed to the cache. This expectation is calculated by using
the approximation for determining the hit rate for the different
files outlined in [6]. Users route requests for each file along
that path (cached/uncached) that has a lower expected delay
for that file.

Optimal: In this case, the cache statically caches the most
popular content. Users send traffic for the cached content to
the cache and for the remaining files to the uncached path. As
shown earlier this policy yields the optimal (minimum) delay.

Figure 1 plots the average delay achieved by the policies
explained above for different values of the cache size. We as-
sume thatdh = 1, dm = 8 andd0 = 5 time units. We consider
5 users generating requests for 1000 files with file popularities
having a Zipf distribution with skewness parameter 0.8. We
observe from the figure thatLRU performs poorly for small
cache sizes, with the performance improving as the cache size
increases.Optimized Caching, which optimizes only caching
and not routing, performs better thanLRU, but is not close to
Optimal.

Optimized Routingcombines a traditional caching policy
(LRU) with a greedy routing policy in which each user
determines apriori what files to route to the cache regardless of
the actual traffic being routed to the cache by other users. We
observe that when the cache size is small, the performance of
Optimized Routingis poor compared toOptimal. As the cache
size increases, the performance ofOptimized Routingimproves
and it equals the performance ofOptimal for a cache size
of 500. The reason for this behavior is that, for small cache
sizesOptimized Routingresults in users sending requests for
unpopular and relatively popular files through the uncached
path leaving the cache partially empty. This behavior persists
until a cache size of 500 whenOptimized Routingrequests
the most popular files from the cache and provides the same
performance asOptimal. Beyond a cache size of 500, this
policy routes requests for a larger number of files (greater than
the cache size) to the cache which results in a behavior similar
to LRU. We observe that this zigzag behavior ofOptimized
Routingwill hold regardless of the simulation parameters; the
number 500 is an artifact of the particular parameter valuesof
this simulation.

In comparison to all the other algorithms, the delay ob-
tained fromOptimal is smaller. Our simulations show that to
minimize user delay it is of prime importance to optimize both
caching and routing; optimizing one and not the other can re-
sult in suboptimal and often unsatisfactory delay performance.
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Fig. 1. Comparison of the average delay for jointly solved caching and
routing problem (Optimal) with partially optimized solutions.

B. Distributed Solution

Having demonstrated the importance of optimizing joint
caching and routing, our next goal is to show that our dis-
tributed algorithm DCR achieves delay performance similarto
Optimal. We once again consider a group of 5 users, 1000
files, dh = 1 anddm = 8. The demand for each user follows
a Poisson process with aggregate rateλ = 1/5. The initial file
popularities follow a Zipf distribution with skewness parameter
0.8.

We simulate changes in file popularities that happen with
probability 0.01 at each request arrival. For each change, we
select a random useru and request typef , and update the
popularity quf as quf = min(1,max(0, quf + ∆)) where∆
is uniformly distributed in[−∆max,∆max], and∆max = quf .
We assumed0 = 5 andµ = 0.5 in the congestion-insensitive
and congestion-sensitive cases, respectively.

To evaluate the performance of the proposed distributed
algorithm, we compare the delay performance of the Dis-
tributed Caching and Routing (DCR) algorithm with two other
algorithms – the Distributed Caching and Optimized Routing
(DCOR) algorithm andOptimal. DCOR consists of a ‘caching
phase’, where the cache estimates the file popularities and
caches the popular files. We assume that users have perfect
knowledge of the cache state and route requests greedily based
on whether the content is present in the cache or not.Optimal
is similar to the one described in the previous section (i.e.,
before every request arrives, the algorithm determines the
optimal set of files to be placed in the cache based on the
current popularities and then determines the routing basedon
the cached content). Note that DCOR andOptimal are not
implementable in practice.

Figure 2 compares the delay values obtained from the
DCR, DCOR andOptimalalgorithms over106 arrivals for the
congestion-insensitive and congestion-sensitive uncached path
delay models. For the congestion-insensitive case, we present
delay values forLRU which is clearly far fromOptimal. We
also evaluateLRU for the congestion-sensitive case, but we
omit it from the figure as its delay performance is further away
from Optimal.

The purpose of exploring the different algorithms is to
separately determine the impact of imperfect caching and
routing on the loss in performance. The difference between
Optimal and DCOR depicts the loss in performance as a
result of imperfect caching. We observe that there is negligible
difference between DCOR andOptimal which indicates that
even our naive method of estimating popularities performs
well in practice. The difference between DCR and DCOR is
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Fig. 2. Comparing the average delay obtained by the distributed algorithm
with delay achieved byOptimal and DCOR for congestion-insensitive (left)
and congestion-sensitive (right) delay models for the uncached path.
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Fig. 3. Average delay versus the cache size for congestion-insensitive (left)
and congestion-sensitive (right) delay models for the uncached path.

primarily due to the imperfect knowledge of the cached content
by the users; it can be seen that as the number of arrivals
increase, users have a better understanding about the cached
content and DCR performs closer to DCOR andOptimal.
Further we also observe that the relative performance of DCR
is better for the congestion-sensitive case than the congestion-
insensitive case.

To get a better sense of expected performance of the DCR
algorithm, we evaluate the average delays achieved by DCR
and its benchmarks as a function of the cache size. Figure 3
shows the results averaged over 10 runs of the simulation (each
run consists of106 arrivals). As expected, the average delay
decreases as the cache size increases. It can be seen that DCR
performs very close toOptimal. The reason DCR deviates from
the Optimal for larger cache sizes (compared with the total
number of files) is that we restrict the parameterp to 0.9 as
described in Section VI. When the cache size is large, a larger
portion of the traffic can be satisfied from the cache and it is
less likely that the uncached path will be congested. However,
in practice we are more interested in cases where the cache
size is small compared to the number of all files.

VIII. C ONCLUSION

In this paper, we studied a joint routing and caching
problem in a hybrid network, consisting of MANET nodes
and cellular infrastructure. We modeled the cellular path
as either(i) a congestion-insensitive constant delay path or
(ii) a congestion-sensitive path modeled as an M/M/1 queue
and demonstrated that it is always optimal to adopt static
caching based on content popularity. We also showed that it
is always optimal to route for cached content to the cache;
for the remaining content, requests should be routed to the
cellular path in the congestion-insensitive case and should
be split between the cellular infrastructure and the cache in
the congestion-sensitive case. We also developed a simple



distributed algorithm for the above problem and illustrated its
performance via simulation.
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APPENDIX
PROOF OFLEMMA 1
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