
Customizable Sponge-Based
Authenticated Encryption

Using 16-bit S-boxes
Matthew Kelly∗, Alan Kaminsky†, Michael Kurdziel‡, Marcin Łukowiak∗ and Stanisław Radziszowski†

∗Department of Computer Engineering, Rochester Institute of Technology
†Department of Computer Science, Rochester Institute of Technology

‡Harris Corporation, Rochester, NY

Abstract—Authenticated encryption (AE) is a symmetric key
cryptographic scheme that aims to provide both confidentiality
and data integrity. There are many AE algorithms in existence
today. However, they are often far from ideal in terms of efficiency
and ease of use. For this reason, there is ongoing effort to develop
new AE algorithms that are secure, efficient, and easy to use.

The sponge construction is a relatively new cryptographic
primitive that has gained popularity since the sponge-based
KECCAK algorithm won the SHA-3 hashing competition. The
duplex construction, which is closely related to the sponge, pro-
vides promising potential for secure and efficient authenticated
encryption.

In this paper we introduce a novel authenticated encryption
algorithm based on the duplex construction that is targeted
for hardware implementation. We provide explicit customization
guidelines for users who desire unique authenticated encryption
solutions within our security margins. Our substitution step uses
16× 16 AES-like S-boxes which are novel because they are the
largest bijective S-boxes to be used by an encryption scheme
in the literature and are still efficiently implementable in both
hardware and software.

I. INTRODUCTION

The overarching goal of symmetric key cryptography is
to enable people (or devices) to communicate privately over
an insecure channel in the presence of adversaries. Two
fundamental requirements for achieving this goal are encryp-
tion and authentication. Encryption provides confidentiality
while authentication provides data integrity and assurance of
message origin [1].

Many authenticated encryption algorithms are in existence
today, but they are often unsatisfactory in terms of perfor-
mance, security, or ease of use. Some algorithms require two
passes per block of plaintext to encrypt and authenticate. This
is generally undesirable because it often means a much slower
algorithm. Other algorithms have been shown to be insecure
or difficult to use properly (notable examples include Phelix
[2] and CCM [3]). Many algorithms, such as the ones based
on generic composition, require two unique and unrelated
keys. This should be avoided when possible because key
management is a difficult problem [4].

Furthermore, a new authenticated encryption algorithm is
needed that meets the stringent requirements of government
and military applications. Such algorithms are not typically
in the public domain. The goal of this is partially to reduce

or eliminate academic interest in cryptanalyzing the algorithm
and publishing results [5].

For this reason, there is a need for a customizable authen-
ticated encryption algorithm. This algorithm should remain
secure as long as customizations are made within certain
guidelines. The result is an algorithm which can be made
unique on a per-user or per-application basis without the effort
of cryptanalyzing every specific instantiation. We present a
customizable AE algorithm here that is based on the duplex
construction and is built around an iterated permutation that
uses 16× 16 bijective S-boxes. These large S-boxes introduce
much higher non-linearity and algebraic complexity to the
permutation than what could be achieved with smaller S-boxes
of a similar structure (e.g. the AES S-boxes). This allows us to
significantly increase the computational complexity required to
attack the algorithm without increasing the number of rounds
(which would hurt performance metrics such as throughput).
Furthermore, there is a minimal increase to the hardware area
required for these large S-boxes as compared to similar 8-bit
S-boxes [6].

II. SPONGE CONSTRUCTION

The sponge construction is a relatively new cryptographic
primitive that has gained popularity since KECCAK won the
Secure Hash Algorithm (SHA-3) competition in 2013 [7][8].
Essentially, it provides a way to generalize hash functions
(which normally have outputs of fixed length) to functions
with arbitrary length output. This generalization allows crypto-
graphic sponges to be used for applications other than hashing.

Sponges are based on the iteration of an underlying function
f . This function can either be a general transformation or
a permutation. The security proofs are different for trans-
formations and permutations, and there are advantages and
disadvantages for each choice of a function type [9].

The output Z of the parameterized sponge construction is
given as

Z = sponge[f,pad, r](M, `),

where pad is a padding function for the input, r is the rate of
absorption, M is the message (or other input) data, and ` is the
desired output length. The sponge construction re-initializes its
internal state between calls to it. It is split into two distinct

Fig. 1. The duplex construction duplex[f,pad, r] [9]

phases: the absorbing phase and the squeezing phase. Inputs
(e.g. message and/or key material) are absorbed in the first
phase and the output (e.g. a MAC or keystream) is squeezed
out in the second phase.

The state of the sponge construction is split into two con-
tiguous portions: the outer state, which is accessible externally,
and the inner state, which is hidden. The size of the outer state
is given by the rate r and the size of the inner state is specified
by the capacity c. The size of the entire state is b = r + c.
The speed of the construction depends on the rate, while the
security depends on the capacity.

The padding function pad is first applied to M to make
it a multiple of r. M is then absorbed r bits at a time.
More concretely, absorption is the process of XORing r-bit
blocks into the state while interleaving with applications of
the underlying sponge function f . If the rate is increased then
more bits are absorbed at a time and thus the construction runs
faster. However, increasing the rate means that the capacity
must decrease and so there is a clear trade-off between speed
and security. Squeezing consists of concatenating r bits at a
time to an output bitstring Z that is truncated to ` bits. The
sponge function f must be called once for each r bits of output
after the first full block.

III. DUPLEX CONSTRUCTION

The duplex construction is highly related to the sponge
construction. The main differences are that the duplex con-
struction maintains its internal state between calls rather than
re-initializing it and that there no longer exists a clear separa-
tion between the absorbing and squeezing phases. Absorbing
and squeezing happen at the same time, hence “duplexing”
[10]. The duplex mode has several applications [11], with
authenticated encryption being the one of interest to us.

Parameters for the duplex construction are mostly the same
as for the sponge construction. However, since the duplex
construction maintains state, we build a duplex object D and
make calls to it. The function which processes inputs and
produces outputs is called duplexing:

Zi = D.duplexing(σi, `i)

Figure 1 shows the duplex construction. The i-th input
is denoted σi and the i-th output is denoted Zi, which is

Fig. 2. The duplex construction as used for authenticated encryption [11]

truncated to `i bits. Inputs are absorbed and processed at the
same time that outputs are squeezed. For a duplex object it is
possible to have an empty input or to not produce an output.
A blank call is a call to duplexing for which no input is
provided (|σi| = 0). A mute call is a call for which no output
is produced (`i = 0).

A. Duplex for Authenticated Encryption

Authenticated encryption is easily achieved using the duplex
construction. Figure 2 shows such a use case. First, we
construct a duplex object D. Then we absorb the key K (or
optionally K||IV where IV is an initialization vector) using
one or more mute calls to D.duplexing. More than one mute
call may be required if the length of the key exceeds the rate
r. We denote a header input to D as A = (A0, A1, . . .); these
arbitrary length inputs are authenticated but not encrypted.
We denote a body input to D as B == (B0, B1, . . .); these
arbitrary length inputs are both encrypted and authenticated.
Header input blocks Ai are absorbed using one or more mute
calls to D.duplexing. Body input blocks Bj are absorbed
in a similar fashion and then the keystream Z is XORed with
B to produce the ciphertext C = (C0, C1, . . .). The tag T is
produced using a blank call to D.duplexing after all header
and body inputs have been processed. A′0 is the first header
input block corresponding to the second header to be absorbed.

We note that the duplex construction may require domain
separation, a generic mechanism for eliminating output am-
biguity. For example, the simplest domain separation method
consists of appending a frame bit to the last block of every
different input data type (e.g. key or message data). This frame
bit has the property that no two consecutive data types have
the same frame bit value, meaning that one can easily identify
where one data type ends and the next begins [10].

B. Generic Security

Any calls made to the duplex construction can be reduced to
calls to the keyed sponge construction. As a result, the security
of the duplex construction depends only on its corresponding
sponge construction.

The security of the sponge construction is based on the as-
sumption that the underlying sponge function f is secure. That
is, if f is computationally indistinguishable from random then
so should be the sponge construction it is instantiated within.
Consequently, cryptographers designing a system based on the
sponge construction need only be concerned with designing
and cryptanalyzing a secure underlying function. The sponge
construction, when used properly, is said to be secure against

generic attacks – attacks which do not exploit any specific
properties of the underlying sponge function. We call this the
generic security of the construction [9].

The generic security of keyed constructions is higher than
unkeyed. For our purposes we are interested only in the
security of the keyed sponge construction where a permutation
is used for f . Jovanovic et. al [12] proved in 2014 that the
generic security level of keyed sponge constructions is lower
bounded by

min(2(r+c)/2, 2c, 2|K|).

IV. ALGORITHM SPECIFICATION

Our authenticated encryption algorithm is based on a sim-
plified duplex construction. Padding and domain separation are
assumed to be performed at some higher level in the overall
system if needed. For this reason, it is sufficient to specify
only the duplex parameters and the sponge function f .

A. Duplex Parameters

We allow two key sizes: 128 bits and 256 bits. Our construc-
tion uses a 512-bit internal state, thus b = 512. The rate r is
128 bits for both key lengths, which means that the capacity
c is 384. Keeping the rate at a constant 128 bits for both
instantiations means that switching between key lengths is a
trivial task.

The capacity c = 384 provides sufficient security against
generic attacks for both 128- and 256-bit keys. As explained
in Section II, we know from [12] that the generic security level
is 2128 for a 128-bit key and 2256 for a 256-bit key.

B. Permutation f

Our underlying sponge function f is a permutation. This
ensures that f is entropy-preserving and thus no collisions
can occur between different inputs to it [9]. Although f is
invertible, we specify only the forward permutation here as
the inverse is not required for practical purposes.

The permutation f consists of Nr rounds. For a 128-bit
key, Nr = 10 and for a 256-bit key, Nr = 16. Figure 3
specifies the 128-bit key variant of f which operates on the
state S. The state is modeled here as a C-style union of a 512-
element array of bits denoted S.bits and a 32-element array
of 16-bit words denoted by S.words. The 16-bit word length
is a natural choice because of the 16 × 16 S-boxes used in
the permutation. The algorithm uses two functions: the sbox
function that performs the S-box operation described in this
section and the mix function also described in this section.
Figure 4 visually illustrates a single round consisting of four
steps: a substitution, a bitwise permutation π, a mixing layer,
and the XOR addition of a round constant.

1) Substitution Step: The substitution step is a bricklayer
permutation that uses 32 identical, bijective 16× 16 S-boxes.
This step is the main source of confusion within the permu-
tation. Furthermore, it is the only nonlinear step, as is typical
with many substitution-based symmetric key algorithms [1].

To the best of our knowledge this is the first cryptosytem to
use such large S-boxes. We believe that, at the time of writing,

Input: S . The state (modified in place)
1: Nr ← 10 . Number of rounds
2: Nb ← 512 . Number of bits in a state
3: Nw ← 32 . Number of 16-bit words in a state
4: for r ← 1, Nr do
5: for x← 0, Nw − 1 do . Substitution Step
6: S.words[x]← sbox(S.words[x])
7: end for
8: Ŝ ← S.copy()
9: for x← 0, Nb − 1 do . Bitwise Permutation Step π

10: y ← 31 · x+ 15 (mod 512)
11: S.bits[x]← Ŝ.bits[y]
12: end for
13: for x← 0, Nw − 1 do . Mix Step M
14: (S.words[x], S.words[x+ 1])
15: ←mix(S.words[x], S.words[x+ 1])
16: end for
17: S ← S ⊕RCr . Add Round Constant Step
18: end for

Fig. 3. Permutation f algorithm for a 128-bit key

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

π

M M M M M M M M M M M M M M M M

⊕

Fig. 4. Illustration of a single round of sponge permutation f where each of
the 32 lines represents a 16-bit word

the largest S-boxes used in the literature are the 8×8 bijective
S-boxes used by the AES [13][14].

Our S-box is an AES-inspired design taken directly from
Wood’s thesis on the subject [6]. The primary reason for using
this particular class of 16-bit S-boxes is that they are efficiently
implementable in hardware. Rather than being based on a
random mapping, they are based on multiplicative inversion
in a finite field followed by an affine transformation. This
allows us to implement a circuit which performs the field
operations rather than use the corresponding (and prohibitively
large) look-up table.

This S-box is based on multiplicative inversion in
GF(216)/ 〈p(x)〉 where

p(x) = x16 + x5 + x3 + x+ 1.

We represent an input to the S-box (and inverse S-box) as a
16-bit column vector

x = (x15, x14, . . . , x1, x0)
T

where x15 is the MSB. Using this notation, the forward S-box
function is given as S(x) =

0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0
1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1
1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0
1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1
0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1
0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1
0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1
1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1
1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0
1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0

x15

x14

x13

x12

x11

x10

x9

x8

x7

x6

x5

x4

x3

x2

x1

x0

−1

⊕

0
1
0
0
0
1
0
1
1
0
1
1
0
1
1
1

.

This S-box was chosen among others constructed in Wood’s
thesis because it has the smallest hardware footprint. A hard-
ware implementation for this S-box requires just 1238 XOR
gates and 144 AND gates [6].

2) Bitwise Permutation Step: Bitwise permutations are eas-
ily implementable in hardware via a simple rerouting of wires.
Compared to a permutation on the words of the state, a bitwise
permutation intuitively provides much better diffusion. The
bitwise permutation step is the main source of long-range (i.e.
across the entire state) diffusion in the algorithm.

The bitwise permutation also helps maximize the minimum
number of active S-boxes by being subject to certain con-
straints. The order of a bitwise permutation is the number
of times it must be applied before it ends up in its original
orientation. A particular bit in a bitwise permutation also has
the notion of order and a bit of low order is one that returns
to its original position before the entire permutation begins to
cycle. If a bit has order one, it is unaffected by the bitwise
permutation and is called a fixed point. We use a permutation
that satisfies the following properties:
a) All outputs of a given S-box go to 16 different mixers
b) The permutation is a derangement; it has no fixed points
c) High order; it does not repeat within the number of rounds
d) No low order bits; the order of any bit equals the order of

the overall permutation
e) Definable by an affine function

We chose the following permutation to use for our algorithm
since it satisfies properties a) - e):

π(x) = 31x+ 15 (mod 512)

where x is the index of the bit being operated on. This bitwise
permutation has order 32. For a complete listing of such
bitwise permutations that satisfy our requirements, refer to
[15].

3) Mix Step: The purpose of the mix step is to provide
local diffusion (i.e. across two words) and increase the linear
and differential branch numbers of a round from two to three.
We use a mixer based on multiplication by a 2× 2 matrix in
GF(216) modulo the irreducible polynomial

q(x) = x16 + x5 + x3 + x2 + 1.

A B

x∗ x∗

A′ B′

Fig. 5. Hardware implementation of the forward mixer function

The mixer takes two words A and B as input and produces
outputs A′ and B′ as follows:(

A′

B′

)
=

(
1 x
x x+ 1

)(
A
B

)
The MSB of each word is taken as the leftmost bit and is
represented by x15.

Figure 5 shows how this matrix multiplication can be
efficiently implemented in hardware. The x∗ operation is a
multiplication by x in GF(216) which is trivial to implement
in hardware using a rotation of wires and three XOR gates.

4) Add Round Constant Step: This step consists of adding a
512-bit value to the state using bitwise XOR in order to disrupt
symmetry and prevent slide attacks. The round constant RCi

for round i is given by the formula

RCi = SHA3-512(ASCII(i)),

where ASCII(i) is a function that provides the ASCII rep-
resentation of i and SHA3-512 is the SHA-3 hash function
that outputs a 512-bit message digest.

C. Number of Rounds

This algorithm uses 10 rounds for a 128-bit key and 16
rounds for a 256-bit key. The number of rounds is determined,
as is typical with block ciphers and permutations, by calculat-
ing the number needed for resistance to linear and differential
cryptanalysis and adding some buffer to increase the security
margin. For a more in-depth treatment, refer to Section V.

D. Customization

While a specific instantiation is given here, our algorithm is
highly customizable within our security margin. This could be
useful in the case that different users want unique, proprietary
algorithms. We list several possible customizations here.

1) State Initialization: Modifying the initial value of the
inner state is the primary and easiest method of customization.
In the given specification, the inner state (like the outer state)
is initialized to zero. This is not a requirement; the inner state
could be initialized to any 384-bit value. Each user could
generate their own unique value to set during the initialization
phase. This happens before the first mute calls that absorb the
key.

2) S-boxes: The AES-inspired S-box used here is efficiently
implementable in hardware. There are certainly many other
cryptographically secure 16-bit S-boxes, but randomly gener-
ated ones may not be suitable for hardware implementation
due to size constraints. This is an area for further research.
Still, several other AES-like 16-bit S-boxes are presented in
[6]. Any new S-box introduced into the algorithm shall be
analyzed to determine its linear and differential characteristics
and the number of rounds should be adjusted accordingly if
necessary. This analysis can easily be performed using the
tools mentioned in Section V.

3) Bitwise Permutations: The bitwise permutation provided
in this algorithm specification is one of many that satisfies
the constraints a) - e) we impose. For a complete listing of
all suitable bitwise permutations we refer to [15]. Users may
select any of these without need for further cryptanalysis.

4) Mixers: Our mixer is based on a specific 2 × 2 matrix
multiplication in GF(216) modulo the irreducible polynomial
q(x). Many similar matrices are expected to satisfy the con-
straints that we impose. These constraints are:

1) The 2×2 matrix should be invertible in GF(216)/ 〈q(x)〉
2) The matrix should have differential and linear branch

number equal to three (the maximum possible)
Like the addition of a new S-box, any new matrix introduced
to the algorithm should be analyzed to ensure it meets these
constraints. This analysis can be performed using the tools
mentioned in Section V.

5) Round Constants: The round constants presented here
are based on SHA-3 hash values. However, they could be any
values that satisfy the following constraints. Round constants
should be:

1) Unique for each round; to prevent against slide attacks
2) Random, pseudorandom, or highly asymmetric; to reduce

symmetry in the state
The round constants are not expected to have any cryp-
tographic significance outside of this. Different users can
generate their own unique set of round constants without
difficulty.

V. COMMENTS ON CRYPTANALYSIS

The duplex construction has been shown to be secure against
generic attacks by the KECCAK team [9]. Therefore it is
sufficient for us to assess only the security of the underlying
sponge permutation f .

We provide an overview of our preliminary cryptanalysis
here. Emphasis is placed on the most general and prevalent
forms of attacks. Resistance against these techniques should
result in resistance against many other less general techniques.
Our aim is to provide intuitive explanations of prevalent
methods and simply explain why our permutation should be
resistant. Further cryptanalysis, as with all cryptosystems, is
always welcome as future work.

A. Differential Cryptanalysis

Differential cryptanalysis was publicly introduced by Biham
and Shamir in 1991 in their landmark paper on the subject

[16]. Since then, it has been applied with varying degrees
of success to a great number of cryptosystems. As such, it
is a fundamental requirement of symmetric key cryptosystem
design to prove resistance to differential cryptanalysis.

To determine the resistance of our algorithm to differential
cryptanalysis, we first have to determine the maximum differ-
ential probability of our S-box. We determined this value to
be pD,max = 2−14 using an S-box evaluation program called
Eval16BitSbox [17] written with Kaminsky’s Parallel Java
2 library [18].

Next, it is necessary to determine the differential branch
number of a round. For this, we only need to analyze the mixer.
We purposefully designed a mixer with differential branch
number equal to three, meaning that minimally three S-boxes
will be differentially active between two rounds. This is in fact
the maximum achievable branch number for a transformation
defined by multiplication by a 2 × 2 matrix. To verify this,
we used a SAT solver called CryptoMiniSat [19]. This SAT
solver takes as input a Boolean equation in conjunctive normal
form (CNF) and determines if it is satisfiable. Our CNFs were
generated using Kaminsky’s SatProblem Java class [17].

The CNFs generated are unsatisfiable if and only if the
mixer has differential branch number equal to three since
it answers the following question (refer to Figure 5): is it
possible to have a difference in only one input (A or B) and
only one output (A′ or B′)? Through SAT solver analysis we
determined that this is not possible for our mixer; that is, if
there is a non-zero difference in either A or B, there must be a
non-zero difference in both A′ and B′. In the event that there
is a difference in both inputs, there may be a difference in only
one output. This still leads to a differential branch number of
three since two S-boxes must have been active in the previous
round to lead to those two input differences. The probability
of a difference in either output is pD,out = 2−15.

With all of this information, it is possible to calculate
the number of rounds needed for resistance to differential
attacks. The worst-case probability of successfully propagating
a difference over two rounds is given by

(pD,max)
BD · pD,out,

where BD = 3 is the differential branch number. Next, we
found that the complexity of a differential attack exceeds the
complexity of a brute force attack at six rounds for a 128-bit
key. To increase our security margin significantly, we require
10 rounds for a 128-bit key. For a 256-bit key, 16 rounds are
required to achieve a similar security margin.

B. Linear Cryptanalysis

Linear Cryptanalysis was first introduced by Matsui in 1993
in his seminal paper on the subject [20]. As with differential
cryptanalysis, it is a fundamental requirement of symmetric
key cryptosystem design to prove resistance against linear
attacks.

Recall that we have verified via SAT solver analysis that
the differential branch number of our mixer is three. In
[13], Daemen and Rijmen prove the following result: the

linear branch number of a linear transformation specified by
multiplication by a matrix M is equal to the differential
branch number of the linear transformation specified by the
transpose of that matrix. Therefore, a sufficient condition for
the differential and linear branch numbers to be equal is that
the matrix is symmetric. Our matrix is symmetric and therefore
we know that BD = BL.

The final step to prove the resistance of our algorithm
against linear cryptanalysis involves determining the linear
bias of two complete rounds of our permutation. To combine
linear biases, we use Matsui’s Piling-Up Lemma from [20]:

ε = 2n−1
n∏

i=1

εi,

where n = 3 is the number of linearly active S-boxes across
two rounds and εi = εL,max = 2−8 is the worst case linear
bias of those S-boxes. Also from Matsui’s paper, we know
that the number of plaintext/ciphertext pairs (again referred to
loosely as the complexity) needed to exploit the overall bias ε
is approximately ε−2. Using this information, we determined
that the complexity of a linear attack exceeds the complexity
of a brute force search of a 128-bit keyspace at six rounds.

C. Algebraic Attacks

Differential and linear cryptanalysis take a probabilistic
approach to estimating the behavior of a system. In contrast,
algebraic attacks take a deterministic approach in that they
aim to find mathematical models of a system that hold with
probability 1. For example, in 2001 Ferguson et al. [21]
introduced an elegant and complete algebraic representation
of AES. The ability to create such a simple mathematical
representation of the cipher initially raised alarm throughout
the cryptographic community. However, the security of AES
seems to be uncompromised since we believe it is far too
difficult to solve such an algebraic system - the algebraic
complexity of the AES S-box is too high.

Until there are any reasons to believe otherwise, it seems
that these algebraic attacks would be highly ineffective against
our permutation f . Even if there were a practical algebraic
attack demonstrated on AES, which all literature indicates as
highly implausible right now, the much larger size of our S-
box and therefore the much higher algebraic complexity (see
[6]) leads us to conjecture that our permutation would still be
resistant.

VI. CONCLUSIONS

In this paper we presented a customizable authenticated
encryption algorithm based on the duplex construction that
is targeted for hardware implementation. The permutation
f used in this algorithm includes 16 × 16 S-boxes that
greatly increase non-linearity and algebraic complexity with
a minimal increase to hardware area requirements compared
to similar 8-bit S-boxes (e.g. those used in AES). We believe
this algorithm to be highly secure against known attacks. In
particular, we provided proof of resistance against linear and

differential attacks as well as solid reasoning for resistance
against algebraic attacks.

There are two primary areas for further work related to the
algorithm presented here. As with all cryptosystems, further
cryptanalysis is always appreciated. In particular, it would be
interesting to determine the best possible linear and differential
trails across several rounds.

The other area of work is the hardware implementation of
the algorithm described here. In particular, quantitative results
relating to the resource usage for an FPGA implementation
are of great interest. We are confident that our permutation
is designed in such a way that a relatively small amount of
resources will be required.

REFERENCES

[1] D. Stinson, Cryptography: Theory and Practice, Second Edition.
CRC/C&H, 3rd ed., 2006.

[2] H. Wu and B. Preneel, “Differential-Linear Attacks Against the Stream
Cipher Phelix,” in Fast Software Encryption, pp. 87–100, Springer, 2007.

[3] P. Rogaway and D. Wagner, “A Critique of CCM,” 2003. http://cs.
ucdavis.edu/∼rogaway/papers/ccm.pdf.

[4] N. Ferguson, B. Schneier, and T. Kohno, Cryptography Engineering.
Indianapolis, IN: Wiley Publishing, 2010.

[5] M. T. Kurdziel and J. Fitton, “Baseline Requirements for Government
and Military Encryption Algorithms,” in MILCOM 2002. Proceedings,
vol. 2, pp. 1491–1497, IEEE, 2002.

[6] C. A. Wood, “Large Substitution Boxes with Efficient Combinational
Implementations,” Master’s thesis, Rochester Institute of Technology,
2013. http://scholarworks.rit.edu/theses/5527/.

[7] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The KECCAK
reference,” NIST SHA-3 Submission Document, January 2011. http://
keccak.noekeon.org/Keccak-reference-3.0.pdf.

[8] S. Chang, R. Perlner, W. E. Burr, M. S. Turan, J. M. Kelsey, S. Paul,
and L. E. Bassham, “Third-Round Report of the SHA-3 Cryptographic
Hash Algorithm Competition.” NIST Internal Report 7896, November
2012. http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf.

[9] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Cryptographic
Sponge Functions,” 2011. http://http://sponge.noekeon.org/CSF-0.1.pdf.

[10] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Duplexing the
sponge: single-pass authenticated encryption and other applications,” in
Selected Areas in Cryptography, pp. 320–337, Springer, 2012.

[11] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
“Duplexing the sponge: single-pass authenticated encryption and
other applications,” August 2010. http://csrc.nist.gov/groups/ST/
hash/sha-3/Round2/Aug2010/documents/presentations/DAEMEN
SpongeDuplexSantaBarbaraSlides.pdf.

[12] P. Jovanovic, A. Luykx, and B. Mennink, “Beyond 2c/2 Security
in Sponge-Based Authenticated Encryption Modes.” Cryptology ePrint
Archive, Report 2014/373, 2014. http://eprint.iacr.org/.

[13] J. Daemen and V. Rijmen, The Design of Rijndael: AES-The Advanced
Encryption Standard. Springer, 2002.

[14] NIST, “Specification for the Advanced Encryption Standard (AES).”
Federal Information Processing Standards Publication 197, November
2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[15] M. Kelly, “Design and Cryptanalysis of a Customizable Authenticated
Encryption Algorithm,” Master’s thesis, Rochester Institute of Technol-
ogy, 2014. http://scholarworks.rit.edu/theses/8325/.

[16] E. Biham and A. Shamir, “Differential Cryptanalysis of DES-like
Cryptosystems,” Journal of CRYPTOLOGY, vol. 4, no. 1, pp. 3–72,
1991.

[17] A. Kaminsky, “Block Cipher Analysis.” http://cs.rit.edu/∼ark/
parallelcrypto/blockcipheranalysis/, 2014.

[18] A. Kaminsky, “Parallel Java 2 Library.” http://cs.rit.edu/∼ark/pj2.shtml,
2014.

[19] M. Soos, “CryptoMiniSat.” http://msoos.org/cryptominisat2/, 2014.
[20] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” in Advances

in Cryptology—EUROCRYPT’93, pp. 386–397, Springer, 1994.
[21] N. Ferguson, R. Schroeppel, and D. Whiting, “A Simple Algebraic

Representation of Rijndael,” in Selected Areas in Cryptography, pp. 103–
111, Springer, 2001.

