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Abstract—In this paper, we propose a missing spectrum data
recovery technique for cognitive radio (CR) networks using
Nonnegative Matrix Factorization (NMF). It is shown that the
spectrum measurements collected from secondary users (SUs)
can be factorized as product of a channel gain matrix times
an activation matrix. Then, an NMF method with piecewise
constant activation coefficients is introduced to analyze the
measurements and estimate the missing spectrum data. The
proposed optimization problem is solved by a Majorization-
Minimization technique. The numerical simulation verifies that
the proposed technique is able to accurately estimate the missing
spectrum data in the presence of noise and fading.

Index Terms—Nonnegative Matrix Factorization, Cognitive
Radio Network, Spectrum Sensing, Missing Data Estimation

I. I NTRODUCTION

Recent advances in wireless communications and micro-
electronic devices are leading the trend of research toward
cognitive radios (CRs) [1]. The main feature of CRs is the op-
portunistic usage of spectrum. CR systems try to improve the
spectrum efficiency by using the spectrum holes in frequency,
time, and space domains [1, 2]. This means that secondary
users (SUs) are allowed to utilize the spectrum, provided that
their transmissions do not interfere with the communication
of primary users (PUs) [3]. The fundamental components of
CR systems that allow them to avoid interference are spectrum
sensing and resource allocation.

However, in a practical CR network, spectrum occupancy
measurements for all the frequency channels at all times are
not available. This is partially because of energy limitations
and network failures. Another highly important and very
common reason for occurrence of missing entries in the data
set is the hardware limitation. Each SU may want to use
different frequency channels, but it may not be capable of
sensing all the channels simultaneously [4, 5]. On the other
hand, a complete and reliable spectrum sensing data set is
needed for a reliable resource allocation. Therefore, we need
to develop a method to estimate the missing spectrum sensing
measurements. This task is especially more challenging in
dynamic environments.

There are different approaches toward the problem of data
analysis in the CR networks. In [6], a learning approach
is introduced based on support vector machine (SVM) for

spectrum sensing in multi-antenna cognitive radios. SVM
classification techniques are applied to detect the presence
of PUs. Several algorithms have been been proposed using
dictionary learning framework [7, 8]. These approaches tryto
find the principal components of data using dictionary learning
and exploit the components to extract information.

The goal of this paper is to estimate the missing spectrum
sensing data as accurate as possible in the time varying en-
vironments. An approach is introduced based on Nonnegative
Matrix Factorization (NMF) [9, 10] to represent the spectrum
measurements as additive, not subtractive, combination of
several components. Each component reflects signature of one
PU, therefore the data can be factorized as the product of
signatures matrix times an activation matrix.

Dimension reduction is an inevitable pre-processing step
for high dimensional data analysis [11]. NMF is a dimension
reduction technique that has been employed in diverse fields
[12, 13]. The most important feature of NMF, which makes
it distinguished from other component analysis methods, is
the non-negativity constraint. Thus the original data can be
represented as additive combination of its parts.

In our proposed method, a new framework is introduced to
decompose the spectrum measurements in CR networks using
a piecewise constant NMF algorithm in presence of missing
data. Piecewise constant NMF and its application in video
structuring is introduced in [14]. In the proposed method, we
try to handle the missing entries in the data and also take
a different approach to solve the corresponding optimization
problem using an iterative reweighed technique.

In the context of CR networks, NMF is utilized in [15] to
estimate the power spectra of the sources in a CR network
by factorizing the Fourier Transform of the correlation matrix
of the received signals. Our proposed method estimates the
missing entries in power spectral density measurements by
enforcing a temporal structure on the activity of the PUs and
can be used in scenarios when the number of the PUs is not
known.

The introduced method takes advantage of a prior infor-
mation about the activity of the PUs and exploits piecewise
constant constraint to improve the performance of the factor-
ization. Moreover, a solution for the introduced minimization
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problem is suggested using the Majorization-Minimization
(MM) framework.

The rest of the paper is organized in the following order.
In Section II, the system model and the problem statement
are introduced. Section III describes the proposed new NMF
problem. In Section IV, a method is presented to solve the
piecewise constant NMF problem in MM framework with
missing data. Section V presents the simulation results and
finally Section VI draws conclusions.

II. SYSTEM MODEL

Due to the nature of wireless environments, trustworthy
information cannot be extracted from measurements of a single
SU. To find the spectrum holes in frequency, time, and space,
there exists a fusion center that collects and combines the
measurements from all the SUs [4]. Cooperative spectrum
sensing makes the missing data estimation algorithm more
robust. Fusion center predicts the missing entries by using
the collected measurements.However, since each SU is not
able to sense the whole spectrum all the time, the data set
collected from the SUs contains missing entries. Network
failures, energy limitations, and shadowing can also causeloss
of data.

Without loss of generality, we want to reconstruct the power
map in a single frequency band. The network consists of
NP primary transmitters andNR spectrum sensors that are
randomly spread over the entire area of interest. Figure 1
illustrates an example of a network withNP = 2 PUs and
NR = 10 SUs in a100× 100 area.
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Fig. 1: The power distribution of2 PUs (squares) and deployment
of 10 SUs (triangles) without considering shadowing effect.

The received power of therth sensor at timet can be written
as

sr(t) =

NP∑

j=1

pj(t)γrj(t) + zr(t), (1)

wherepj(t) is the transmit-power of thejth PU at timet, γrj
is the channel gain from thejth PU to therth SU, andzr(t) is
the zero-mean Gaussian measurement noise at therth sensor

with varianceσ2
r . Considering a Rayleigh fading model, the

channel gain coefficient can be modeled as:

γrj =
C|hrj |

2

drj
α , (2)

where the channel constantC = GPGRc2

(4πf)2 , f is the carrier
frequency,c is the speed of light, andGP and GR are the
transmitter and receiver antenna gains.α is the path loss
exponent which determines the rate at which power decays
with the separation distancedrj between therth SU and the
jth PU and|hrj|

2 models the fading effect.
At time slot t, measurements from SUs can be stacked in a

vectors(t), given as

s(t) =

NP∑

j=1

pj(t)γj(t) + z(t), (3)

where s(t) =
[

s1(t) s2(t) ... sNR
(t)

]T ,
γj(t) =

[

γ1j(t) γ2j(t) ... γNRj(t)
]T , and

z(t) =
[

z1(t) z2(t) ... zNR
(t)

]T . At each time slot,
only a few SUs observe the power levels and report them to
the fusion center. Therefore the vectors(t) contains some
missing entries. Furthermore, each PU can be active or
inactive in each time slot.

Some of the characteristics of the environment can be
exploited to simplify the problem. It is assumed that channel
gains are slowly time varying such that they can be considered
as constant in a time window. Therefore, matrix representation
of (3) can be written as:

S = ΓP +Z, (4)

whereS is anNR × T matrix, which includes measurements
from sensors inT time slots,Γ = [γ1, . . . ,γNP

] is aNR×NP

matrix, which consists ofNP channel gain vectors in theNR-
dimensional space of data, andP is anNP × T matrix that
indicates the power levels of PUs in each time slot (pjt = 0
if the jth PU is inactive at timet).

Here, the goal is to estimate the missing data using the par-
tial observations. To achieve this goal, the data is decomposed
using piecewise constant NMF. Then the components of data
and the activation matrix are used to estimate the missing data.

III. PC-NMF: PIECEWISE CONSTANT NONNEGATIVE

MATRIX FACTORIZATION

Promoted by (4), it is easy to see that the measurements of
each time slot can be represented as an additive, not subtrac-
tive, combination of few vectors. This algebraic representation
has a geometric interpretation. Figure 2 helps us to visualize
the structure of data in a3-dimensional space of data. In
this figure, 3 SUs are measuring power levels in an area
with 3 PUs. It is easy to notice that measurement vectors lie
within a pyramid in the positive orthant withNP = 3 edges
proportional toγj . This is due to fact that all the points in
the pyramid can be written as an additive combination of the
edges.
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Fig. 2: Structure of data generated byNP = 3 PUs in NR = 3
dimensional space.

Although it is assumed that the channel gains are sta-
tionary for a time window of lengthT , PUs can become
activated/deactivated in this time window any number of times
and can change their transmission power in each activation.
Hence, the power levels of PUs tend to be piecewise constant.

NMF is a widely-used technique to decompose data to its
nonnegative components. Here, the structure of the power level
matrix P is exploited while handling the missing entries. As
a result, the general objective function is presented as follows:

minimize
Γ,P

DW (S|ΓP ) + βF (P ),

subject to Γ ≥ 0,P ≥ 0,
(5)

whereDW (S|ΓP ) is a weighted measure of fit andF (P )
is a penalty, which favors piecewise constant solutions.β is
a nonnegative scalar weighting the penalty. The constraints
denote that all the entries ofΓ and P are nonnegative.W
is an NR × T weight matrix that is used to estimate the
weighted distance betweenS andΓP . The coefficients of the
weight matrix denote the presence of data (wrt = 0/wrt = 1
if the measurement of therth SU at time slott is unavail-
able/available).

NMF algorithms utilize different measures of fit such as
Euclidean distance, generalized Kullback-Leibler (KL) diver-
gence, and the Itakura-Saito divergence . In all the cases, the
distance can be calculated as the sum of the distances between
different coefficients [16–18].

DW (S|ΓP ) =

T∑

t=1

NR∑

r=1

wrtd(srt|

NP∑

j=1

γrjpjt), (6)

In our case, Euclidean Distance is used as the measure of
fit. This objective function is commonly used for problems
with Gaussian noise model, a common noise model in com-
munication systems, hence:

d(srt|

NP∑

j=1

γrjpjt) =
1

2
(srt −

NP∑

j=1

γrjpjt)
2. (7)

Since there exist sharp transitions in power level of PUs
and power level of each PU is constant in each transmission
period, rows ofP tend to be piecewise constant. In order to
favor the piecewise constant solutions, the penalty function is
defined as:

F (P ) =
T∑

t=2

NP∑

j=1

lim
n→0

|pjt − pj(t−1)|
n. (8)

Whenn tends to0, this penalty function represents the sum
of ℓ0 norm of the transition vectors, i.e.pt−p(t−1), wherept

is anNP × 1 vector containing power levels of PUs in time
t. This penalty favors the solutions with a lower number of
transitions. However, since it is not differentiable, it can be
replaced with a differentiable approximation:

Fǫ(P ) =

T∑

t=2

NP∑

j=1

ρǫ(pjt − pj(t−1)),

with ρǫ(x) =
x2

x2 + ǫ2
,

(9)

whereǫ2 is a small positive constant and is much less than
all the non-zero elements of(pjt − pj(t−1))

2 ∀j, t to avoid
division by zero.

In Section IV, an algorithm is derived to find the minimizer
of the following problem:

minimize
Γ,P

DW (S|ΓP ) + βFǫ(P ),

subject to Γ ≥ 0,P ≥ 0.
(10)

After estimatingP andΓ, the missing entries ofS can be
approximated using the equation̂S ≃ ΓP .

IV. M AJORIZATION-M INIMIZATION FOR PIECEWISE

CONSTANT NMF

In this section, an iterative algorithm is described to find
the solution of the optimization problem proposed in (10).
For that, Majorization-Minimization (MM) framework is em-
ployed [16, 17]. MM algorithm and its variants have been used
in various applications such as parameter learning and image
processing [19, 20]. The update rules are derived to calculate
the entries ofP given the entries ofΓ and then the entries ofΓ
given the entries ofP , using an iterative reweighed algorithm.

First, the update rules forP givenΓ are derived. Then, the
update rules forΓ will be derived in a similar manner.

As it is clear in (6), we can write the distance measure as
a sum of different time slots:

DW (S|ΓP ) =

T∑

t=1

C(pt), (11)
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whereC(pt) is the weighted Euclidean distance betweenst
and Γpt, given st and Γ. In MM framework, the update
rules are derived by minimizing an auxiliary function [16].
By definition,G(pt, p̂t) is an auxiliary function ofC(pt) if
and only if G(pt, p̂t) ≥ C(pt) and G(pt,pt) = C(pt) for
∀pt. If G(pt, p̂t) is chosen such that it is easier to minimize,
the optimization ofC(pt) can be replaced with iterative
minimization of G(pt, p̂t) over pt. Thus, in the literature,
convex functions are frequently used as the auxiliary functions
[12, 16]. It is shown in [16] thatC(pt) is non-increasing under
the update

pi+1
t = argmin

pt

G(pt,p
i
t). (12)

This is due to the fact that in theith iteration we have
C(pi+1

t ) ≤ G(pi+1
t ,pi

t) ≤ G(pi
t,p

i
t) = C(pi

t).
Following a similar approach as [16], the auxiliary function

for the weighted Euclidean distance can be formulated as:

G(pt,p
i
t) = C(pi

t)+(pt−p
i
t)∇C(pi

t)+
1

2
(pt−p

i
t)

T
K(pi

t)(pt−p
i
t),

(13)
whereK(pi

t) is anNP ×NP diagonal matrix with

kjj(p
i
t) =

qijt
pijt

,

qi
t = Γ

T (wt ⊙ Γpi
t),

(14)

andkjj is thejth diagonal entry ofK(pi
t) and⊙ is element-

wise multiplication.
To solve the problem presented in (10), the contribution of

Fǫ(P ) should be considered in the auxiliary function. For that,
a convex version ofFǫ(P ) is employed:

Fǫ(P ) =

T∑

t=2

NP∑

j=1

yjt(pjt − pj(t−1))
2,

with yjt =
1

(p
(i−1)
jt − p

(i−1)
j(t−1))

2 + ǫ
.

(15)

Now the update rules can be obtained using the iterative
version of (15). This means thatyjt is updated in each iteration
using the values ofP in the previous iteration.

To form the penalized auxiliary function,Gβ(pt,p
i
t), we

add upG(pt,p
i
t) with the contribution ofpt to F (P ). Thus,

Gβ(pt,p
i
t) can be written as:

Gβ(pt,p
i
t) = G(pt,p

i
t)

+ β[

NP∑

j=1

yijt(pjt − pij(t−1))
2

+

NP∑

j=1

yij(t+1)(p
i
j(t+1) − pjt)

2]. (16)

It is worthwhile to mention thatyj1 = yj(T+1) = 0 ∀j.
SinceGβ(pt,p

i
t) is convex, it can be easily minimized over

pt by setting the gradient to zero. Hence the update rule is

attained as:

pi+1
jt =

−∇jC(pi

t
) + pijtkjj(p

i
t) + 2βyijtp

i
j(t−1)

+ 2βyi
j(t+1)

pi
j(t+1)

kjj(pi
t) + 2βyijt + 2βyi

j(t+1)

,

∇C(pi

t) = −Γ
T (wt ⊙ st −wt ⊙ (Γpi

t)),
(17)

where∇jC(pi
t) is thejth element of the gradient∇C(pi

t).
Finding the update rule forΓ is simple. This is due to the

fact thatF (P ) is not a function ofΓ. Hence, the update rule
for Γ is similar to the update rule for standard NMF, except the
missing entries must be taken into account [21]. The update
rules can be written in matrix form as:

Γ
i+1 = Γ

i
⊙

(W ⊙ S)P T

(W ⊙ (ΓiP ))P T
(18)

where⊙ is the element-wise multiplication and the division
is also performed in an element-wise manner.

The obtained update rules in (17) and (18) are exploited
alternatively to estimateΓ andP . Then the missing entries of
S are predicted bŷS = ΓP .

However, by using the objective function in (10), the
optimization problem results in solutions with entries ofP

tend toward0 and ‖Γ‖ tends toward∞. We take advantage
of the scale ambiguity betweenΓ andP to avoid this issue.
Let Λ be a diagonalNP × NP matrix with its jth diagonal
entry equal to‖γj‖2. In each iteration, the rescaled matrix
pair (ΓΛ−1,ΛP ) is used instead of the original matrix pair
(Γ,P ).

As a practical scenario, we should also consider the case
when the secondary network has no information about the
number of the PUs, i.e.NP . In this case, the common
dimension of matricesΓ and P is not known. There have
been some efforts in model order selection in NMF [18]. In
the numerical experiments,K > NP is used as the common
dimension to factorize the data in such conditions. This is only
possible if the secondary network has some information about
the upper bound ofNP .

V. NUMERICAL RESULTS

For the numerical experiments, one frequency channel is
considered withNp = 3 active PUs in the area. Figure 3 illus-
trates the topology of the network. Incomplete measurements
are collected fromNR = 20 SUs.

We use the same simulation environment and the same
network topology as in [8]. The simulation parameters are
set as follows, unless otherwise is stated. The path loss is
computed as( d

d0

)α, whered is the distance,d0 = 0.01, and
α = 2.5. γrj is computed by multiplying the pathloss by the
fading coefficient|hrj|

2 where

hrj(t) = ηhrj(t− 1) +
√
1− η2νrj(t), (19)

η = 0.9995, and νrj(t) is circulary symmetric zero mean
complex Gaussian noise with variance1 [8].

PUs’ activity is modeled by a first order Markov model.
All the PUs utilize the spectrumλ = 0.3 of the time slots.

Transition matrix of thejth PU is

(
1− aj aj

bj 1− bj

)
and

4



Fig. 3: Network topology consisting of 3 PUs andNR = 20 SUs
marked by triangles.

λ =
bj

aj+bj
. aj is the probability that thejth PU stops

transmitting from timet− 1 to t andbj is the probability that
the PU activates transmitting. The parameteraj is uniformly
distributed over[0.05, 0.15].

Each time a PU becomes activated, it chooses the trans-
mission power from a uniform distribution with support
[100, 200]. Each SU makes a measurement with70% of
chance. The measurements are contaminated by additive white
Gaussian noise. The noise variance is10−5 for all the SUs.

Partial measurements are generated forT = 600 time slots.
To reduce the computational burden, the first300 time slots
are used to estimateΓ. Next, by using the obtainedΓ and the
update rule (17),P is estimated for all600 time slots. The
regularization factorβ is set to5 × 10−3 andK = 5 factors
are used to factorize the data.

Figure 4 shows the true power levels and the reconstructed
one at a randomly selected SU versus time for the time window
of T = 300 samples. It can be seen that the missing entries
are accurately recovered through the proposed method, and it
is evident that the proposed algorithm can easily track abrupt
changes in power level.
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Fig. 4: Power levels of a single SU.

Figure 5 compares the RMSE, averaged over SUs, of the
proposed method with two similar methods. The method
introduced in [8] exploits the spatial correlation between
adjacent SUs’ measurements and semi-supervised dictionary

learning (SS-DL) to estimate the missing entries. For the
numerical results, the batch version of SS-DL is employed and
the parameters are set to their optimal values. Furthermore,
to emphasize the effect of the piecewise constant penalty,
the results are also compared with the weighted NMF, i.e.
WNMF [21, 22]. WNMF employs binary weight matrix to deal
with the missing entries. This figure shows that the proposed
method outperforms its competitors in different noise levels
(Figure 5.(a)) and different probabilities of miss (Figure5.(b)).
Pmiss denotes the ratio of the missing entries among the
spectrum data.
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Fig. 5:Performance of the proposed method for different noise levels
and probability of miss, averaged over200 Monte Carlo trials.

This figure shows that WNMF and SS-DL almost perform
the same for low noise variance and lowPmiss. However,
for harsh environments with high noise variance or high
Pmiss, SS-DL produces more accurate results. The PC-NMF
method outperforms both methods in different noise levels
and different probabilities of miss. For instance, PC-NMF
has 11.6% less RMSE compared to the SS-DL method for
σ2
noise = 10−5 andPmiss = 0.3.
This improvement in the performance does not increase

the computational burden of the algorithm. Table I shows the
running times1 for different methods averaged over100 Monte
Carlo trials forσ2

noise = 10−5 , Pmiss = 0.3, andK = 5.

1All simulations have been performed under MATLAB 2014a environment
on a PC equipped with Intel Xeon E5-1650 processor (3.20 GHz)and 8 GB
of RAM.
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TABLE I: Average Running Time

Method Average Running Time (s)
SS-DL 10.3039
WNMF 0.0944

PC-NMF 0.0952

It is known that the NMF methods converge much faster
than methods based on gradient descent [21]. However, Table
I also illustrates that the proposed method does not require
more computational resources compared with WNMF.

To study the effect of the piecewise constant penalty on the
output of the algorithm, Figure 6 depicts the power level of two
PUs and the estimated activation levels using the introduced
method and WNMF. Both methods can estimate the power
levels up to a scale factor. The number of factors is set to3,
i.e. K = NP .
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Time
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Time

Fig. 6: Original power levels of different PUs and the estimated
activation levels with PC-NMF and WNMF.

This figure illustrates the fact that the proposed method
produces a more accurate factorization by taking advantageof
piecewise constant constraint as a prior information. As itwas
expected, power levels estimated by PC-NMF are piecewise
constant, while the results generated by WNMF are noisy.
In fact, the piecewise constant penalty decreases the effect of
noise and fading. Moreover, the sharp transitions are preserved
in the factors returned by PC-NMF.

VI. CONCLUSIONS

By exploiting inherent structural feature of cognitive ra-
dio networks, we proposed a piecewise constant NMF ap-
proach that can decompose the data set into its components.
Majorization-Minimization framework is utilized to solvethe
optimization problem of the piecewise constant NMF. Numer-
ical simulations suggest that this method is able to predictthe
missing entries in the spectrum sensing database accurately.
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