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Abstract—This paper considers the problem of tracking a simultaneous OMP (A-SOMP) algorithm has been proposed
dynamic sparse channel in a broadband wireless communica- jn [9] to obtain simultaneous multi-channel estimates Hase
tion system. A probabilistic signal model is firstly propos@ 0 e assumption that the dynamic channel estimates in devera

describe the special features of temporal correlations of ghamic tive ti lots sh th th del t H
sparse channels: path delays change slowly over time, while consecutive ime slots share the same path delay set. Haweve

path gains evolve faster. Based on such temporal correlatis, the path delays of a dynamic sparse channel will change over
we then propose the differential orthogonal matching pursit time, or even there maybe some mutations, so the assumption
(D-OMP) algorithm to track a dynamic sparse channel in a jn [9] is not always true in practice. Another attractivelgin
sequential way by updating the small channel variation ovetime. for tracking a dynamic sparse channel is the hierarchical

Compared with other channel tracking algorithms, simulation . . .
results demonstrate that the proposed D-OMP algorithm can Bayesian Kalman (HB-Kalman) filter based on Bayesian CS

track dynamic sparse channels faster with improved accurag ~ (BCS) [10], whereby the iterative re-estimation of the pasir
covariance[[111] is used to achieve accurate channel esimat

when sudden changes happen to the dynamic sparse channel,
In a broadband wireless communication system, chandwlt it suffers from slow tracking speed and high computation
state information (CSI) is required at the receiver due ® tltomplexity.
fact that the multipath fading channel distorts the reative In this paper, we propose a dynamic CS algorithm called
signals, especially when the channel is dynamically chramgi differential orthogonal matching pursuit (D-OMP) based on
Hence, accurate channel estimation and tracking becometla@ standard OMP algorithm to track a dynamic sparse channel
important problem for communication over a dynamic wirelesvith fast tracking speed and low computational complexity.
channel[[1]. By exploiting the temporal correlation of a dynamic sparse
Various linear channel estimation methods with low conthannel, the proposed D-OMP algorithm only needs to de-
putational complexity have been proposgd [2], but their peect the small variation of the dynamic sparse channel in a
formance is often not robust enough to meet the requiremeriuential way. Furthermore, an adaptive threshold based o
of communication systems with high rate and high mobilitghe statistical analysis of the “equivalent” noise is pregabto
Recently, a lot of physical channel measurements haveerifaccurately distinguish true, i.e., non-zero channel tafs law
that wireless channels exhibit sparsity, i.e., the dimam&f power from thermal noise. This is essentially differentiirthe
a wireless channel may be large, but the number of actisndard OMP algorithm in which the incorrect channel taps
taps with significant power is usually small, especially in ahosen in one iteration will never be removed, which finally
broadband wireless communication systém [3]. By explgitineads to performance degradation. The performance analysi
this channel sparsity, many nonlinear channel estimatietihm indicates that a non-zero channel tap can be detected with
ods based on classical compressive sensing (CS) algoritrankigh probability, while the noise in the estimate can be
have been proposed to improve the estimation performancamoved almost completely. Numerical simulations show tha
such as orthogonal matching pursuit (OMP), compressitlee proposed D-OMP algorithm can track dynamic channels
sampling matching pursuit (CoSaMP), and subspace purdaister and achieve more accurate channel estimates than oth
(SP) [2]-[7]. Compared with the conventional linear metkodtracking algorithms.
CS-based channel estimation methods are able to achiev&he remainder of this paper is organized as follows. The
improved accuracy with reduced training resourtés [4]tharr system model of dynamic sparse channels is described in Sec-
studies have uncovered additional channel charactes;igtig., tion Il. Section Ill addresses the proposed D-OMP algorjthm
the temporal correlations of practical wireless channgdgh together with the threshold based on noise statistics.id@®ect
delays have been shown to change slowly over time, while path presents the performance analysis, and simulation tesul
gains evolve fastef [8]. However, the CS-based channel estie provided in Section V. Finally, conclusions are drawn in
mation methods ignore these temporal correlations of dymansection VI.
sparse channels and have to estimate them independentliNotation: We use upper-case and lower-case boldface letters
By taking the temporal correlation into account, the adaptito denote matrices and vectors, respectively;, (-)%, (-)~1,
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; ‘ —— consecutive time slotd [12]. It is clear that path delays of
——@ Sparse Channel in Time slot 1 . . .
——= Sparse Channel in Time slot 2 such dynamic sparse channels change slowly, while patls gain
12 Searse Channel in Time slot 3h evolve faster. In order to characterize the temporal catigis
of a dynamic sparse channel, we adopt a probabilistic signal
! ] model with two time series vectods®}7_, and {a(¥}]_,

< ol Path gains evolve smoothly over time | where the binary vectog(t) = [Sgt), Sgt), ce ,S%)]T is used
S 9 / to describe the temporal evolution of the channel paths,
5 ool A disappesred o | while the complex-valued vect(_:r(f) =[a{",al, .. ,_ag\t,)]T
A burst tap in time slot 3 in time slot 2 and 3 characterizes the temporal variation of the path gainscklen
04 ’ the dynamic sparse channel can be modelled as
,/ WO =sPal =12 T, 1<i<N (2)

where the binar)sz(-t) € {0, 1} denotes whether there is a non-
o 20 40 60 8 100 120 140 160 180 zero channel tap at indéxn thetth time slot, andzz(.t) denotes
Path Detay the corresponding path gain. Thus, the path delay\§&tof
the dynamic sparse channel can be representéd’as- {i :
Fig. 1. llustration of the dynamic Vehicular B channel wahvelocity of sgt) = 1}_

120 km/h in three consecutive time slots. We model the time seriess()17 | as a discrete Markov
; _ process with two transition probabilities [13po_1 =
()7, and || - ||, denote the transpose, conjugate transpoqs{sl(_t) _ 1|81('t71) =0} andp;_y = P{sgt) — 0|S§t71) =1}

matrix inversion, Moore-Penrose matrix inversion, andorm h . Lo .
an . Without loss of generallty{sgl)}f:1 is initialized as indepen-

operation, respectivelyT| dpnotes the number of elements "Yent Bernoulli random variables based on the probabylity
setI’; hr denotes the entries of the vectorin the setl’; & . (1) . . -
i.e.,s;’ ~Bernoulipi),i =1,2,---, N. Similarly, we model

denotes the submatrix comprising thecolumns of®. . .
prising the time seriega(¥}”_, as a Gauss-Markov process, and each
Il. SYSTEM MODEL path gain evolves independently as

In this paper, we consider the problem of tracking a dynamic a!” = a{' ™" + w{",  t=1,2,--..7, 1<i<N (3)
sparse channdh®17_, from under-sampled noisy measure- “ © (@ o )
ments{y®}Z_, in T time slots, in a broadband wireless comWhere w'" = [wy ", w; ", - ,wy'[" ~ CN(0,0;1x) con-
munication system. The single time slot measurement vectt!s the temporal correlation of the path gains/[13]. We elod
y(t) = [y§t)7y§t), . ’yE\?]T is usually obtained through the.the initial distribution of path gains as a Gaussian digtidn,

i ie., {al" 1N, ~CN(0,021y)
linear measurement process €510 = s OpdN)-
The probabilitieyy_,; andp;_,o are usually small to model
y =@Onh® +n® =12 T, (1) the slow changing of the path delays, while*)}7_, changes
in each time slot to model the faster changing of the pathsgain

&) — @ 2 T ime- i X : . .
whereh =[5 hys v_hN] denotes the time-domain Furthermore, the aforementioned parameters will be given i
discrete channel vector wittv taps, whereN > M, and detail in Section V.

the additive white Gaussian noise (AWGN) is modeled as
n® ~ CN(0,021,), whereI,; denotes the identity matrix I1l. PROPOSEDD-OMP ALGORITHM

of size M x M. The measurement matrik*) of size M x N In this section, the proposed D-OMP algorithm is explained
is a Toeplitz matrix determined by the training SequeNGg getail. Then the threshold used in the algorithm is defive
¢ = [co,c1,- - ,ep]T in the time or frequency domain, €.0-hased on noise statistics.

the well known pseudo noise (PN) sequence used in CDMA

systems [[4]. Thus the measurement mat@#%? becomes A. D-OMP Algorithm
time-invariant [9], i.e., @Y = ®® = ... = ®" = \e propose the D-OMP algorithm to track a dynamic sparse
® = (¢, ¢, -, ¢n]. Since the training sequence is usuallyhannel, which obtains the final estimates in a sequentigl wa
designed in a random way, i.e;,~ CA(0,07), we can obtain py updating the small variation of the dynamic sparse channe
that ¢{') ~ CA(0,02), whereo? = o2 and ¢\") denotes The key idea of the proposed D-OMP algorithm is that, the
the element of the matrixp(Y). Furthermore, based on thismajor information of the channel in the current time slot can
Gaussian assumption, the columns of fhenatrix are semi- be obtained from the estimation results in previous timésslo
orthogonal, i.e.gbfqu ~0,1# 7. due to the temporal correlations of the dynamic sparse @&ann
The temporal correlations of practical wireless channedéd then the small variation of the channel can be estimated
have been verified through analysis and experiments, eweith low complexity to refine the final estimate result. THss i
when the channels are varying fast [8]. Figj. 1 illustrates tlessentially different from the standard OMP algorithm viahic
time-domain impulse response of the dynamic Rayleigh fadiignores any temporal correlation of the channel taps [5].
Vehicular B channel with a velocity of 120 km/h in threeThe proposed algorithm also differs from the HB-Kalman



algorithm utilizing the iterative re-estimation of the pasor A® = A¢~DUAT. The path gain of this disappearing channel
covariance to obtain channel estimation, which leads tow sltap hz(.t) will be small. Therefore, we propose a threshold

tracking speed and high computational complexity. P;, to judge whether the nonzero elementshif! are non-
zero channel taps or noise in step 8. After removing the
Algorithm 1 D-OMP Algorithm disappearing channel taps, the final channel estimate can be
Input: obtained in step 9.
Received signals{y )}’ ; Unlike the standard OMP algorithm which needs to solve
Measurement matrix® = (¢, ¢, - , dn]; the minimization problem for many times according to the
Threshold:Py,. sparsity level of the wireless channél [6], the proposed D-
Output: . OMP algorithm only needs to solve the minimization problem
Channel estimategh®}7_, . once, so the computational complexity can be dramatically
1: Initialization : reduced. Furthermore, unlike the hard threshéld [4] or the
22 A =g h =o. rough criterion [[9], we rely on the noise analysis to select
3 fort=1toT do the thresholdP,,, which will be derived in the following
4 yt=y® —@ht-1, subsection.
5. AT =argmax,{\; = [¢yT|:i ¢ AV},
&AM =Al-D AT, ) B. Threshold Based on Noise Statistics
v h(_t) e Ifl(lgh{Hq’h - y(i)(”tﬁ  supp(h) C A} Here we consider a single time slot (we omit the time slot
8 A ={i:|h;"| < Pupyi € AL superscript), and rewrite[(I) as

o h{) =0, A0 =AD A~
10: end for y=®h+n==®&h+®n)=&h+n), (@)
11: return  {hM}7T_ .

where®’ = &7 (®®)~! denotes the pseudoinverse ®f
Generally, linear channel estimation methods are designed
directly approacth + n’, so their performance is limited

y the contamination of the “equivalent” noise = ®'n in
(4). The advantage of CS-based nonlinear estimation msthod

we obtain the incremental observatiogs by subtracting 'ith.at thfey reconstrucgtge shpaIse c_halr}ne"hd ga/voslt_j parthof

®h(~1 fromy(®) in step 4, wherd*~1) denotes the estimatetb € !nt%r erer;ci cause g y the equ].u\:ja ent’ naise !nclet e N

of h*~1. Here we usebh(~1) instead ofy*~1) to avoid PaSiC idea o the greedy CS methods is to iteratively searc
the channel taps from the strongest one to the weakest one

The pseudocode of the proposed D-OMP algorithm js
provided in Algorithm 1, and each loop is comprised of th
following three parts:

1) Incremental Support Detection (step 4~6): Firstly,

the impact of the noisa*~1). Different from the way used o er i .
in the standard OMP algorithm which iteratively detects trg" [9], it is difficult for these algorithms to judge whethe

candidate supports by selecting the element that corsela e searched taps are true, i.e., non-zero channel tapsser, no

best with the residual signall[5], here we only detect th¥nen they are weak. )
incremental supporh* in step 5, which is able to acquire In order to further reduce the interference causednby

the appearing channel tap -1 _ g Sgt) — 1. Then, under the CS framework, we design the threshBjg based

the temporary estimate of the path delays/sét is obtained on the statistical pr_opertleS of the noise for the pro-
osed D-OMP algorithm to separate non-zero channel taps

by mergingA(—1) which contains the persistent channel tap$, . . .
ie.,i e A=) 0 A®, and A+ which contains the appearing' o' NOIS€ as much as possible. According[fb (4), we have
’ ' n = ®'n. The mean of the vectai can be easily obtained

channel tap. /
2) Channel Estimate Update (step 7): Step 7 aims to update 25 Bn} = E{®/}E{n} = 0 due to the fact that the

the channel estimate based on the temporary estimate of %]%asursmentmgtr@ an;j tr?e I’I?ISE vectqr are |_nd(|ependelnt.
path delays sefA®. Intuitively, the variation of the channel en, the covariance of the elements in equivalent naise

estimate is comprised of three parts: a) The appearing ehantf" be derived as

tap a;t) when Sgtfl) =0 — Sz('t) = 1; b) The disappearing Var{n;-} — Var{qun} — MVar{¢Ij}Var{nj}

channel tap—a|'"" when sV = 1 — s\ = 0; ¢ Mo2Var(s! ) )
= On i,5 10

J

The smooth variation of the path gains” (i € A(*)). The
minimization problem in step 7 corresponds to the maWhereng denotes théth row of the matrix®' and¢! . is the
computational burden of the D-OMP algorithm, which can, elerrllent of!. Furthermore, we have J
be realized by the standard least-squares (LS) technicihe Wi v '
low complexity [14].

3) Disappearing Channel Taps Removal (step 8~9): When
a tap hgt_l) disappears asz(.t_l) =1 = 55“ = 0, the
estimated tap in the previogs—1)th time slot will still remain where we useNo—j)IM to approximate®®” due to the
in the estimated path delay set of the current time slot sincendomness of the matri®. Then we can obtain the variance

1
o' = 2" (@@") ' m @ (NoJIy) ' = o2 )]
%%



of n; as B. Appearing Channel Tap Detection

As the D-OMP algorithm is proposed to track a dynamic
(7) channel, the condition of appearing channel tap detecton i
important to be analyzed. For the sake of a simplified arglysi
we assume that the channel estimate in time élot 1)
is accurate without loss of generality, i. (=1 = h(t—1.
When there is an appearing channel tap from time @glet1)

2 2
2 Moz

2 2"
Ncr¢

Mo

Var{n,} ~ o)

2 Var{¢;,.j} =

Finally, the statistical properties of the elementsaincan be
represented as

, ) Mo? to (¢t) (for simplicity, we assume other channel taps stay
n; ~ CN(0,0,,) ~ CN(0, Ng—o_z)' (8) unchanged, i.eh!” = h{'"™ vk € At-D), the step 4 in

Algorithm 1 can be rewritten as

With the help of the statistical properties of the noise wect 0 (t-1) _ ()
n’, the threshold?,;, can be selected as y' =y’ —2h = ¢;h;” +n, (13)
ao /T whereh!” (i ¢ A1) denotes the appearing channel tap at
Py = o, ~ ————, (9) the time index: during thetth time slot of the dynamic sparse

os N channel.

where the variance? of the noise vecton can be usually According to the detection rule in step 5 of Algorithm 1,
obtained at the receiverr [15]. The coefficienican be set as the appearing channel td)” is successfully detected if and
o = 3 so that the strength of the noise element will be only if .
smaller thanP,;, with high probability 0f99.73%, based on A< i, Vi#£ije AT, (14)
the assumed Gaussian distribution. .
where )\; can be derived as

IV. PERFORMANCEANALYSIS A = oyt =107 (1! +n)| > |7 ¢, |07 — |¢!Tn.
. . (15)
A. Persistent Channel Tap Detection Then); can be similarly derived as

In section IlI-B, the proposed thresholt,;, = ao, is

used to remove the disappearing channel taps from the chanhe= |¢§HY+| = |¢f(¢’ihz(‘t) +n)| < |¢§'{¢i||hz(‘t)| + |¢§'{n|'
estimate result with high probability. On the other handthes ) ) N (_16)
proposed scheme may also remove a persistent channel tap8ip9 [14), we can O(Bt"?“” the condition under which the
mistake, the correct detection probability of the persistap appearing channel tapp; " is successfully detected:
for the scheme is also important to guarantee its performanc H H
in practice, which will be analyzed below. ) > @70l +|4; n|

i = H H |’
Firstly, the SNRy at the receiver can be obtainéd][15] and Pi" @il — |9 @il

represented as which means the path gain of the appearing channel tap should
be larger than a minimum value.
K 2 2 2 J* ] ) ) )
M — g Gﬁoh — 10Iog%, (10) Intuitively, the idea behind the incremental support diébec
var{n} Tn NZa, of the proposed D-OMP algorithm is to find the elemehts
.that correlate best with the incremental observatiphs but

where K = Np; denotes the sparsity level of the dynleml?h . NI .
. e previously detected suppart—") will not be considered.
sparse channel. Thus, the threshélg can be obtained as Due to the fact that the appearing channel tap can be detected

MK immediately if it is larger than a certain value derived in
Py, = a0, = aopf T0EN? (11) @37), while the posterior covariance matrix of the HB-Katma
method[[10] needs several time slots to converge, the dondit

After the threshold has been obtained, we can calculate thfeincremental support detection of the proposed D-OMP
detection probability of a persistent channel tapfé(&z(-t) € algorithm is much easier to satisfy than that of the HB-Kaima

A), which can be derived by using the normal Gaussianethod.
distribution probability functionV as

Vi #£i, ¢ A (17)

~v = 10log

C. Computational Complexity
P(h" eN) = P(h{"| > Pw) The computational complexity of the proposed D-OMP
MK algorithm in terms of the required number of complex multi-
= 2 <1 — V(o m)) - (12) piications includes the following three parts:
1) In the incremental detection part, the complexity is
For example, in a typical wireless communication systenh wit O(NM) for the calculation of®h(~) and ¢ y*|.

M =200, N =400, K =5, andvy = 15 dB, the probability ~ 2) In the channel estimate update part, the LS problem
of a persistent tap being larger th#y, is about96.64%. argming{||®h — yT|2 : supp(h) € A®} can be
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Fig. 2. MSE performance comparison against time slot Fig. 3. The correct detection probability comparison agaBNR.

implemented with theD(M K?2) complexity by using
the Gram-Schmidt algorithni T14].
3) In the disappearing taps removal part, the complexi
is O(M) for the comparison of taps with the thresholc
Pip,. 10"
To sum up, the total complexity of the proposed D
OMP algorithm isO(M(N + K? + 1)T) to track a dy- 4
namic sparse channel ovér time slots. Compared with =
the O(KM(N + K?)T) complexity of the standard OMP
algorithm, the complexity of the proposed D-OMP algorithr
is reduced approximately by a factor df. Considering
the re-estimation of the posterior covariance matrix with 107
iterations in each time slot[11], the computational corripje b
of HB-Kalman filter [10] is O(JKM (N + K?)T), which . - e % P %
is much higher than the complexity for both the standal SNR (dB)
OMP algorithm and the proposed D-OMP algorithm. The
complexity reduction comes from the fact that the proposed Fig. 4. MSE performance comparison against SNR.
D-OMP algorithm obtains the major information of the cutren
channel from the estimation results in previous time skt mentioned above. It is clear that A-SOMP and HB-Kalmam
then refines the final estimation result by detecting the lsmathieve lower error levels than the standard OMP algorithm,

—A— Linear Method [2] [1
—7— Standard OMP [6] [
—<— A-SOMP [9] 1
—— HB-Kalman [10] ||
—©— Proposed D-OMP ||

variation of the channel. while the conventional linear method performs worst. The
MSE performance of the proposed D-OMP algorithm is the
V. SIMULATION RESULTS AND DISCUSSION best, as the temporal correlations of the dynamic sparse

This section investigates the performance of the proposeltannel are efficiently exploited. More importantly, whermot
D-OMP algorithm compared with the conventional lineachannel taps suddenly disappear in time slet 80, the HB-
algorithm [2], standard OMP algorithm1[6], A-SOMP algoKalman algorithm requires abo@® time slots to detect this,
rithm [9], and HB-Kalman algorithm[[10]. The parametersvhile the proposed D-OMP algorithm is able to detect the
mentioned in Section Il (system model) are set as followshange immediately, which confirms the tracking capability
1) The size of the matri® is N = 400 and M = 200; of the proposed scheme as discussed in section IV-B.

2) The probability p; is set as 0.025, which means the Fig.[3 shows the correct detection probability of a persiste
average channel sparsity level s = Np; = 10; 3) A channel tap against SNR. It is evident that the hard threshol
channel tap will appear or disappear over evet{Kp; o) = used in many CS-based channel estimation methdds [4] is
1/((N — K)po—1) = 10 time slots on average correspondingot adapted to the SNR. The rough criterion [9] can im-
to probabilitiesp; o = 0.01 and pp—1 = p1p10/(1 — p1); prove the correct detection probability by using the stiati

4) 0, =0.05,0, =0.05, 0, = 1,04 = 1. information of the channel. For the proposed threshBig

Fig. @ shows the mean squared error (MSE) performanicased on noise statistics, the correct detection probabdin
against time slott for the five channel estimation method$e improved further, which is close to the theoretical bound
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