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Abstract—This paper considers the problem of tracking a
dynamic sparse channel in a broadband wireless communica-
tion system. A probabilistic signal model is firstly proposed to
describe the special features of temporal correlations of dynamic
sparse channels: path delays change slowly over time, while
path gains evolve faster. Based on such temporal correlations,
we then propose the differential orthogonal matching pursuit
(D-OMP) algorithm to track a dynamic sparse channel in a
sequential way by updating the small channel variation overtime.
Compared with other channel tracking algorithms, simulation
results demonstrate that the proposed D-OMP algorithm can
track dynamic sparse channels faster with improved accuracy.

I. I NTRODUCTION

In a broadband wireless communication system, channel
state information (CSI) is required at the receiver due to the
fact that the multipath fading channel distorts the received
signals, especially when the channel is dynamically changing.
Hence, accurate channel estimation and tracking become an
important problem for communication over a dynamic wireless
channel [1].

Various linear channel estimation methods with low com-
putational complexity have been proposed [2], but their per-
formance is often not robust enough to meet the requirement
of communication systems with high rate and high mobility.
Recently, a lot of physical channel measurements have verified
that wireless channels exhibit sparsity, i.e., the dimension of
a wireless channel may be large, but the number of active
taps with significant power is usually small, especially in a
broadband wireless communication system [3]. By exploiting
this channel sparsity, many nonlinear channel estimation meth-
ods based on classical compressive sensing (CS) algorithms
have been proposed to improve the estimation performance,
such as orthogonal matching pursuit (OMP), compressive
sampling matching pursuit (CoSaMP), and subspace pursuit
(SP) [4]-[7]. Compared with the conventional linear methods,
CS-based channel estimation methods are able to achieve
improved accuracy with reduced training resources [4]. Further
studies have uncovered additional channel characteristics, e.g.,
the temporal correlations of practical wireless channels:path
delays have been shown to change slowly over time, while path
gains evolve faster [8]. However, the CS-based channel esti-
mation methods ignore these temporal correlations of dynamic
sparse channels and have to estimate them independently.
By taking the temporal correlation into account, the adaptive

simultaneous OMP (A-SOMP) algorithm has been proposed
in [9] to obtain simultaneous multi-channel estimates based on
the assumption that the dynamic channel estimates in several
consecutive time slots share the same path delay set. However,
the path delays of a dynamic sparse channel will change over
time, or even there maybe some mutations, so the assumption
in [9] is not always true in practice. Another attractive solution
for tracking a dynamic sparse channel is the hierarchical
Bayesian Kalman (HB-Kalman) filter based on Bayesian CS
(BCS) [10], whereby the iterative re-estimation of the posterior
covariance [11] is used to achieve accurate channel estimation
when sudden changes happen to the dynamic sparse channel,
but it suffers from slow tracking speed and high computational
complexity.

In this paper, we propose a dynamic CS algorithm called
differential orthogonal matching pursuit (D-OMP) based on
the standard OMP algorithm to track a dynamic sparse channel
with fast tracking speed and low computational complexity.
By exploiting the temporal correlation of a dynamic sparse
channel, the proposed D-OMP algorithm only needs to de-
tect the small variation of the dynamic sparse channel in a
sequential way. Furthermore, an adaptive threshold based on
the statistical analysis of the “equivalent” noise is proposed to
accurately distinguish true, i.e., non-zero channel taps with low
power from thermal noise. This is essentially different from the
standard OMP algorithm in which the incorrect channel taps
chosen in one iteration will never be removed, which finally
leads to performance degradation. The performance analysis
indicates that a non-zero channel tap can be detected with
a high probability, while the noise in the estimate can be
removed almost completely. Numerical simulations show that
the proposed D-OMP algorithm can track dynamic channels
faster and achieve more accurate channel estimates than other
tracking algorithms.

The remainder of this paper is organized as follows. The
system model of dynamic sparse channels is described in Sec-
tion II. Section III addresses the proposed D-OMP algorithm,
together with the threshold based on noise statistics. Section
IV presents the performance analysis, and simulation results
are provided in Section V. Finally, conclusions are drawn in
Section VI.

Notation: We use upper-case and lower-case boldface letters
to denote matrices and vectors, respectively;(·)T , (·)H , (·)−1,
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Fig. 1. Illustration of the dynamic Vehicular B channel witha velocity of
120 km/h in three consecutive time slots.

(·)†, and ‖ · ‖p denote the transpose, conjugate transpose,
matrix inversion, Moore-Penrose matrix inversion, andlp norm
operation, respectively;|Γ| denotes the number of elements in
setΓ; hΓ denotes the entries of the vectorh in the setΓ; ΦΓ

denotes the submatrix comprising theΓ columns ofΦ.

II. SYSTEM MODEL

In this paper, we consider the problem of tracking a dynamic
sparse channel{h(t)}Tt=1 from under-sampled noisy measure-
ments{y(t)}Tt=1 in T time slots, in a broadband wireless com-
munication system. The single time slot measurement vector
y(t) = [y

(t)
1 , y

(t)
2 , · · · , y(t)M ]T is usually obtained through the

linear measurement process

y(t) = Φ(t)h(t) + n(t), t = 1, 2, · · · , T, (1)

whereh(t) = [h
(t)
1 , h

(t)
2 , · · · , h(t)

N ]T denotes the time-domain
discrete channel vector withN taps, whereN > M , and
the additive white Gaussian noise (AWGN) is modeled as
n(t) ∼ CN (0, σ2

nIM ), whereIM denotes the identity matrix
of sizeM×M . The measurement matrixΦ(t) of sizeM ×N
is a Toeplitz matrix determined by the training sequence
c = [c0, c1, · · · , cM ]T in the time or frequency domain, e.g.,
the well known pseudo noise (PN) sequence used in CDMA
systems [4]. Thus the measurement matrixΦ(t) becomes
time-invariant [9], i.e.,Φ(1) = Φ(2) = · · · = Φ(T ) =
Φ = [φ1,φ2, · · · ,φN ]. Since the training sequence is usually
designed in a random way, i.e.,ci ∼ CN (0, σ2

c ), we can obtain
that φ(t)

i,j ∼ CN (0, σ2
φ), where σ2

φ = σ2
c and φ

(t)
i,j denotes

the element of the matrixΦ(t). Furthermore, based on this
Gaussian assumption, the columns of theΦ matrix are semi-
orthogonal, i.e.,φH

i φj ≈ 0, i 6= j.
The temporal correlations of practical wireless channels

have been verified through analysis and experiments, even
when the channels are varying fast [8]. Fig. 1 illustrates the
time-domain impulse response of the dynamic Rayleigh fading
Vehicular B channel with a velocity of 120 km/h in three

consecutive time slots [12]. It is clear that path delays of
such dynamic sparse channels change slowly, while path gains
evolve faster. In order to characterize the temporal correlations
of a dynamic sparse channel, we adopt a probabilistic signal
model with two time series vectors{s(t)}Tt=1 and {a(t)}Tt=1,
where the binary vectors(t) = [s

(t)
1 , s

(t)
2 , · · · , s(t)N ]T is used

to describe the temporal evolution of the channel paths,
while the complex-valued vectora(t) = [a

(t)
1 , a

(t)
2 , · · · , a(t)N ]T

characterizes the temporal variation of the path gains. Hence,
the dynamic sparse channel can be modelled as

h
(t)
i = s

(t)
i a

(t)
i , t = 1, 2, · · · , T, 1 ≤ i ≤ N (2)

where the binarys(t)i ∈ {0, 1} denotes whether there is a non-
zero channel tap at indexi in thetth time slot, anda(t)i denotes
the corresponding path gain. Thus, the path delay setΛ(t) of
the dynamic sparse channel can be represented asΛ(t) = {i :
s
(t)
i = 1}.
We model the time series{s(t)}Tt=1 as a discrete Markov

process with two transition probabilities [13]:p0→1 =

P{s(t)i = 1|s(t−1)
i = 0} andp1→0 = P{s(t)i = 0|s(t−1)

i = 1}.
Without loss of generality,{s(1)i }Ni=1 is initialized as indepen-
dent Bernoulli random variables based on the probabilityp1,
i.e., s(1)i ∼Bernouli(p1), i = 1, 2, · · · , N . Similarly, we model
the time series{a(t)}Tt=1 as a Gauss-Markov process, and each
path gain evolves independently as

a
(t)
i = a

(t−1)
i + w

(t)
i , t = 1, 2, · · · , T, 1 ≤ i ≤ N (3)

wherew(t) = [w
(t)
1 , w

(t)
2 , · · · , w(t)

N ]T ∼ CN (0, σ2
aIN ) con-

trols the temporal correlation of the path gains [13]. We model
the initial distribution of path gains as a Gaussian distribution,
i.e., {a(1)i }Ni=1 ∼ CN (0, σ2

hIN ).
The probabilitiesp0→1 andp1→0 are usually small to model

the slow changing of the path delays, while{a(t)}Tt=1 changes
in each time slot to model the faster changing of the path gains.
Furthermore, the aforementioned parameters will be given in
detail in Section V.

III. PROPOSEDD-OMP ALGORITHM

In this section, the proposed D-OMP algorithm is explained
in detail. Then the threshold used in the algorithm is derived
based on noise statistics.

A. D-OMP Algorithm

We propose the D-OMP algorithm to track a dynamic sparse
channel, which obtains the final estimates in a sequential way
by updating the small variation of the dynamic sparse channel.
The key idea of the proposed D-OMP algorithm is that, the
major information of the channel in the current time slot can
be obtained from the estimation results in previous time slots
due to the temporal correlations of the dynamic sparse channel,
and then the small variation of the channel can be estimated
with low complexity to refine the final estimate result. This is
essentially different from the standard OMP algorithm which
ignores any temporal correlation of the channel taps [5].
The proposed algorithm also differs from the HB-Kalman



algorithm utilizing the iterative re-estimation of the posterior
covariance to obtain channel estimation, which leads to a slow
tracking speed and high computational complexity.

Algorithm 1 D-OMP Algorithm
Input:

Received signals:{y(t)}Tt=1;
Measurement matrix:Φ = [φ1,φ2, · · · ,φN ];
Threshold:Pth.

Output:
Channel estimates:{ĥ(t)}Tt=1.

1: Initialization :
2: Λ̂(0) = ∅, ĥ(0) = 0.
3: for t = 1 to T do
4: y+ = y(t) −Φĥ(t−1).
5: Λ+ = argmaxi{λi = |φH

i y+| : i /∈ Λ̂(t−1)}.
6: Λ̂(t) = Λ̂(t−1) ∪ Λ+.
7: ĥ(t) = argminh{‖Φh− y(t)‖2 : supp(h) ⊆ Λ̂(t)}.
8: Λ− = {i : |ĥ(t)

i | ≤ Pth, i ∈ Λ̂(t)}.
9: ĥ

(t)
Λ−

= 0, Λ̂(t) = Λ̂(t) − Λ−.
10: end for
11: return {ĥ(t)}Tt=1.

The pseudocode of the proposed D-OMP algorithm is
provided in Algorithm 1, and each loop is comprised of the
following three parts:

1) Incremental Support Detection (step 4∼6): Firstly,
we obtain the incremental observationsy+ by subtracting
Φĥ(t−1) fromy(t) in step 4, wherêh(t−1) denotes the estimate
of h(t−1). Here we useΦĥ(t−1) instead ofy(t−1) to avoid
the impact of the noisen(t−1). Different from the way used
in the standard OMP algorithm which iteratively detects the
candidate supports by selecting the element that correlates
best with the residual signal [5], here we only detect the
incremental supportΛ+ in step 5, which is able to acquire
the appearing channel tap ass(t−1)

i = 0 → s
(t)
i = 1. Then,

the temporary estimate of the path delays setΛ̂(t) is obtained
by mergingΛ̂(t−1) which contains the persistent channel taps,
i.e., i ∈ Λ(t−1) ∩ Λ(t), andΛ+ which contains the appearing
channel tap.

2) Channel Estimate Update (step 7): Step 7 aims to update
the channel estimate based on the temporary estimate of the
path delays set̂Λ(t). Intuitively, the variation of the channel
estimate is comprised of three parts: a) The appearing channel
tap a

(t)
i when s

(t−1)
i = 0 → s

(t)
i = 1; b) The disappearing

channel tap−a
(t−1)
j when s

(t−1)
j = 1 → s

(t)
j = 0; c)

The smooth variation of the path gainsw(t)
i (i ∈ Λ̂(t)). The

minimization problem in step 7 corresponds to the main
computational burden of the D-OMP algorithm, which can
be realized by the standard least-squares (LS) technique with
low complexity [14].

3) Disappearing Channel Taps Removal (step 8∼9): When
a tap h

(t−1)
i disappears ass(t−1)

i = 1 → s
(t)
i = 0, the

estimated tap in the previous(t−1)th time slot will still remain
in the estimated path delay set of the current time slot since

Λ̂(t) = Λ̂(t−1)∪Λ+. The path gain of this disappearing channel
tap ĥ

(t)
i will be small. Therefore, we propose a threshold

Pth to judge whether the nonzero elements inĥ(t) are non-
zero channel taps or noise in step 8. After removing the
disappearing channel taps, the final channel estimate can be
obtained in step 9.

Unlike the standard OMP algorithm which needs to solve
the minimization problem for many times according to the
sparsity level of the wireless channel [6], the proposed D-
OMP algorithm only needs to solve the minimization problem
once, so the computational complexity can be dramatically
reduced. Furthermore, unlike the hard threshold [4] or the
rough criterion [9], we rely on the noise analysis to select
the thresholdPth, which will be derived in the following
subsection.

B. Threshold Based on Noise Statistics

Here we consider a single time slot (we omit the time slot
superscriptt), and rewrite (1) as

y = Φh+ n = Φ(h+Φ†n) = Φ(h+ n
′

), (4)

whereΦ† = ΦH(ΦΦH)−1 denotes the pseudoinverse ofΦ.
Generally, linear channel estimation methods are designed

to directly approachh + n
′

, so their performance is limited
by the contamination of the “equivalent” noisen

′

= Φ†n in
(4). The advantage of CS-based nonlinear estimation methods
is that they reconstruct the sparse channelh and avoid part of
the interference caused by the “equivalent” noisen

′

. Since the
basic idea of the greedy CS methods is to iteratively search
the channel taps from the strongest one to the weakest one
[4], [9], it is difficult for these algorithms to judge whether
the searched taps are true, i.e., non-zero channel taps or noise,
when they are weak.

In order to further reduce the interference caused byn
′

under the CS framework, we design the thresholdPth based
on the statistical properties of the noisen

′

for the pro-
posed D-OMP algorithm to separate non-zero channel taps
from noise as much as possible. According to (4), we have
n

′

= Φ†n. The mean of the vectorn
′

can be easily obtained
as E{n′} = E{Φ†}E{n} = 0 due to the fact that the
measurement matrixΦ and the noise vectorn are independent.
Then, the covariance of the elements in equivalent noisen

′

can be derived as

Var{n′

i} = Var{φ†
in} = MVar{φ†

i,j}Var{nj}
= Mσ2

nVar{φ†
i,j}, (5)

whereφ†
i denotes theith row of the matrixΦ† andφ†

i,j is the
jth element ofφ†

i . Furthermore, we have

Φ† = ΦH(ΦΦH)−1 ≈ ΦH(Nσ2
φIM )−1 =

1

Nσ2
φ

ΦH , (6)

where we useNσ2
φIM to approximateΦΦH due to the

randomness of the matrixΦ. Then we can obtain the variance



of n
′

i as

Var{n′

i} ≈ Mσ2
n

(Nσ2
φ)

2
Var{φ∗

i,j} =
Mσ2

n

N2σ2
φ

. (7)

Finally, the statistical properties of the elements inn
′

can be
represented as

n
′

i ∼ CN (0, σ2
n
′ ) ≈ CN (0,

Mσ2
n

N2σ2
φ

). (8)

With the help of the statistical properties of the noise vector
n

′

, the thresholdPth can be selected as

Pth = ασn
′ ≈ ασn

√
M

σφN
, (9)

where the varianceσ2
n of the noise vectorn can be usually

obtained at the receiver [15]. The coefficientα can be set as
α = 3 so that the strength of the noise element|n′

i| will be
smaller thanPth with high probability of99.73%, based on
the assumed Gaussian distribution.

IV. PERFORMANCEANALYSIS

A. Persistent Channel Tap Detection

In section III-B, the proposed thresholdPth = ασn
′ is

used to remove the disappearing channel taps from the channel
estimate result with high probability. On the other hand, asthe
proposed scheme may also remove a persistent channel tap by
mistake, the correct detection probability of the persistent tap
for the scheme is also important to guarantee its performance
in practice, which will be analyzed below.

Firstly, the SNRγ at the receiver can be obtained [15] and
represented as

γ = 10log
Var{Φh}
Var{n} = 10log

Kσ2
φσ

2
h

σ2
n

= 10log
MKσ2

h

N2σ2
n
′

, (10)

whereK = Np1 denotes the sparsity level of the dynamic
sparse channel. Thus, the thresholdPth can be obtained as

Pth = ασn
′ = ασh

√

MK

10
γ

10N2
. (11)

After the threshold has been obtained, we can calculate the
detection probability of a persistent channel tap asP (h

(t)
i ∈

Λ), which can be derived by using the normal Gaussian
distribution probability functionΨ as

P (h
(t)
i ∈ Λ) = P (|h(t)

i | > Pth)

= 2

(

1−Ψ(α

√

MK

10
γ

10N2
)

)

. (12)

For example, in a typical wireless communication system with
M = 200, N = 400, K = 5, andγ = 15 dB, the probability
of a persistent tap being larger thanPth is about96.64%.

B. Appearing Channel Tap Detection

As the D-OMP algorithm is proposed to track a dynamic
channel, the condition of appearing channel tap detection is
important to be analyzed. For the sake of a simplified analysis,
we assume that the channel estimate in time slot(t − 1)
is accurate without loss of generality, i.e.,ĥ(t−1) = h(t−1).
When there is an appearing channel tap from time slot(t− 1)
to (t) (for simplicity, we assume other channel taps stay
unchanged, i.e.,h(t)

k = h
(t−1)
k , ∀k ∈ Λ(t−1)), the step 4 in

Algorithm 1 can be rewritten as

y+ = y(t) −Φh(t−1) = φih
(t)
i + n, (13)

whereh(t)
i (i /∈ Λ(t−1)) denotes the appearing channel tap at

the time indexi during thetth time slot of the dynamic sparse
channel.

According to the detection rule in step 5 of Algorithm 1,
the appearing channel taph(t)

i is successfully detected if and
only if

λj < λi, ∀j 6= i, j /∈ Λ̂(t−1), (14)

whereλi can be derived as

λi = |φH
i y+| = |φH

i (φih
(t)
i + n)| ≥ |φH

i φi||h(t)
i | − |φH

i n|.
(15)

Thenλj can be similarly derived as

λj = |φH
j y+| = |φH

j (φih
(t)
i + n)| ≤ |φH

j φi||h(t)
i |+ |φH

j n|.
(16)

Using (14), we can obtain the condition under which the
appearing channel taph(t)

i is successfully detected:

|h(t)
i | ≥ |φH

i n|+ |φH
j n|

|φH
i φi| − |φH

j φi|
, ∀j 6= i, j /∈ Λ̂(t−1), (17)

which means the path gain of the appearing channel tap should
be larger than a minimum value.

Intuitively, the idea behind the incremental support detection
of the proposed D-OMP algorithm is to find the elementsΛ+

that correlate best with the incremental observationsy+, but
the previously detected supportΛ̂(t−1) will not be considered.
Due to the fact that the appearing channel tap can be detected
immediately if it is larger than a certain value derived in
(17), while the posterior covariance matrix of the HB-Kalman
method [10] needs several time slots to converge, the condition
of incremental support detection of the proposed D-OMP
algorithm is much easier to satisfy than that of the HB-Kalman
method.

C. Computational Complexity

The computational complexity of the proposed D-OMP
algorithm in terms of the required number of complex multi-
plications includes the following three parts:

1) In the incremental detection part, the complexity is
O(NM) for the calculation ofΦĥ(t−1) and |φH

i y+|.
2) In the channel estimate update part, the LS problem

argminh{‖Φh − y+‖2 : supp(h) ⊆ Λ̂(t)} can be
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implemented with theO(MK2) complexity by using
the Gram-Schmidt algorithm [14].

3) In the disappearing taps removal part, the complexity
is O(M) for the comparison of taps with the threshold
Pth.

To sum up, the total complexity of the proposed D-
OMP algorithm isO(M(N + K2 + 1)T ) to track a dy-
namic sparse channel overT time slots. Compared with
the O(KM(N + K2)T ) complexity of the standard OMP
algorithm, the complexity of the proposed D-OMP algorithm
is reduced approximately by a factor ofK. Considering
the re-estimation of the posterior covariance matrix withJ
iterations in each time slot [11], the computational complexity
of HB-Kalman filter [10] is O(JKM(N + K2)T ), which
is much higher than the complexity for both the standard
OMP algorithm and the proposed D-OMP algorithm. The
complexity reduction comes from the fact that the proposed
D-OMP algorithm obtains the major information of the current
channel from the estimation results in previous time slots,and
then refines the final estimation result by detecting the small
variation of the channel.

V. SIMULATION RESULTS AND DISCUSSION

This section investigates the performance of the proposed
D-OMP algorithm compared with the conventional linear
algorithm [2], standard OMP algorithm [6], A-SOMP algo-
rithm [9], and HB-Kalman algorithm [10]. The parameters
mentioned in Section II (system model) are set as follows:
1) The size of the matrixΦ is N = 400 and M = 200;
2) The probability p1 is set as 0.025, which means the
average channel sparsity level isK = Np1 = 10; 3) A
channel tap will appear or disappear over every1/(Kp1→0) =
1/((N −K)p0→1) = 10 time slots on average corresponding
to probabilitiesp1→0 = 0.01 and p0→1 = p1p1→0/(1 − p1);
4) σa = 0.05, σn = 0.05, σh = 1, σφ = 1.

Fig. 2 shows the mean squared error (MSE) performance
against time slott for the five channel estimation methods
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mentioned above. It is clear that A-SOMP and HB-Kalmam
achieve lower error levels than the standard OMP algorithm,
while the conventional linear method performs worst. The
MSE performance of the proposed D-OMP algorithm is the
best, as the temporal correlations of the dynamic sparse
channel are efficiently exploited. More importantly, when two
channel taps suddenly disappear in time slott = 80, the HB-
Kalman algorithm requires about20 time slots to detect this,
while the proposed D-OMP algorithm is able to detect the
change immediately, which confirms the tracking capability
of the proposed scheme as discussed in section IV-B.

Fig. 3 shows the correct detection probability of a persistent
channel tap against SNR. It is evident that the hard threshold
used in many CS-based channel estimation methods [4] is
not adapted to the SNR. The rough criterion [9] can im-
prove the correct detection probability by using the statistical
information of the channel. For the proposed thresholdPth

based on noise statistics, the correct detection probability can
be improved further, which is close to the theoretical bound



derived in (12).
Fig. 4 shows the MSE performance comparison against

SNR for the five channel estimation methods. It is clear that
the standard OMP algorithm outperforms the linear method
by about1 dB, where the benefit comes from utilizing the
channel sparsity. Further, A-SOMP and HB-Kalman are better
than the standard OMP algorithm by about2 dB, since they
partially consider the temporal correlations of the dynamic
sparse channel. For the proposed D-OMP algorithm, it is
evident that another2 dB SNR gain can be achieved due to
its capability to track the dynamic sparse channel rapidly and
detect the non-zero channel taps accurately as discussed in
Section IV.

VI. CONCLUSION

In this paper, we have proposed a novel dynamic CS
algorithm called D-OMP to rapidly track a dynamic sparse
broadband communication channel in a sequential way by
updating only the small channel variation over time. An
adaptive threshold based on noise statistics is used in the
proposed D-OMP algorithm to remove the disappearing chan-
nel taps. Moreover, the performance analysis provides the
correct detection probability of persistent channel taps as well
as the condition of appearing channel tap detection for the
dynamic sparse channel with low computational complexity.
Finally, simulation results demonstrate that the proposedD-
OMP algorithm is able to rapidly detect appearing channel
taps, and achieves about2 dB gain compared with the recently
proposed dynamic channel tracking algorithms.
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