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Abstract—We consider joint detection of co-channel signals—
specifically, signals which do not possess a natural separability
due to, for example, the multiple access technique or the use
of multiple antennas. Iterative joint detection and decoding is
a well known approach for utilizing the error correction code
to improve detection performance. However, the joint maximum
a posteriori probability (MAP) detector may be prohibitive ly
complex, especially in a multipath channel. In this paper, we
present an approximation to the joint MAP detector motivated
by a factor graph model of the received signal. The proposed
algorithm is designed to approximate the joint MAP detector
as closely as possible within the computational capabilityof the
receiver.

I. Introduction

Detection of a desired signal in the presence of one or more
interfering signals is a prevalent problem in dense wireless
communication systems. As a result, designing receivers capa-
ble of detection in the presence of interference has been a very
active area of research with numerous algorithms proposed
in literature. Iterative multiuser detection problems have been
considered for code division multiple access (CDMA) [1], [2],
spatial multiplexing [3]–[5], and multiuser MIMO [6], [7],
among others. Receiver algorithms generally fit into one of
three categories: linear filtering, interference cancellation, and
joint detection.

Linear filtering may be applied in the time, space, or space-
time dimension(s) and includes techniques such as matched fil-
tering, minimum mean square error (MMSE) equalization, and
beamforming. In systems which employ spreading sequences
or multiple antennas, linear filtering can be an effective means
of interference mitigation, specifically when the spreading gain
or number of antennas is greater than or equal to the number
of signals present.

Interference cancellation refers to algorithms in which each
user’s signal is canceled from the received signal after detec-
tion (e.g., [8], [9] and the references therein). Linear filtering
combined with interference cancellation may further improve
detection and has been a very successful approach for spatial
multiplexing [10]. Soft cancellation in conjunction with soft
decoding of the channel code—often referred to as “turbo”
interference cancellation—has been shown to achieve good
results in a CDMA system [1].

Optimal maximuma posteriori probability (MAP) detection
is performed by jointly detecting both the desired and co-
channel signals. The detection stage is separated from decod-
ing and probabilistic information is passed between the joint

MAP detector and a collection of single user decoders. The
separation of detection and decoding is justified by message
passing algorithms which operate on a factor graph of the
joint probability density function [11]. Yet, even with the
separation of detection and decoding, joint MAP detection may
be prohibitively complex as a result of high-order modulations,
numerous users, or inter-symbol interference (ISI).

A challenging case is detection in the presence of non-
orthogonal, asynchronous interfering signals using a single
receive antenna. That is, reception of co-channel signals which
do not possess a natural separability due to a multiple access
technique (such as CDMA) or multiple antennas. As a result,
linear filtering and interference cancellation are ineffective
especially when the signal power levels are similar.

Joint MAP detection in such a signal model is developed
and studied in [12]. The separability is achieved due to both
frame and symbol timing offsets and an error correction code.
Joint detection which accounts for the strongest ISI terms is
proposed. Thus, the algorithm is exponentially complex in the
number of co-channel signals. For this reason its application
is limited to 2 users and BPSK modulation in [12]. A large
number of users or high-order modulations in addition to ISI
due to the asynchronous signals makes the optimal joint MAP
detector extremely complex.

Jiang and Li consider single antenna interference cancella-
tion in a frequency selective, multiple access channel [13]. The
same channel code, interleaver, and modulation is assumed for
all co-channel signals. Signal separability is obtained through
the independence of each user’s multipath channel. Jiang and
Li propose a concurrent MAP (CMAP) algorithm in which a
Gaussian approximation is used for co-channel interference
and MAP equalization for ISI. The CMAP algorithm is
compared to joint MAP detection1, the Rake Gaussian method
proposed in [14], and soft interference cancellation with MAP
equalization. While the CMAP algorithm is the state-of-the-art
in addressing the difficult detection problem described above,
performance is degraded when the Gaussian approximation is
made for strong co-channel interference terms.

In this paper, we present a new approximation to the joint
MAP detector which is motivated by a factor graph model of
the received signal. The proposed algorithm is designed to ap-
proximate the joint MAP detector as closely as possible within

1Due to the complexity of the joint MAP detector, this method is only
evaluated for two users with BPSK modulation in [13].
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the computational capability of the receiver. The complexity
of the algorithm is adjustable and can be set to account for
the capabilities of the receiver, the desired performance,or the
difficulty of the detection task.

The paper is organized as follows. The system model
is presented in Section II followed by development of the
MAP detector in Section III. The complexity of the proposed
algorithm is compared with algorithms from the literature in
Section IV and a detailed description of the proposed algo-
rithm is provided in Section V. The algorithms are compared
via simulation in Section VI and conclusions are drawn in
Section VII.

Notation: Let x denote a column vectorx =

[x0, . . . , xK−1]T. We use the shorthand
∑

xk
to denote the

summation over the domain ofxk. Similarly,
∑

x denotes the
summation over the domain of the vectorx and

∑

x\xk
denotes

the summation with respect to all variables exceptxk.

II. System Model

In this work we consider single antenna reception ofU co-
channel signals (users). Let the information bits, coded bits,
and symbols of theuth user be denoted by column vectors
b(u), c(u), and x(u), respectively. We define the collection of
these terms for all users as

B = [b(1), . . . , b(U)]

C = [c(1), . . . , c(U)]

X = [x(1), . . . , x(U)].

The nth sample of the received signal is given by

rn =

U
∑

u=1

L−1
∑

l=0

h(u)
l x(u)

n−l + wn, (1)

whereh(u) = [h(u)
0 , h

(u)
1 , . . . , h

(u)
L−1]T denotes the combined effect

of the multipath channel and the transmit pulse for theuth
user,L is the number of channel taps, and{wn}

N−1
n=0 are indepen-

dent and identically distributed circularly-symmetric complex
Gaussian random variables with varianceσ2. The collection
of all received samples is denotedr = [r0, . . . , rN−1]. In
general the transmitted signals may be symbol-asynchronous.
For the sake of notational simplicity, the model provided in(1)
makes a number of assumptions about the received signal—for
example, that the channel duration of the usersL is identical
and that the received signal is sampled at a single sample
per symbol. However, the multiuser detection and equalization
algorithms presented in this paper are applicable to the more
general cases.

III. MAP D etection

The goal of the receiver is to detect all information bitsB
given observationr . Because of the complexity of sequence
detection ofB, we desire to perform MAP symbol-by-symbol
(in our case, bit-by-bit) detection. The detector for thekth bit
of useru is given by

b̂(u)
k = arg max

b(u)
k

∑

B\b(u)
k

p(B|r ), (2)

where the marginal is computed forb(u)
k . According to Bayes’

rule, (2) is equivalent to

b̂(u)
k = arg max

b(u)
k

∑

B\b(u)
k

f (r ,B), (3)

where the term 1/ f (r ) is a constant which has been removed.
By the Total Probability Theorem, (3) can further be expressed
as a marginalization over the full joint distribution as given by

b̂(u)
k = arg max

b(u)
k

∑

X,C,B\b(u)
k

f (r ,X,C,B). (4)

The marginalization in (4) cannot be performed directly, but
an iterative implementation of the sum-product algorithm is
well suited for this task.

A. Probability Distribution

Taking into account conditional independence of the vari-
ables, the joint distribution is given by

f (r ,X,C,B) =
N−1
∏

n=0

f (rn|x(1), . . . , x(U))

U
∏

u=1

p(x(u)|c(u))p(c(u)|b(u))p(b(u)). (5)

Factorizations of the modulationp(x(u)|c(u)) and code
p(c(u)|b(u)) constraints have been explored in the literature (see,
for example, [11], [15]). From (1) the likelihood function
for each termrn is dependent on a subset of the symbols.
We define,x(u)

[n] = [x(u)
n−L+1, . . . , x

(u)
n ]T to denote the symbols

from useru which have components in thern sample. The
distribution is then given by

f (r ,X,C,B) =
N−1
∏

n=0

f (rn|x
(1)
[n] , . . . , x

(U)
[n] )

U
∏

u=1

p(x(u)|c(u))p(c(u)|b(u))p(b(u)). (6)

Soft output MAP equalization of an ISI channel may be
accomplished via the BCJR algorithm [16]. This algorithm
was extended to the case of joint detection of a desired
and co-channel signal in ISI by Moon and Gunther [12].
The algorithm relies on the introduction of state variables
m0, . . . ,mN into the likelihood function as follows:

N−1
∏

n=0

f (rn|x
(1)
[n] , . . . , x

(U)
[n] )

=

N−1
∏

n=0

∑

mn

f (rn,mn+1|x
(1)
n , . . . , x

(U)
n ,mn)p(m0) (7)

wheremn = [x(1)
n−L+1, . . . , x

(1)
n−1, . . . , x

(U)
n−L+1, . . . , x

(N)
n−1]T.

At a high level, local marginals for the symbols are com-
puted by a forward and backward pass of the BCJR algorithm
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Fig. 1. Factor graph off (r ,X,C,B) for U = 2 and L = 4 based on the
factorization in (6).

(also known as the forward-backward algorithm). The forward
messages are given by

α(mi+1) =
i

∏

n=0

∑

mn

f (rn,mn+1|x
(1)
n , . . . , x

(U)
n ,mn)p(m0) (8)

and

β(mi) =
N−1
∏

n=i

∑

mn+1

f (rn,mn+1|x
(1)
n , . . . , x

(U)
n ,mn). (9)

The messages may be defined recursively as given by

α(mi+1) =
∑

mi

γ(mi+1,mi)α(mi) (10)

and
β(mi) =

∑

mi+1

γ(mi+1,mi)β(mi+1), (11)

where γ(mi+1,mi) = f (ri,mi+1|x
(1)
i , . . . , x

(U)
i ,mi), α(m0) =

p(m0) = 1, and β(mN) = 1. A marginal for a particular
symbolx(u)

i is given by
∑

x(1)
[i] ,...,x

(U)
[i] \x

(u)
i
α(mi)γ(mi,mi+1)β(mi+1).

The joint MAP detector is developed for the case of a received
signal with two samples per symbol in [12].

B. Factor Graph Model

The sum-product algorithm performs efficient marginaliza-
tion by exploiting the factorization of the joint distribution
f (r ,X,C,B). As an example, consider the case ofU = 2 and
L = 4. The factor graph of the joint distribution in (6) is given
in Fig. 1. Similarly, the factor graph of the joint distribution
with the introduction of the state variables is shown in Fig.2.
In Fig. 1, frn denotes the factorf (rn|x

(1)
[n] , x

(2)
[n]) and, in Fig. 2,

p
(

x
(1

)
|c

(1
)
)

p
(

c
(1

)
|b

(1
)
)

p
(

b
(1

)
)

p
(

x
(2

)
|c

(2
)
)

p
(

c
(2

)
|b

(2
)
)

p
(

b
(2

)
)

.

.

.

.

.

.

.

.

.

x
(1)

n−3
frn−3 x

(2)

n−3

mn−2

x
(1)

n−2
frn−2 x

(2)

n−2

mn−1

x
(1)

n−1
frn−1 x

(2)

n−1

mn

x
(1)
n

frn x
(2)
n

.

.

.

.

.

.

.

.

.

Fig. 2. Factor graph off (r ,X,C,B) for U = 2 andL = 4 based on the state
space model factorization of (7) substituted into (6).

frn denotes the factorf (rn,mn+1|x
(1)
n , . . . , x

(U)
n ,mn). We refer to

the factor graphs in Fig. 1 and 2 as thefully connected graph
and thestate-space model (SSM) graph, respectively.

The generalization of the BCJR algorithm to the factor
graph of the joint distribution is given by the sum-product
algorithm [15]. The factor nodesp(x(u)|c(u))p(c(u)|b(u))p(b(u))
are further factored when implementing the sum-product algo-
rithm. The factor nodes related to the observationsfrn and the
symbol variable nodes make up the “detection block” of the
factor graph. The fully connected graph contains cycles within
the detection block; the SSM graph eliminates these cycles.
Cycles have a negative impact on the convergence of the sum-
product algorithm. In Section V, we develop an algorithm to
reduce the complexity of joint MAP detection based on the
fully connected factor graph of Fig. 1. In Section VI, we
quantify the loss in performance when performing message
passing on the fully connected graph versus the SSM graph.

IV. Complexity

For both graphs, the complexity associated witheach of the
detection factor nodes isO(MUL) whereM is the modulation
order of the symbols (assumed to be the same for each user).
The complexity is exponential in the number of users and
channel taps and therefore complexity prohibits use of the joint
MAP detector in many potential co-channel signal scenarios.
Specifically when eitherM >> 2, U >> 2, or L >> 2 and
especially when this is the case for two of these terms. As
an example, the complexity for QPSK, 4 users, and 4 channel
taps (i.e.,M = 4, U = 4, andL = 4) is O(109).



Because of the problem of complexity with joint MAP de-
tector, approaches with lower complexity have been considered
for this problem.

• Interference Cancellation: Cancellation may be per-
formed based on either hard or soft decisions. Detection
is performed starting with the strongest signal and contin-
uing to the weakest. Soft cancellation may be combined
with iterative processing to iteratively improve the soft
estimates.

• Rake Gaussian: This method was proposed in [14] for
interleave-division multiple access. In this method, for the
detection of symbolx(u)

k all other symbols are modeled
as Gaussian random variables. This includes the symbols
of all other users and all other symbols of the desired
user, i.e.,{x(u′)

k′ }u′,u,k′,k. The mean and variance of the
Gaussian distribution are computed from the extrinsic
symbol probabilities obtained from demodulation and
decoding.

• Concurrent MAP (CMAP): This method was proposed
in [13] to improve upon the performance of the Rake
Gaussian method. In this method, MAP equalization of
each user’s signal is performed while all other user’s
signals are modeled as Gaussian random variables. Thus,
the complexity of the method isO(U ·ML), that is, linear
in the number of users and exponential in the number of
channel taps.

Visual comparisons of the Rake Gaussian and CMAP al-
gorithms are given using factor graphs. The factor nodefr3

from the example in Fig. 1 is used to represent the approx-
imations made by the Rake Gaussian and CMAP algorithms
when computing the messagem fr3→x(1)

2
in Figs. 3 and 4,

respectively. The single arrow represent messages containing
discrete distributions and the double arrow represent messages
which contain a mean and variance based on a Gaussian
approximation.

The graphical models of Figs. 3 and 4 motivate a new ap-
proach in which the distribution of weaker terms in the signal
component ofrn are modeled as Gaussian random variables.
Sum-product message passing is performed for the stronger
terms inrn. This hybrid approach has a complexity determined
by the number of messages with discrete distributions and
maintains a single, connected graph. The graphical model for
the hybrid approach is shown in Fig. 5 where symbolsx(1)

1 , x(1)
2 ,

x(2)
1 , andx(2)

2 are the strongest component inr3 for users 1 and
2 (i.e., the power of the channel coefficient |h(u)

l |
2 is strongest

for these terms). This model is motivated by common transmit
pulse shapes which contain the majority of their energy within
the center of the pulse and multipath channels which often
exhibit an exponential decay. A detailed description of the
algorithm is provided in the following section.

V. ApproximateMAP Detection Algorithm

Consider a generic interference model (to represent inter-
symbol interference, co-channel interference, or both) inwhich
K signal componentsx1, x2, . . . , xK are received with channel
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Fig. 3. Factor graph motivated representation of the Rake Gaussian method.
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shown, this factor is a slice of the overall graph to implement MAP
equalization of user 1 while modeling the interference fromuser 2.
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method developed in this work.



coefficientsh1, h2, . . . , hK , respectively. The received signal is
given by

y =
K

∑

k=1

hk xk + w

wherey represents one sample of a larger sequence of received
samples and the noisew is modeled as a circularly symmetric
complex Gaussian random variable with varianceσ2. The
factor associated with the received sampley is given by

f (y|x1, . . . , xK) = CN

(

y;
K

∑

k=1

hkxk , σ
2

)

where the channel coefficients and the noise powerσ2 are
assumed to be known.

The message from factor nodefy to variable nodexk is
denotedm fy→xk . Similarly, the message from variable nodexk

to factor node fy is denotednxk→ fy . According to the sum-
product algorithm, the messagem fy→xi is given by

m fy→xi (xi) =
∑

x\xi

f (y|x1, . . . , xK)
∏

k,i

nxk→ fy(xk). (12)

The proposed algorithm modifies the sum-product algorithm
computations as follows:

• The mean and variance of the input messages are com-
puted according to

µxk =
∑

xk

xknxk→ fy(xk)

σ2
xk
=

∑

xk

|xk − µxk |
2nxk→ fy (xk)

for all k = 1, . . . ,K.
• For computation of the outgoing messagem fy→xi(xi), the

remaining variables fork , i are sorted by their channel
coefficient power|hk |

2. Let the setA index the variables
associated with the strongest channel coefficients. These
variables remain a part of the local marginalization as
given in (12). The number of variables in the setA will
depend on the acceptable complexity in implementation.
The indices of the weaker components are included in
the setB and the distributions of these variables are
approximated by Gaussian random variables to eliminate
the marginalization over these variables. Let the variables
associated with setsA andB be given byxA and xB,
respectively.

• The message is computed with the following approximate
sum-product computation:

m fy→xi (xi) =
∑

xA

f̃ (y|xi, xA)
∏

k∈A

nxk→ fy (xk)

where

f̃ (y|xi, xA) =

CN

(

y; hixi +
∑

k∈A

hkxk +
∑

l∈B

hlµxl , σ
2 +

∑

l∈B

|hl|
2σ2

xl

)

. (13)
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Fig. 6. FER comparison of the joint MAP state-space model (Joint MAP
(SSM)), the joint MAP fully connected factor graph (Joint MAP (FG)), the
proposed approximate MAP algorithm (Approx MAP), CMAP (Concurrent
MAP), and soft interference cancellation (Soft IC) algorithms with SIR=0 dB.

This algorithm is applied to the computation of the sum-
product messages at each of the detection factors in Fig. 1.
The complexity of the proposed algorithm for each factor is
O(UL · M|A|+1) where|A| is the number of symbols included
in the setA. Thus, by choosing the size ofA, the complexity
of the algorithm may be adjusted to match the computational
capability of the receiver and performance requirements.

VI. Numerical Results

We first simulate the performance for a scenario in line
with the one considered in [12]: two users (U = 2) each
employing BPSK modulation (M = 2). ISI results from symbol
timing offsets between the users and a transmit pulse with a
duration of four symbol periods (L = 4). The selection of
these parameters allows us to simulate the joint MAP detector
for the purpose of comparison. The simulation parameters are
summarized as follows:
• Code: 1/2-rate turbo code with 500 coded bits
• Modulation: BPSK
• Pulse: Square root raised cosine withL = 4 and roll-off

factor 0.35
• A relative time delay between the users ofT/4 is chosen

whereT is the symbol period
• A relative phase offset between the channel coefficients

of the users ofπ/6 is chosen
• 15 iterations of message passing are performed

The FER performance is shown in Fig. 6 for the joint
MAP (with the SSM and fully connected factor graphs),
the proposed novel approach, CMAP, and soft interference
cancellation algorithms. The approximate MAP algorithm is
implemented with|A| = 3. Thus, the proposed approximate
MAP algorithm and the CMAP algorithm have the same order
of complexity (per iteration). The performance of the fully
connected factor graph demonstrates a loss of about 0.5 dB
compared to the SSM factor graph. The proposed approximate
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Fig. 7. FER of the proposed and CMAP algorithms with respect to SIR.
Both signals are detected, and the FER of the desired signal is shown. Ten
iterations of the receiver are performed.

MAP algorithm is based on the fully connected graph and
we observe that it achieves nearly identical performance to
the receiver which uses exact sum-product computations. At
a FER of 10−3 the proposed approximate MAP approach
and Concurrent MAP approach demonstrate losses of 0.5 dB
and 1.5 dB, respectively, compared to joint MAP detection
based on the SSM. We observe that the Soft IC method
becomes limited by interference as signal-to-noise ratio (SNR)
increases.

We also consider a 2-user scenario with QPSK modulation
with a 4-tap multipath channel. The average power in each
multipath component is given by [0.644, 0.237, 0.087, 0.032].
In Fig. 7 the FER of the proposed approximate MAP algo-
rithm and the CMAP algorithm is shown. Both SNR and
signal-to-interference ratio (SIR) are computed with respect
to the instantaneous power in the multipath channel. The
most significant improvement in FER is achieved by the
proposed approximate MAP algorithm when the signals have
similar power levels (−3 ≤ SIR ≤ 3 dB) and the SNR
is high. In Fig. 8, the FER is shown with respect to the
number of iterations where we observe that the proposed
algorithm converges 1-2 iterations faster than CMAP. Thus,
for |A| = L−1, the proposed algorithm reduces computational
complexity by 20–40% due to faster convergence.

VII. Conclusion

In this paper, an algorithm is developed which approximates
joint MAP detection and equalization in co-channel interfer-
ence. The approximate MAP algorithm is based on a fully
connected factor graph of the joint probability distribution.
The algorithm was shown to operate within 0.5 dB of the
joint MAP state-space model receiver where the degradationin
performance was due to the associated factor graph model. Ad-
ditionally, the proposed algorithm both improves performance
and reduces complexity when compared to the state-of-the-art.
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Fig. 8. FER of the proposed and CMAP algorithms with respect to the number
of iterations performed. The SIR is -4 dB.
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