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Abstract-This paper presents a working model of conver­
sational adjacency graphs (CAGs), both temporal and non­
temporal, useful in analyzing interactive communication pat­
terns amongst distributed network actors. The paper utilizes 
Shakespeare's Hamlet as a baseline reference model to outline 
the construction of representative weighted graph models of 
inter-actor conversations, both temporal and non-temporal. A 
sampling of related complex network analytic metrics both 
temporal and non-temporal variants is also presented on the 
respective graph models. We discuss a related experiment carried 
out in which network exchanges amongst distributed actor nodes 
are orchestrated within an emulated virtual wireless network 
scenario. A blind construction of the representative CAG is 
presented from received traffic logs without a-prior knowledge 
of the play ordering. In this case, source identification and 
reception ordering are the sole pieces of information used to 
estimate conversational adjacency relationships. We demonstrate 
that the example "blind" CAG construction from the empirically­
measured model appears to reasonable match the baseline conver­
sation graph model developed with a-priori information directly 
from play script. Issues and related ongoing work is discussed 
regarding the related analytics and potential applications of such 
models. 

I. INTRODUCTION 

Random network traffic patterns are used throughout a 
significant portion of past ad hoc wireless network research as 
a means to establish comparative statistical measures between 
system designs. While approaches remain useful for generic 

baseline studies of systems, there is a growing interest and 

need to focus on more realistic workflow-based network traffic 
models. How will the network actually be used and what is 
its effectiveness in regard to its unfolding support of a mis­

sion(s)? There is also dual interest in better understanding and 
modeling communication exchanges and emergent causalities 

that may exist amongst complex network services and actors 
within actual communication network deployments. Due to 

complexity and the ongoing abstraction of planned networked 

systems, we have a lack of effective means to model and/or 
measure temporal cOlmnunication adjacency relationships and 

how they evolve in time. This paper focuses in three main 

related areas: First, it presents a canonical model for time­
ordered communication messages as an estimation of conver­

sational relationships. Second, it addresses and compares the 
formulation of analytic conversational graph(s) from both an 

a-priori model (e.g., play script or workflow) and a experi­

mentally measured model (e.g., from captured network data). 
Third, it presents structural analytic examples using applied 
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complex network theory for related aggregate and temporal 

graph models. 

In this work, we discuss the capability of structurally rep­

resenting such systems using time-windowed graphs to enable 
analysis and characterization of roles and interactions amongst 

key network players. Albeit it static and pre-existing, William 

Shakespeare's Hamlet [1] is a well-established, time-ordered 
story of multiple characters and their various interactions. 

In this sense, Hamlet serves as an example to formulate 

weighted graph models of directed conversational adjacencies 
and later in the paper we present results from an actual 

orchestrated network experiment of conversations amongst 
distributed network actors. From captured network emulation 

data, we construct graph models without a-priori knowledge 

of the play by using source identifiers and reception order­
ing infonnation. We compare these results against a-priori 

aggregate and temporal graph models of dialogue interactions. 

We also discuss potential applications of complex network 
analytic techniques to perform statistical inference regarding 

various actor relationships and roles. Our research goal is the 

application of similar techniques and analysis methods to less 
pre-detennined network collaboration and workflow systems. 

II. PARSING HAMLET INTO CONVERSATIONAL 

ADJACENCIES 

To start, a baseline a-priori graph model of Hamlet conver­

sations is extracted from the freely available text version of the 
play at Project Gutenberg [2]. We use developed software tools 

to pick out temporally ordered events such as: Acts, Scenes, 
dialogue, and other actions. Figure 1 shows an overview of 
the stored data structure structure including the order and 

assignment of speaking roles. Key events throughout the play 
are well tagged supporting the ability to distinguish Acts, 

Scenes, Actions, and dialogue stanzas. In some infrequent 

cases, multiple actors are directed to speak as a Chorus, 
a simultaneous group event, and in these cases we assign 

dialogue broadcast events to a subset of multiple source actors 
based upon the scene context of the play. 

III. WINDOWED CONVERSATIONAL ADJACENCY GRAPH 

MODEL 

From an ordered set of dialogue events, we develop a 

reference graph-based representation we refer to as a conver­
sational adjacency graph (CAG). The formulation is consistent 
with past applied contact graph models discussed within [3], 
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although a difference is that when applied to actual logged 

network data we can optionally infer a pair-wise temporal 
adjacency from the order of dialogue events and not from 

any specific pair-wise receiver contact information. If such 
specific information is available, as in email traffic or other 

application or network data, one can improve the fidelity of 

the causal representation of the model by using it, but not 
requiring specific destination data enables the use of the model 
in situations such as multicast group collaboration scenarios 

where pair-wise causal relationships may not be obvious. One 
relevant application of such models is to better understand 
group-based workflows or unfolding interactions within event­

driven network communication scenarios, especially as we 

begin deploying more distributed network services and collab­

orative applications. Towards the end of this paper, we present 
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Fig. 1: Play Related Structure 

results from a network testbed experiment in more detail. For 

now, we focus on an a-priori model and more formally define 

the time-windowed CAG construction and related analytic 
applications. To develop an a-priori CAG model, we use the 

dialogue sequence identifiers and the information in previous 

and next actor entries from Figure l. This data also later gives 
us sufficient information to orchestrate actor actions within our 

distributed network experiment. 
We define a CAGtn,tk as a time-windowed di­

graph in the form G(V, E, wV, eWi,j), with V 
vertices, and E represented directed edges such 
that: 

1) Any v E V represents an actor as a 
weighted vertex within the conversation 

group. 
2) Wv represents actor's vertex weight in terms 

of conversational activity during t, such that 

tn < = t = < tk. 
3) E represents the edges of the CAG as a 

directed conversational adjacency between 
two actors. A directional edge ei,j E E 

exists if Vi speaks and Vj follows during 

t, such that tn < = t = < tk. 
4) eWi,j represents edge weight in terms of 

directed pair-wise conversational activity 

during t, such that tn < = t = < tk. 

Weights within CAGs, both Wv and eWi,j, represent either 

some event activity count (e.g., number of conversation events) 

or an absolute aggregate amount of directed conversational 
data (e.g., conversational bytes transmitted). Within our canon­

ical model, the Act and Scene changes also make up excep­
tions in estimating ei,j relationships if a windowed t duration 

overlaps Scenes and Acts. At the beginning of an Act or Scene 

change the first actor is likely speaking autonomously and 
starting off a conversation and at the end of a Scene the final 

speaker is likely ending a conversation thread so a directed 
adjacency is excluded in these cases in the a-priori model. 
Within Scenes, conversational adjacencies are only estimators 

of potential conversational causality but in many circumstances 

(e.g., chat rooms) its reasonable to assume some degree of 

conversational causal relationships exist given a large enough 

set of data. As mentioned, if additional intended receiver 
information is available this adds fidelity to construction of 

the model. 
From conversational data, either a-priori known or blind 

estimated from network ordering, we build up representative 
graph structures and weights to represent the conversational 

events. If we are using adjacency events as the metric, each 

event is weighted as 1 irregardless of length. An example of 
Wv variations is shown below for Francisco who speaks only 

in Scene I, Act I. The first value in the data tuples shown is 

a global sequence identifier within the play and the second 
value represents the length in bytes of the referenced actor's 

stanza. 

print my_diag_ids['Francisco'] 

[[1, 46], [3, 12], [5, 42], 
[7, 73], [9, 24], [11, 49], 
[14, 23], [16, 46]] 

In the aggregate CAG case, t = the entire play, if event 
count is chosen as the vertex weight method, we ignore the 

length values and Wv = 8, but if the amount of transmitted 

data is chosen, then Wv = 315. This same approach of 
event count vs. information quantity follows for potential 

choices of directed edge weights, eWi,j. In all further model 

examples and experiments within this paper, we apply event 
count exclusively as the metric for both node and edge CAG 

weights although the model directly supports modification for 
additional weighted measures such as total bytes in related 

stream exchanges amongst actors. 

IV. INITIAL CAG CONSTRUCTION AND ANALYSIS 

Figure 2 represents a compressed ordered event view of 

Hamlet without stanza length information included. In devel­

oping our reference aggregate CAG example, CAGta,tend' we 
use this entire timeline to construct a directed, weighted graph 

representation. For this CAG, vertex weights represent the 

number of conversation events and edge weights represent the 
number of directed pair-wise conversational adjacencies. Fig­

ure 3 presents a visualization of resulting the graph structure 

with relative actor event rankings indicated by node size and 
edge widths representing pair-wise conversational adjacency 

events. To improve the visualization readability directional 
edge weights have been removed from the graph. 
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Fig. 2: Hamlet Dialogue Events by Actor 

Fig. 3: Hamlet CAG Overview 

From the basic aggregate CAG structure, we now produce 

Figure 4 representing a histogram of the top 9 dialogue 
events by actors. This is basically a plot of the Wv vertex 

weight values of the CAG. Further, based upon directed edge 
information in the CAG we show the results from sorting 
and plotting the top 9 adjacencies throughout the play in 

Figure 5. It is perhaps not surprising in Figure 5 that the two 
top adjacencies for the aggregate CAG are between Hamlet 

and his faithful friend Horatio. Finding out such information 

in the blind estimation case later demonstrates some of the 
usefulness of this approach. 

Of course, we could have produced the above results (e.g., 

dialogue histograms) without bothering to build a CAG itself, 

but by formulating a CAG model we now have a significant 
body of analytical work from complex network theory and 
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Fig. 4: Hamlet Dialogue Event Histogram (top9) 
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Fig. 5: Hamlet Top Conversation Adjacencies 

graph-based analysis of structure at our disposal. Related 
analytics can provide more advanced insight into complex 

structural relationships (e.g., clustering) and temporal mod­
els may further reveal insights regarding different phases of 

collaborative mission exchanges or workflows. While applied 

complex network theory is an actively evolving field, present 
applicable analytical metrics include community clustering, 

global structural invariants, and statistical centrality metrics 
for both nodes and edges. One popular metric approach is the 
use of centrality measures representing statistical rankings of 

the importance or influence of vertices (i.e., nodes) or edges 
based upon a particular structural or interaction model [4], [5]. 

Several centrality measures have mathematical foundations in 

statistical mechanics and can therefore be potentially useful 
in predicting forms of node interaction and information flows 

with a structure. Examples include the ability to estimate node 

or edge betweenness of conversational threads (e.g., varieties 
of betweenness measures). We can also apply results from 
complex network theory to examine global structural invariants 
like whether CAGs exhibit assortativity properties in which 

actors with high conversation transmission or reception tend 
to connect to other like actors. Due to space limitations, we 
demonstrate only a few potential analytic examples using the 
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a-priori aggregate Hamlet CAG model. 
Global Invariant Metric Example: Directed Assortativity 

Measure: In a directed graph, in-assortativity rin and out­
assortativity rout measure the tendencies of nodes to connect 
with other nodes that have similar in and out degrees as 
themselves and are defined in [6] as Eq. 1. 

1 [(" 'k in) in in] rin = -. -.- �J ej k - f..lq f..lq 
(J'�n(J"t 

' 
(1) 

ej�k is the joint probability distribution of links 

going into target nodes with k out-degrees, and 
out of source nodes of j out-degree. qk in is the 

probability distribution of links going into target 

nodes with k in-degrees. qr is the probability 
distribution of links going out of source nodes 

with j in-degrees. (J'�n and f..l�n are respectively the 
mean and standard deviation of qk in. Similarly 

(J'it and f..lit for qkn. See [6] for similar definition 

of rout. 

We obtain the following results for both weighted and 
unweighted variants of the directed baseline CAG. 

• 'in (weighted) = -0.28 
• rout (weighted) = -0.28 

• rin (unweighted) = -0.37 

• rout(unweighted) = -0.37 

The above negative results indicate a partially disassortative 
nature to the overall set of conversational relationships in 
Hamlet. Upon a rough review of the play, there are indeed 

plenty of significant conversations Hamlet and other major 
event weighted actors carry on directly with more minor 

characters (e.g., Osric, Players, etc) so this metric seems to 

give insight into that behavior. 
Node and Edge Centrality Example: We next briefly 

present a more sophisticated complex network analytic view of 

the aggregate CAG relationships using simultaneously a node­
centric current flow betweenness measure and a conversational 

edge-centric betweenness measure. To represent betweenness 
centralities properly in a weighted graph computation we need 

an additive cost metric available for measuring shortest cost 

paths and we use a reciprocal of edge weight values for 
cost/distance. We review the definition of these measures in 

the non-temporal graph case. Edge Betweenness Centrality is 

defined in [7] as Eq. 2. 

E ( ) _ " (J'st I e 
bet e - � 

s,tEV (J'st 
(2) 

(J'st is the total number of shortest paths from 
node s to node t and (J'st I e is the number of those 

shortest paths that pass through edge e. This is 
a straightforward variation of node betweenness 

within a graph but applied to edges. 

The basic current flow betweenness centrality,CfW B, also 
known as random walk betweenness, is defined in Equation 3 

Fig. 6: Hamlet Flow Analytics 

and represents a view of the graph modeled as an electric 

circuit model, i.e. Kirchhoff's laws [8]. An interesting feature 
of this model over more frequently applied shortest path 

betweenness centrality is its accounting for the contribution 

multiple information path flows. 

CfWB 
= L rjk (3) 

#i# 
where the Ijk element of matrix R contains the 
probability of a random walk starting at node j, 

that absorbs node k, passing through node i. 

An analysis of the Hamlet CAG representing node size as 

cfw B and edge size as Ebet (e) is shown in Figure 6. An 
observation from this analysis is that the top two Ebet (e) 
results are Hamlet - Horatio and Hamlet - Claudius 
edges. This provides some additional analytical insight in that 

Hamlet - Horatio was already in the previous top activity 
edges and remains as a high betweenness edge, i.e., bridging 
other conversations or serving as an important information 

dissemination edge. Hamlet - Claudius had a lower metric 

than several others on the purely "activity" weighted ranking 
but now ranks as the second strongest result using an edge 

betweenness metric. Again, this serves as an indicator that 
conversations between Hamlet - Claudius are frequently 

on the shortest path between other conversational adjacencies 

within the graph. By studying the play and its unfolding plots, 
we can see how the Hamlet - Claudius is a strong structural 

conversational bridge between other actor conversations as 
these actors speak together many times but also interact with 
many separate characters, frequently in the absence of each 

other. Such analytical modeling and insight into complex 
structural relationships is a short example of key applied 

research goals for ongoing work we are considering as such 

behavior could represent collaborative but separately clustered 
communication leaders or the behavior of distributed proxies. 
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V. TEMPORAL CAG MODEL EXTENSIONS AND 

ApPLIC ATIONS 

The basic aggregate CAG model and example has value for 
numerous applications but there is strong motivation to de­

velop time-ordered causality representations better supporting 

evolving interactions or time-oriented information spreading 
statistics. By developing graph representations preserving the 

temporal ordering of conversation adjacencies we can go 
deeper to apply innovations in complex network metrics for 
temporal graphs [3], [9], [10]. This type of temporal model­

ing requires either a directed multigraph representation (with 
time information recorded on edges), or equivalently, a time­

ordered series of digraphs. Building upon the time-windowed 

CAG definition, we now discuss applied work using temporal 
models of CAGs (directed or undirected). We have developed 
software tools to construct these graph sequences from data 

sets and to perform a variety of temporal metric calculations 
from recent literature. A basic benefit of a time-ordered graph 

model is that communications with causal or time-ordered 
structures are better represented (e.g., temporal disconnections, 

arrival/departures of actors, temporally-ordered workflow ex­

changes). A straightforward example in our present canonical 
model is the actor, Francisco, who appears and transacts only 

in Scene 1, Act 1. Therefore, this actor has no potential 

temporal information propagation back to him from actors 
appearing later in the play (e.g., Rosencranz). However, in the 

previous aggregate graph formulation, such a graph pathway, 
albeit minor, exists between Rosencranz and Francisco through 

Hamlet since communication time-ordering was not preserved 

in the model. 

VI. SCENE-BASED, T IME- VARYING CAGs 

To provide an example of temporal graph analytics for Ham­
let, we construct a time-ordered series of CAGs representing 

windowed CAGs on Scene boundaries. We could carry this 

filtered of CAG relationships down to smaller time windows 
as needed, and at a lower limit we have an ordered series of 

windowed graphs representing a single conversational event in 

each graph. A Scene within a play serves as a natural context 
for a series of conversation exchanges and real world mission 

modeling of chat rooms or other temporal collaborations may 
have similar contextual time or group filters related to mission 

phases or subtask collaborations. Each specific application will 

likely require appropriate consideration of the time-windowing 
implications and relevant estimations (e.g., time clustering) but 

the generic model supports flexibility in this regard. 

VII. SCENE-BASED HAMLET CAGs: TEMPORAL METRIC 

EXAMPLE 

A temporal geodesic betweenness metric was developed 
in [11] and we show related results from our time-ordered 

analysis of all Scene CAGs in Figure 7. This shows the top 
5 nodes across temporal graphs that are "in between" other 

nodes in terms of temporal conversational distance or cost. As 

a quick example of temporal filtering effects when we reran 
this data for Scenes 1-3, only Polonius has a positive value 

Tem Geo Betweenness 
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Fig. 7: Top 5 Temporal Geodesic Betweenness Nodes 

who is the only common actor residing between these Scenes. 
Due to space limitations, we leave further temporal metric 
analysis and discussion to further work. 

VIII. BLIND CAG CONSTRUCTION FOR EXPERIMENTAL 

NETWORK DATA 

To test out the basic construction and analysis of a CAG 

from experimental data, we orchestrated a network emulation 
experiment using distributed network-based Hamlet actors. 
The basic experiment model was constructed using 35 virtual 

network containers within the COmmon Research Emula­
tor (CORE) [12]. A single actor was assigned to a net­

work node and conversational activity was orchestrated using 

the basicmgenactor.py remote interface for MultiGenerator 
(MGEN) [13] network traffic test tool over the emulation 

control interface. This experiment focuses on generating text 
messaging from actors (e.g., chat group) although we have 
also orchestrated the network streaming of relevant audio 

sound bytes. To construct a CAG estimate, we used received 
network traffic logs at a node designated as a mock chat server 

within the emulated network. Since this CAG estimate model 

is independent of receive identifiers, a companion multicast 
network test case resulted in similar findings. Our unicast 

case is similar to a centralized chat server type deployment 
where a log may be available of incoming session traffic. 

In the multicast case, we might have an application model 

where all sources or a pub/sub message bus uses a well­
known multicast destination and this could be used to monitor 

sequenced collaborative interactions. In the simplest case, we 

use only the order of arriving stanzas and a source identifier 
to construct the conversation adjacency estimates. 

Figure 8 presents our estimated aggregate weighted CAG 
from the unicast-based network experiment and Figure 9 

presents a list of the top lO sensed aggregate conversational 
adjacencies from this actual experimental data. There is strong 

agreement between this result and the a-priori model (e.g., 

the top eight adjacency rankings agree). There some minor 
differences in rankings for subsequent edges (e.g., 9 -lO) 
but this is likely explained by the absence of Scene change 
estimate in the empirical example. Strong bi-directional rela­

tionships between Hamlet - Horatio, Hamlet - Polonius, 
Hamlet - Rosencranz, Hamlet - Gertrude are detected 
as in the a-priori model purely from this blind post analysis. 
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Fig. 8: Arc Diagram of Blind Hamlet CAG 

This is relatively trivial example but demonstrates the concept 

in action within an actual network testbed. 

Fig. 9: Top 10 Directional Adjacencies from Blind Construc­

tion 

IX. ISSUES AND ONGOING W ORK 

We are actively working on applying CAG models for 

modeling and analyzing collaborative tactical network services 
and distributed workflows. A research goal is improving the 

measurement and analysis of evolving network collaborative 

applications and transactional exchange structures. These same 
capabilities are presently assisting in the modeling and orches­

tration of distributed causal systems within ongoing network 
experiments. We are carrying out ongoing work into tempo­

ral graph models and at present we have implemented and 

experimented with temporal variants of centrality including: 
communicability, broadcast, receive, geodesic betweenness, 

transitive betweenness. We should point out that while impor­

tant, time-varying graph models add complexity and are not 
an analytic panacea. At present, there is no one size fits all 
approach. As an example, some temporal metric formulations 
ignore or underemphasize the importance of communication 

pathways within each time window and focus only on temporal 

connections and pathways between graph sequences. Many 
tactical communication network models evolving in time are 

easily able to exchange local data within subgraphs on shorter 

timescales so we feel it is important to analyze connected 
graph pathways within the time windowed CAGs (e.g., short 

term exchanges) as well as to consider segments necessary 
to propagate information in time between sequenced CAGs 
(e.g., store-forward propagation model). In this regard, we 

are looking into models preserving intra-sequence pathway 
information similar to the model outlined by (Tang, et al) 

in [14]. Recent theoretical constructions, such as temporal 
communicability betweenness [10] also provide some ability 
to emphasize different temporal timescales and we are actively 

examining such approaches. 

X. CONCLUSIONS 

We presented a model of a time-windowed CAG and 

demonstrated construction and potential applications using 

dialogue sequence and actor information from Shakespeare's 
Hamlet. We provided samples of complex network analytics 
on the CAG model as a canonical example of examining con­
versational relationships as they might occur between applica­

tions or collaborative services within a distributed network. 

Distributed group chat, collaborative distributed computing, 
and mission-based network workflows are some examples of 

potential real world applications of DoD interest. We presented 

uses of the model first as an aggregate, time-independent 
analytical structure and we extended this to a set of scene­

based, temporal graph models of an evolving nature. We 
presented a short discussion of initial temporal graph-based 

metric results and discussed further planned investigations. 

Lastly, we presented an empirical example of constructing a 
CAG model from an actual network emulation without a-priori 

knowledge of the actor relationships or conversations. Results 

demonstrated that we could construct a CAG model largely 
agreeing with an a-priori CAG model and could gain insight 

into the structural role of nodes and edges. 
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