
1

Privacy Enforcement Through Policy Extension
Saritha Arunkumar†, Mudhakar Srivatsa, Berker Soyluoglu‡, Murat Sensoy‡, Federico Cerutti∗

IBM Hursley Labs, UK† IBM Research, USA Ozyegin University‡ Cardiff University, UK∗

saritha.arun@uk.ibm.com, msrivats@us.ibm.com, murat.sensoy@ozyegin.edu.tr,

CeruttiF@cardiff.ac.uk

Abstract—Successful coalition operations require contribu-
tions from the coalition partners which might have hidden goals
and desiderata in addition to the shared coalition goals. There-
fore, there is an inevitable risk-utility trade-off for information
producers due to the need-to-know vs. need-to-hide tension,
which must take into account the trustworthiness of the other
coalition partners. A balance is often achieved by deliberate
obfuscation of the shared information. In this paper, we show how
to integrate obfuscation capabilities within the current OASIS
standard for access control policies, namely XACML.

I. INTRODUCTION

As widely discussed in [1], Information sharing is key
to the operational efficiency of a coalition network. From
an information provider’s perspective, successful decision-
making at the consumer using the shared data, indirectly
results in utility for the provider and offers incentive for
sharing. However, the act of sharing presents risks to strategic
assets. The risk arises from the possibility that the data being
shared may reveal more information to its recipient than was
intended. Policies instituted at the producer to manage this
risk often negatively affects the quality of decision-making at
the consumer by introducing additional sources of uncertainty,
thereby reducing the provider’s utility.

One of the ways in which the balancing between risk
and utility is achieved is through deliberate obfuscation of
data. Obfuscation is a process through which the quality of
the shared information is degraded in a controlled manner
to protect against sensitive inferences regarding strategic as-
sets [2]. This allows the data to retain utility while lowering
the associated risk.

In this paper we demonstrate the capability of the cur-
rent OASIS standard for access control policies : XACML
(eXtensible Access Control Markup Language)to encompass
the description of obfuscation methodologies, and we suggests
which elements should be particularly involved in this process.

XACML [7] is an OASIS standard that defines an XML-
based language for specifying access control policies, requests
and responses.

The XACML policy language is designed to support ABAC
(Attribute Based Access Control). Decisions can be made
according to some conditions on the attributes of the subject,
the object of the request or the system environment. This
approach makes XACML a flexible authorisation system that
allows the specification of context-aware and risk-intelligent
access control policies. The standard also defines a RBAC

PAP PDP

PIP

Obligation ServiceUser

Resource

PEP

Context Handler

Fig. 1: XACML reference architecture, [7]

(Role Based Access Control) profile as a particular case of an
ABAC system.

XACML separates the authorisation decision point from
the decision enforcement point. Before performing an action,
each application needs to ask the XACML decision point for
permission. There is therefore, no need to embed the access
control rules in the code of different applications. Changing
access control rules just need adaptation of the related policy
in the XACML authorisation system: this will automatically
affect each application.

The rest of the paper is organized as follows. Section II
overviews the XACML architecture. Section III introduces an
abstract model of permissions and obligations for obfuscation.
Section IV demonstrates the capability of XACML to encom-
pass the description of obfuscation methodologies. Section V
briefly evaluates our prototype implementation and Section VI
concludes the paper with a discussion of our contributions.

II. PRELIMINARIES

This section present preliminary information about policy
framework that our approach built upon.

A. XACML Architecture

The reference XACML architecture proposed by OASIS is
shown in the data-flow diagram in Figure 1 and it comprises
the following elements:

1) PDP (Policy Decision Point): It receive access requests
from the context handler (step 3 in Section V) and it queries
the Policy Repository to find the applicable policies for an
access request (step 4 in Section V). In the case of no (or
more than one) policy, the PDP returns an error code. In the
case of an applicable policy, the PDP evaluates it and returns
the corresponding decision to the context handler (step 9).



2

To perform its duty, the PDP might need to retrieve additional
attributes outside the request context, via the PIP module (steps
5-8 in Section V).

2) PEP (Policy Enforcement Point): It is an application-
dependent component. It has to intercept every user access
request (step 1 in Section V), forward it to the context handler
(step 2 in Section V) and enforce the authorisation decision
returned by the context handler (step 10 in Section V) only
if all the obligations can be correctly interpreted and fulfilled
by the PEP, otherwise the PEP returns an error message. As
shown in Figure 1, the system obligation fulfilment is usually
performed by a different module then PEP.

3) Context handler: It receives the requests from the PEP
in an application-dependent format (step 2 in Section V),
convert them to an XACML request and forward them to
the PDP adding the request context information (step 3 in
Section V). It can be requested—by the PEP—to retrieve some
additional attribute from the PIP if these are needed to evaluate
a particular policy or rule (steps 5-6-7-8 in Section V). The
context handler is also responsible for receiving the XACML
response from the PDP, with system obligations, and to convert
it to a format understandable for the PEP before forwarding
it (steps 9-10 in Section V).

4) PIP (Policy Information Point): It provides the PDP
with the information needed to evaluate a request that is
not available in the request context (e.g. subject, resource
and environment attributes). It is an interface between the
PDP and the Data Source of the application, thus it is an
implementation-dependent component.

5) PAP (Policy Administration Point or Policy Repository):
It stores the XACML policies and is queried by the PDP
when it has to find an applicable policy for an XACML access
request or to find a specific policy that has been referred by
another one. An important feature of a PAP is that it has to
allow the definition of a subset of the policy set as top-level
policies. These are the only policies that directly applicable
for evaluating a request. The policies in the set of non-top-
level policies can be used only if referred to by another one.
It is important to carefully define these two sets in a way that,
for every possible request, only one applicable top-level policy
can be found in the PAP.

B. Policy language

The atomic unit of an access control policy set is a
<Rule>. A XACML <Policy> may be composed of a
number of individual rules combined together according to
a combining algorithm. In the same way a <PolicySet>
may be composed by a number of individual policies. Three
top-level policy elements are defined:

1) <Policy>: It contains a set of <Rule> elements
and a specified procedure for combining the results of their
evaluation. It is the basic unit used in the policy specification
and so it is intended to form the basis of an authorisation
decision. Its main components are:

• A <Target>: it specifies for which requests the rule
applies via a conjunction of <AnyOf> elements. Every

<AnyOf> element contains a disjuction of <AllOf> el-
ements. Every <AllOf> element contains a conjunction
of <Match> elements. A <Match> element compares
an attribute value with an embedded value applying a
specific match function.

• A set of <VariableDefinition> elements: these
allow the policy writer to associate a VariableId
to a specific value. The value is enclosed in the tag
and has to be a subtype of the <Expression> ele-
ment type. These variables can be referenced using the
<VariableReference> throughout the whole policy
in the definition of rule’s condition, obligations or advice.

• A set of <Rule> elements.
• A rule-combining-algorithm attribute: it speci-

fies the algorithm used by the PDP to combine the results
of the different rule components. There are six normative
algorithms:

1) Extended Indeterminate values;
2) Deny-overrides;
3) Ordered-deny-overrides;
4) Permit-overrides;
5) Ordered-permit-overrides;
6) Deny-unless-permit.

• A <ObligationExpressions> including a set of
<ObligationExpression> elements that specify
obligations to be fulfilled by the PEP when the rule
applies and the specified effect is returned. An obli-
gation in XACML is represented as a set of attribute
assignments that the PEP has to be able to interpret.
In Figure 2 we show an example system obligation
that obliges the PEP to send a confirmation email
to the user who obtained access to a resource. The
<ObligationExpression> element must contain a
set of <AttributeAssignmentExpression> each
one assigns a value to a specified AttributeId. The
value is enclosed in the tag and has to be a subtype of
the <Expression> element type previously defined.

• A <AdviceExpressions>, i.e. a set of
<AdviceExpression> elements—syntactically
analogous to <ObligationExpression>—that
specify advice that the PEP should fulfil when the rule
applies and the specified effect is returned.

2) <Rule>:

• A <Target>.
• a boolean <Condition> that refines the applicability

of the rules beyond the predicates implied by its target.
This is an expression that apply functions chosen from
a standard set to one or more attribute variables. A
<Condition> element must contain one element of a
type that extends the <Expression> type, such as:

– <Apply> and <Function>, that apply a specified
function to a number of members;

– <AttributeDesignator> and
<AttributeSelector> that allows the retrieval
of the value of a named attribute from the request
context and from a given xml path respectively;

– the <VariableReference> element that al-



3

<ObligationExpression
ObligationId="send-confirm-email"
FulfillOn="Permit">
<AttributeAssignmentExpression
AttributeId="mail"
DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeDesignator
AttributeId="subject-category:mail"
Category="urn:oasis:names:tc:xacml:1.0:

subject-category:access-subject"
DataType="http://www.w3.org/2001/XMLSchema#string"
MustBePresent="false" />

</AttributeAssignmentExpression>
</ObligationExpression>

Fig. 2: Obligation attribute definition in XACML 3.0
<Request ...>
<Attributes Category="...:
subject-category:access-subject">

<Attribute IncludeInResult="false"
AttributeId="...:subject:subject-id">
<AttributeValue
DataType="urn:oasis:names:tc:xacml:1.0:
data-type:rfc822Name">
bs@simpsons.com</AttributeValue>

</Attribute>
</Attributes>
<Attributes...

Fig. 3: Example of request context in XACML 3.0

lows reference to a variable defined using the
<VariableDefinition>.

• An Effect attribute: the decision value d ∈
{“Deny”, “Permit”} that has to be returned if both the
rule and target conditions evaluates to true. If neither the
condition nor the target apply, the return value is “Not
applicable.”

3) <PolicySet>: It contains a set of <Policy> or
other <PolicySet> elements and a specified procedure for
combining the results of their evaluation. The main compo-
nents are:

• A <Target>.
• A set of <Policy> or <PolicySet> elements.

An external <PolicySet> or <Policy>
can be referred by its id using respectively
the <PolicySetIdReference> and the
<PolicyIdReference>.

• A Policy-combining algorithm.
• A set of <ObligationExpression>.
• A set of <AdviceExpression>.

C. Contexts

When the PEP sends a requests to the context handler, the
latter creates a request context that includes one or more sets
of attribute elements, each of which is associated with one of
the supported attribute categories. See Figure3 for an example.

An XACML response context includes one or more results,
each of which is comprised of a decision and, optionally,
obligations and advice.

III. ABSTRACT MODEL OF PERMISSIONS AND
OBLIGATIONS FOR OBFUSCATION PURPOSES

From a formal point of view, in order to reuse the large
corpus of studies in deontic reasoning [4], we refer to a formal

PAP PDP

PIP

Obligation Service
Obfuscation
Procedure

Data/Application
Context info

Data/Application
Context description

Obligations associated
to "Permit" actions

User

Resource
(obfuscated)

PEP

Context Handler

Fig. 4: Obfuscation-specific intervention on the XACML reference
architecture

syntax using a logic with modalities. These modalities are:
OB — obligation — and PE — permission.

The obligation activities can be seen as a strict order,
something that we assume will be surely enforced: to this aim,
we assume the existence of a robust component in each node
of the network, as well as in any element at its edge which
guarantees the applicability of obligations.

The permission activities represent alternatives that can be
exploited by the autonomous risk/benefit assessment that takes
place at the edge of the network regarding suitability to share.

Therefore, the expression OBα · γ should be read as: the
action α must be executed under the condition γ — similarly
for the permission modality PE. Adopting an expressive
language like this will allow us to deal with inconsistencies
among policies which might arise [6].

The action can be of two types:

1) not share (ω), i.e. sending no information at all;
2) share to a level x (σ(x)), i.e. anything between sharing

forged data, to sharing the legitimate data.

Instead, γ can have several components which are depen-
dent on the requested resource.

There are then domain independent conditions: for instance,
this is the list of conditions that are considered by IpShield:

• time (e.g. day, week);
• location;
• activities;
• app name;
• sensor type.

We therefore assume to be able to uniquely identify the
various fields that can be used for expressing the conditions.

IV. XACML-COMPATIBLE OBFUSCATION MECHANISMS

From previous Sections, an XAMCL-compatible obfusca-
tion mechanism requires specific implementations within:

1) the policy structure;
2) the Obligation Service;
3) the Context Handler;
4) the PIP.

Those specific implementations are summarised also in
Figure 4.



4

A. Policy Structure

In Section III, two possible actions are identified:

• not share;
• share to a level x.

Instead, the XACML standard allows only for two decision
values:

• Deny;
• Permit.

While “not share” is logically analogous to “Deny,” “Per-
mit” identifies only the case “share to the level x = 0.”
Therefore, in order to encompass obfuscation levels, each
Policy must consider an ObligationExpression such
that, in the case the evaluation of the rules for a given
Target returns “Permit,” the ObligationExpression
should provide information regarding the level of obfuscation,
depending on contextual information.

B. Obligation Service

The chosen nature of obfuscation mechanisms to be repre-
sented as an obligation requires the obligation service to be
both application-dependent and data-dependent.

Let us consider the IPShield [3] case. In this context,
obfuscation can apply to a plethora of sensors: therefore the
Obligation Service must be in the position of knowing the
data domain and the methodology to apply for guaranteeing
an obfuscation of a given degree. For instance, obfuscating
with degree x = 1 a GPS location might suggests to add a
significant amount of Gaussian noise on top of the original
stream.

The Obligation Service, therefore, is the component that
needs to implement the actual obfuscation techniques for
privacy enforcement.

C. Context Handler

As noticed in Section I, the Context Handler receives the
requests from the PEP in an application-dependent format,
converts them to an XACML request and forwards them to
the PDP. The application-dependent nature of this component
makes necessary for it to react to specific stimuli. In particular,
since XACML3.0 gives freedom in defining attribute elements
in request contexts, the Context Handler must be enriched
to be able to handle application-specific privacy enforcement
attribute requests, such as those identified in Section III in the
context of IPShield, such as:

• time;
• location;
• activities.

In particular, what we identified as sensor type is
already managed by the standard, as the Target, while app
name is the Subject.

D. PIP

PIP is the other implementation-dependent component, and
it is the interface between the PDP and the Data Source

<Response>
<Result ResourceID="patient-list">
<Decision>Permit</Decision>
<Status>
<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

</Status>
<Obligations>
<Obligation ObligationId="obligation" FulfillOn="Permit">
<AttributeAssignment AttributeId="com.ozu.obligationClass"
DataType="http://www.w3.org/2001/XMLSchema#string">
com.berkersoyluoglu.filters.TestFilter</AttributeAssignment>

</Obligation>
</Obligations>

</Result>
</Response>

Fig. 5: Example of response returned by the PDP

of the application. It therefore must handle context requests
application and data dependent.

E. PDP

PDP is where the policies are evaluated and the response
is returned to PEP. So the implementation is as follows, when
the user sending the request it sends a class that will be used to
filter the result if the response is ”Permit”. Doing so enable us
to have more control over the obligations. The filter class can
be implemented as long as it implements the IFilter interface.

Figure 5 demonstrates an example response returned by the
PDP.

V. EXPERIMENTATION

We also had an experimentation setup to prove the concepts
put forward in this paper. For this purpose, we implemented
a prototype system whose architecture is shown in Figure 6.
The setup consists of two pieces:

1) mobile applicaiton.
2) server containing the XACML logic

Mobile application represents a thin client that is only respon-
sible for providing the input that is needed for the PDP to
work e.g. location information. Server on the other hand is
made up of several components depicted in Figure 6.

If we were to go over the steps of a request and a response
in order of their execution.

1) Mobile application launch
2) Application starts up broadcasting a name for ZeroConf

Networking.
3) Send that name and the location of the current device

to the Server
4) User logins
5) User requests data
6) Application searches for devices near by sends their

names with the data requests.
7) Server executes the policies with the data provided.
8) If the PDP returns access granted PAP calls the filter if

there exists a filter provided by the user.
9) The result is returned to the user.

The server contains several XACML extensions for ge-
ographical operations we also ran several tests to see the
performance impact of those extensions. Over 100000 runs



5

Mobile Devices Login Service

Data Service

SQL Server with GeoHashes, Pa ent data

and reported user loca ons

Extension points containing

de ni ons for GeoPoint,

GeoPolygon, GeoContains,

GeoDistance

PDP

Evaluate the request

with the policies

Filter Class extending IFilter

interface

Call the lter method for user

de ned lter algorithm

PEP

Create Request context with 

the data received. Gather data 

if permit is returned from PDP

Loca on Service

Devices send their loca on

with their ZeroConf

network name

Fig. 6: Implementation architecture

the average time spent on executing policies containing geo-
graphical extensions are 6608 nanoseconds and policies that do
not contain those extensions run on average 3109 nanoseconds.
The object creation overhead should also be accounted for and
those add up to 286 nanoseconds. To provide more security
server checks for the nearby device list provided by the user
while requesting the data. This list is checked against the
nearby devices server knows and/or assumes are in the vicinity
of the supposed location provided by the user.

VI. CONCLUSION

In this paper we identified a clear methodology for de-
scribing and implementing effective mechanisms for privacy
enforcement via obfuscation within the XACML framework.
We built this methodology upon our previous experience
within the ITA project, notably [1] and [5].

Our methodology requires to adapt:

1) the policy structure;
2) the Obligation Service;
3) the Context Handler;
4) the PIP;

to encompass specific application domains and data sources.
In particular, whenever a policy can returns a “Permit”

decision, an obligation must be issued and it must contains
the relevant pieces of information necessary for performing
obfuscation techniques: in the context of this paper we con-
sidered a simple metric value between 0 and 1, as in [5], but
more articulated procedure can be easily envisaged.

Moreover, since the Obligation Service, the Context Han-
dler and the PIP are defined as application-dependent, as since
XACML3.0 allows arbitrary sets of attributes, no further mod-
ifications are needed to the standard. Any XACML-compliant
policy is automatically valid within our methodology provided
the requirement of specifying an obligation any time a “Per-
mit” decision is issued.

ACKNOWLEDGEMENTS

The research described in this article was sponsored by US
Army Research laboratory and the UK Ministry of Defence

and was accomplished under Agreement Number W911NF-
06-3-0001. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the US Army Research Laboratory, the U.S. Government,
the UK Ministry of Defense, or the UK Government. The
US and UK Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

REFERENCES

[1] F. Cerutti, S. Chakraborty, G. R. de Mel, L. M. Kaplan,
T. J. Norman, N. Oren, S. Pipes, M. Sensoy, M. B.
Srivastava, and P. Sullivan. Managing information sharing
in coalitions through credible obfuscation. Technical
report, ITA, 2014.

[2] S. Chakraborty, N. Bitouzé, M. Srivastava, and L. Dole-
cek. Protecting data against unwanted inferences. In
Information Theory Workshop (ITW), 2013 IEEE, pages
1–5. IEEE, 2013.

[3] S. Chakraborty, C. Shen, K. R. Raghavan, Y. Shoukry,
M. Millar, and M. Srivastava. ipshield: A framework
for enforcing context-aware privacy. In 11th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI 14), pages 143–156, Seattle, WA, Apr. 2014.
USENIX Association.

[4] P. McNamara. Logic and the Modalities in the Twentieth
Century, volume 7 of Handbook of the History of Logic.
Elsevier, 2006.

[5] S. Pipes, F. Cerutti, and S. Chakraborty. Initial Realization
of Inference Management in Information Fabric. Technical
report, ITA, 2014.

[6] L. van der Torre and Y. Tan. Contrarytoduty reasoning
with preferencebased dyadic obligations. Annals of Math-
ematics and Artificial Intelligence, 27(1-4):49–78, Apr.
1999.

[7] XACML. eXtensible Access Control Markup Lan-
guage (XACML) Version 3.0. 22 January 2013. OASIS
Standard. http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-os-en.html, 2013.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

	Introduction
	Preliminaries
	XACML Architecture
	PDP (Policy Decision Point)
	PEP (Policy Enforcement Point)
	Context handler
	PIP (Policy Information Point)
	PAP (Policy Administration Point or Policy Repository)

	Policy language
	<Policy>
	<Rule>
	<PolicySet>

	Contexts

	Abstract Model of Permissions and Obligations for Obfuscation Purposes
	XACML-compatible Obfuscation Mechanisms
	Policy Structure
	Obligation Service
	Context Handler
	PIP
	PDP

	Experimentation
	Conclusion

