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Abstract—Conventional correlation-based frame synchroniza-
tion techniques can suffer significant performance degradation
over multi-path frequency-selective channels. As a remedy, in
this paper we consider joint frame synchronization and channel
estimation. This, however, increases the length of the resulting
combined channel and its estimation becomes more challenging.
On the other hand, since the combined channel is a sparse vector,
sparse channel estimation methods can be applied. We propose a
joint frame synchronization and channel estimation method using
the orthogonal matching pursuit (OMP) algorithm which exploits
the sparsity of the combined channel vector. Subsequently, the
channel estimate is used to design the equalizer. Our simulation
results and experimental outcomes using software defined radios
show that the proposed approach improves the overall system
performance in terms of the mean square error (MSE) between
the transmitted and the equalized symbols compared to the
conventional method.

Index Terms—Equalization, frame synchronization, MSE,
OMP, SDR, sparse channel estimation, USRP.

I. INTRODUCTION

In communication systems where the information symbols

are transmitted in frames, it is essential to determine the

frame boundary correctly to avoid performance degradation. In

conventional systems, frame synchronization is performed by

correlating a known training sequence with the received data

and the point which gives the highest correlation is selected

as the frame boundary [1]. In multi-path fading environments

where the delay spread is larger than the symbol duration,

the correlation peak gets widened and it becomes difficult to

identify the exact frame boundary. Moreover, if the location of

the dominant multi-path component happens to be somewhere

other than the first tap, this location will give the highest

correlation and an incorrect frame boundary will be chosen.

Equalization aims to convert the multi-path channel into

a single-tap flat-fading channel which would improve the

accuracy of the frame synchronization. However, the channel

estimate required for equalization is often calculated using the

training symbols, with the knowledge of the frame boundary
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itself. Therefore, a joint synchronization and channel estima-

tion approach is desirable for simultaneously obtaining the

channel estimates and the frame boundary.

In order to tackle this problem, we model the frame bound-

ary offset as an unknown delay introduced to the channel

which we call the combined channel. This combined channel is

estimated and the equalizer is designed based on this estimate.

The disadvantage of this approach is that the length of the

channel impulse response (CIR) may increase by an amount

as large as the duration of the frame length and the channel

estimation becomes more complex. However, we note that

introducing delay into the channel is equivalent to padding

the CIR with zeros. Therefore, the number of non-zero CIR

elements that needs to be estimated does not increase and the

combined channel vector becomes sparse. As a result, sparse

channel estimation methods can be used to reduce complexity.

Sparse channel estimation has been considered in [2] using

a matching pursuit (MP) algorithm [3], [4] while a technique

based on least mean squares (LMS) is proposed in [5]. Neither

of the methods in [2]–[5] consider frame synchronization.

Earlier work on joint frame synchronization and channel

estimation includes [6] for OFDM systems, [7] and [8] for

CDMA systems, and [9] for optical communication systems.

However none of them exploit the sparsity of the combined

channel vector. To the best of our knowledge, joint frame

synchronization and channel estimation using sparse methods

has not been studied in the literature.

In this paper, we propose a joint frame synchronization

and channel estimation method using the orthogonal matching

pursuit (OMP) algorithm which exploits the sparsity of the

combined CIR vector. An equalizer is designed using the

estimated channel. Subsequently, the mean square error (MSE)

between the equalizer output and the transmitted symbols is

used to illustrate the performance of the proposed method.

Both simulation results and the experimental results using

universal software radio peripherals (USRPs) demonstrate the

performance improvements using the proposed method.

The rest of this paper is organized as follows. Section II

describes the system model. In Section III, the proposed

joint frame synchronization and channel estimation method
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Fig. 1. The received samples and the illustration of frame boundary D̄ for a
data frame.

is explained. An equalizer design using the channel estimate

obtained in Section III is discussed in Section IV. Simulation

and experimental testbed results in Section V verify the

performance improvements when the proposed method is used.

The paper is concluded in Section VI.

Notation: Vectors are represented by lower-case boldface

letters. Matrices are represented by upper-case boldface letters.

The transpose is denoted by (.)T and E [.] is the expectation

operator.

II. SYSTEM MODEL

We consider a frame-based communication system over

a multi-path frequency-selective channel. The information

symbols are transmitted in frames and the receiver must

estimate the frame boundary, which is referred to as frame

synchronization, and perform channel estimation. The channel

estimate is used for channel equalization and demodulation to

recover the information symbols at the receiver. The multi-path

CIR is denoted by the vector h = [h0, h1, · · · , hL]
T

where

L is the CIR memory. If frame synchronization is performed

prior to the channel estimation, then, assuming symbol-spaced

sampling at the receiver, the n-th received symbol after frame

synchronization can be written as follows

y(n) =

L∑

l=0

x(n− l)hl + z(n) = x(n)h0 + · · ·+ z(n), (1)

where x(n) is the transmitted symbol and z(n) is the additive

white Gaussian noise (AWGN) symbol at time n. Note that, in

constructing y(n), x(n) is multiplied by h0. On the other hand

if frame synchronization is not performed prior to channel

estimation then the received signal becomes

y(n) =

L∑

l=0

x(n−D − l)hl + z(n), (2)

where D is the delay, in symbol periods, between the trans-

mitter and the receiver. Note that, in this case x(n − D) is

multiplied by h0. Suppose that the transmitted frames contain

M received samples and that we arbitrarily collect M samples

{y(n), · · · , y(n+M−1)} without the knowledge of the frame

boundary denoted by D̄. The frame boundary, D̄, is a random

number between 0 and M − 1. If the frame boundary is equal

to zero, then all of the M received samples correspond to the

same frame. Otherwise, some initial samples actually belong

to the previous frame, as illustrated in Fig. 1. The delay D

in (2) and the frame boundary D̄ are related by

D = mM + D̄, (3)

h

h̃

delay by D̄
x(n)

z(n)

y(n)

Fig. 2. The system model that takes the multi-path channel and delay into
consideration.
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Fig. 3. The frame structure we assume to perform joint channel estimation and
frame synchronization. One training frame is transmitted every P frames. This
figure assumes P = 4. The value of P is determined based on the channel

coherence time. The size of the training frame is M̃ samples and the size of
the data frame is M samples.

where m = 0, 1, · · · is an integer. To divide the received

samples into frames, the knowledge of m is not required as

shown in Fig. 1. Therefore, we only investigate finding D̄ for

frame synchronization.

Although it is possible to perform frame synchronization

and channel estimation separately, we may treat them jointly

as well by defining the following delayed and zero-padded

combined CIR vector h̃

h̃ = [0, 0, · · · , 0
︸ ︷︷ ︸

D̄ zeros

h0, h1, · · · , hL
︸ ︷︷ ︸

hT

, 0, 0, · · · , 0
︸ ︷︷ ︸

M−D̄−1 zeros

]T . (4)

The system model that takes the multi-path channel and delay

into consideration is illustrated in Fig. 2. In (4), the M−D̄−1
zeros at the end do not have any effect as far as the input and

output of the delayed and zero padded CIR h̃ is concerned.

However, they ensure that the length of h̃ is M +L which is

independent of the value of D̄. Note that, as long as M ≫ 1,

h̃ is a sparse vector regardless of h being sparse or not.

III. JOINT SPARSE CHANNEL ESTIMATION AND FRAME

SYNCHRONIZATION

In order to perform joint channel estimation and frame

synchronization, we assume that a known training frame with

size M̃ > M is transmitted periodically as shown in Fig. 3.

The size of the training frame needs to be larger than the

size of the data frame for reasons that will be explained later.

The estimate of h̃ is calculated using the training frame and

it is used to equalize and decode the data frames until the

next h̃ estimate is calculated when the next training frame is

transmitted again after P frames. The period P is determined

according to the channel coherence time. The input-output

relation of the system model illustrated in Fig. 2 is

y(n) =

M+L−1∑

l=0

x(n− l)h̃l + z(n), (5)

where h̃l is the l-th element of h̃.



Since data frames are assumed to contain M samples, the

receiver will collect M samples as in Fig. 1 when the current

frame is a data frame. On the other hand, when the current

frame is a training frame with size M̃ , the receiver collects

M̃ samples {y(n), · · · , y(n+ M̃ − 1)}. Note that, because D̄

is an integer in [0,M − 1], in the worst case, D = M − 1 and

the samples y(n+M), y(n+M +1), · · · , y(n+ M̃ − 1) are

guaranteed to be in the training frame rather than in the frame

preceding the training frame. In joint channel estimation and

frame synchronization a subset of these samples y(n+ M̃ −
NE), y(n+ M̃ −NE +1), · · · , y(n+ M̃ − 1) are used where

NE is the number of equations. Using (5) and the sample

y(n+ M̃ − 1) the first equation is given by

y(n+ M̃ − 1) =
M+L−1∑

l=0

x
t,M̃−1−l

h̃l + z(n+ M̃ − 1), (6)

where xt,0, · · · , xt,M̃−1 are the known transmitted symbols in

the training frame. Similarly, the last equation becomes

y(n+M̃−NE) =

M+L−1∑

l=0

xt,M̃−NE−lh̃l+z(n+M̃−NE). (7)

In (7) when l = M + L − 1, we have xt,M̃−NE−l =
xt,M̃−NE−M−L+1. Therefore, in order to guarantee that

xt,M̃−NE−l is a valid training symbol the following needs to

be satisfied:

M̃ −M − L−NE + 1 ≥ 0. (8)

Therefore, M̃ ≥ M + L + NE − 1. Choosing M̃ = M +
L+NE−1 (to reduce the training overhead) and stacking NE

received samples in a column vector we get

y = X̃th̃+ z, (9)

where

y =
[

y(n+ M̃ − 1), y(n+ M̃ − 2), · · · , y(n+ M̃ −NE)
]
T

(10)

is the known received vector of size NE,

X̃t =









xt,M̃−1 xt,M̃−2 · · · xt,NE−1

xt,M̃−2 xt,M̃−3

...

...
. . .

xt,M̃−NE
· · · xt,0









(11)

is the NE × (M + L) measurement matrix constructed from

known training symbols, and z is the noise vector

z=
[

z(n+ M̃ − 1), z(n+ M̃ − 2), · · · , z(n+ M̃ −NE)
]
T

.

(12)

A. Classical Solution

The system of equations in (9) can be solved to estimate the

combined CIR vector h̃. The classical solution of this problem

(which does not exploit the sparsity of h̃) is given by

ˆ̃
hclassical = X̃

†
ty, (13)

where X̃
†
t is the pseudo-inverse of X̃t and this solution is

called the least-squares solution if the measurement matrix X̃t

is a tall matrix and it is called the minimum-norm solution if

X̃t is a fat matrix. The problems with this classical solution

are as follows:

1) To obtain an accurate estimate of h̃, the number of

equations NE may be prohibitively large which increases

the computational complexity.

2) The solution is not guaranteed to be a sparse solution

although we know that h̃ is a sparse vector.

B. Proposed Sparsity-Aware Approach

Since h̃ is a sparse vector, the problem in (9) can be viewed

as a sparse signal recovery problem which can be formulated

as follows

argmin
h̃∈CM+L

‖h̃‖0, s.t. ‖y − X̃th̃‖
2
2 ≤ ǫ, (14)

where ‖h̃‖0 is the number of non-zero elements in h̃. The

notation ‖ � ‖2 denotes the ℓ2-norm and ǫ can be chosen as a

function of the noise variance.

To reduce the computational complexity of the Np-hard

problem in (14), the ℓ0-norm minimization is relaxed to an

ℓ1-norm minimization problem and solved using the computa-

tionally efficient orthogonal matching pursuit (OMP) method.

This solution is denoted by

ˆ̃
homp = OMP(y, X̃t, stopping criterion), (15)

where the stopping criterion can be a predefined sparsity level

on ‖h̃‖0.

C. Conventional Approach

The conventional approach for frame synchronization and

channel estimation is performing them separately. First, by

cross-correlating the received data symbols with the training

symbols, an estimate of the frame boundary, ˆ̄D in [0,M −
1] is obtained1. Then, the equations in (9) can be expressed

compactly as follows

y = Xth+ z, (16)

where

Xt =










x
t,M̃− ˆ̄D−1

x
t,M̃− ˆ̄D−2

· · · x
t,M̃− ˆ̄D−L−1

x
t,M̃− ˆ̄D−2

x
t,M̃− ˆ̄D−3

...

...
. . .

x
t,M̃− ˆ̄D−NE

· · · x
t,M̃− ˆ̄D−L−NE










(17)

is the NE × (L + 1) measurement matrix constructed from

known training symbols.

To gain some insight from (16), the following observations

are in order:

1) The first equation defined by the first row of Xt is given

in (6) where D̄ is replaced by ˆ̄D.

1The cross-correlation method is optimal for frequency-flat channels and
becomes suboptimal for multipath frequency-selective channels.
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Fig. 4. The complete system model illustrating the combined channel, channel
estimator and the equalizer.

2) Xt is a sub-matrix of X̃t. For example if ˆ̄D = 0, then Xt

consists of the first L+1 columns of X̃t. If ˆ̄D = M−1,

then Xt consists of the last L+ 1 columns of X̃t.

3) Unlike h̃ which will always be a sparse vector, h may

or may not be a sparse vector.

If h is not sparse, then the classical least-squares solution

ĥ = X
†
ty is a reasonable low complexity approach to solve

this problem although sparse methods can still be applied if

h is a sparse CIR vector. Once ĥ is obtained, the combined

CIR vector estimate becomes

ˆ̃
hconv = [0, 0, · · · , 0

︸ ︷︷ ︸

ˆ̄D zeros

ĥT , 0, 0, · · · , 0
︸ ︷︷ ︸

M− ˆ̄D−1 zeros

]T . (18)

IV. EQUALIZER DESIGN BASED ON CHANNEL ESTIMATES

The multi-path channel introduces inter-symbol interference

which should be equalized before the decisions on the symbols

are made. The complete system model is illutrated in Fig. 4.

Here, the channel estimate from the previous section is used

to design the equalizer. The performance of the equalizer will

depend on the accuracy of the channel estimate. Therefore,

the performance of different channel estimators from the

previous section can be compared by evaluating the equalizer

performance. To reduce the complexity of the equalizer, we

implement the sparse FIR linear equalizer design of [10],

[11]. The output of the equalizer is the soft estimate of the

transmitted symbol x(n) and can be expressed as x̃(n) =
∑N−1

k=0 y(n − k)wk, where wk is the k-th element of the

equalizer vector w and N is the length of the equalizer. The

performance metric adopted is the MSE defined as follows

MSE = E

[
|x̃(n)− x(n−∆)|2

]
, (19)

where ∆ is the equalizer delay which is optimized to reduce

the MSE. Finally, the transmitted symbols’ estimates are

calculated using a decision device based on the type of signal

constellation used.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

The CIR that we assume in the simulation is similar to

the channel in [2] and is shown in Fig. 5. This CIR has

L+1 = 101 taps with 10 non-zero taps given by: h0 = −0.5,

h7 = 0.1, h14 = 0.9, h33 = −0.3, h49 = 0.5, h51 = −0.25,

h69 = −0.3, h73 = 0.3, h89 = 0.4, and h100 = −0.1. The data

frame length is M = 1000. For channel estimation, NE = 148

-0.5

0

0.5

1

A
m

pl
itu

de

0 10 20 30 40 50 60 70 80 90 100

Channel Tap

Fig. 5. The CIR h used in the simulations.

equations are used. The length of the training frame is M̃ =
M+L+NE−1 = 1247. We set the frame boundary D̄ = 500.

We assume that we do not know the number of non-zero

taps in the CIR and we can only have an upper bound on it

which we set as 20. For the conventional approach, the least

squares solution is used. The channel estimates obtained using

the methods introduced in Section III are shown in Fig. 6

where BPSK modulation is used and SNR is set to 20 dB.

For the conventional method, we also show the genie-

assisted results where the receiver knows the correct frame

boundary D̄ = 500. Otherwise, when ˆ̄D is obtained using

cross-correlation of the received data with the transmitted

training frame, ˆ̄D = 514 is obtained which corresponds to

the location of the strongest multi-path component. By visual

inspection of the estimates, we see that the classical approach

performs poorly compared to all other approaches. The joint

sparse estimate and the genie-assisted conventional method

have similar performance. Note that the conventional method

without genie assistance is unable to estimate the 2 taps before

the strongest tap at time index 514.

Using the channel estimates from different methods and

the ideal channel to design the equalizer, we illustrate the

MSE performance in Fig. 7. The sparse FIR equalizer based

on [10] has 1200 taps with only 200 active taps. We observe

that the proposed joint sparse method outperforms the genie-

assisted conventional method for SNR larger than 5 dB. Fur-

thermore, for SNR greater than 20 dB, the joint sparse method

achieves same performance as in perfect channel knowledge

with perfect frame synchronization. The performance of the

conventional method is not satisfactory due to the errors in

identifying the frame boundary.

B. Experimental Results with USRPs

The performance of the proposed method was also evaluated

using our wireless testbed at Qatar University consisting of

a transmitter and a receiver where the transmitter and the

receiver are composed of one laptop computer connected to

a USRP N210 device [12] as shown in Fig. 8. Baseband

processing of the signals as well as the communication with

the USRP devices are done in MATLAB.
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Fig. 6. The channel estimates obtained from classical method, joint sparse method, and conventional method with and without genie assistance. The last
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Fig. 8. System model for USRP experiments

The testbed is based on QPSK transmitter [13] and re-

ceiver [14] examples in MATLAB. We select a training frame

period P = 10. Data frames contain M = 100 QPSK symbols

whereas the training frame contains M̃ = 147 QPSK symbols.

The symbols are up-sampled by 4 and passed through a raised

cosine transmit filter. These samples are transmitted in the 2.4

GHz ISM band at a sampling rate fs = 200 kHz. The same

sampling rate is used at the receiver as well. The received

samples go through automatic gain control (AGC) and a raised

cosine receive filter. At the output of this filter, the over-

sampling factor is reduced to 2. After coarse frequency com-

pensation and fine frequency compensation, timing recovery is

performed. During timing recovery over-sampling is reduced

to 1 and the receiver clock is synchronized to the transmitter

clock. However, the frame boundary is not determined yet.

The channel needs to be equalized as well. At this point we

can apply the different methods presented in this paper for

frame synchronization and channel estimation.

In our USRP-based experiments, the multi-path symbol-

spaced CIR used to generate the received samples was

h = [1 0.7]T . Fig. 9 shows the channel estimates using

NE = 43 equations where the real and imaginary parts of

the channel estimates are drawn seperately. The channel is

assumed to contain L + 1 = 6 non-zero taps. At the top

of the figure we have the joint classical method where the

channel is estimated using (13). Next, the channel estimate

obtained using the proposed method is shown where the sparse

OMP algorithm in (15) is used for channel estimation. The

conventional method where the frame synchronization and

channel estimation are performed separately, is at the bottom

of Fig. 9. We note that both methods seem to locate the frame

boundary; however, it is obvious that the classical method

performs the worst as its estimate is spread across the frame.

To assess the performance of each method, we perform

the sparse FIR linear equalization of [10] as explained in

Section IV. The equalization is performed for data frames

using the channel estimates obtained during the training frame.

Fig. 10 shows the MSE results as a function of the number

of active taps used in the equalizer out of a total of 200 taps.

Note that the proposed method outperforms the conventional

and the joint classical methods. Because the joint classical

method results in an inaccurate channel estimate, the MSE

increases as the number of active taps increases. We also note
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Fig. 9. The channel estimates obtained from classical method, joint sparse method, and conventional method with and without genie assistance.

that around 10 active taps are sufficient for the equalizer to

converge to the optimum performance.
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Fig. 10. MSE performance of different methods as a function of the number
of active equalization taps.

VI. CONCLUSION

In this paper, we proposed a joint frame synchronization

and channel estimation method for frame-based communi-

cation systems. The proposed sparsity-aware method attains

superior performance compared to the conventional method

where frame synchronization and channel estimation are done

separately. A full frame is dedicated to training; however, the

overhead due to training can be minimized by increasing the

period of the training frame by taking the coherence time of the

channel into consideration. Future research includes extensions

to multi-antenna and multi-user systems and investigating

more sophisticated sparse recovery algorithms than the simple

OMP considered in this paper.
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