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Abstract—Due to its potential to support high data rates at low
latency with reasonable interference isolation, millimeter-wave
(mmWave) communications has emerged as a promising solution
for wireless personal-area networks (WPAN) and an enabler for
emerging applications such as high-resolution untethered virtual
reality. At mmWave, signals are prone to blockage by objects
in the environment, including human bodies. Most mmWave
systems utilize directional antennas in order to overcome the
significant path loss. In this paper, we consider the effects
of blockage and antenna directivity on the performance of a
mmWave WPAN. Similar to related work, we assume that the
interferers are in arbitrary locations and the blockages are drawn
from a random point process. However, unlike related work
that assumes independent blocking, we carefully account for
the possibility of correlated blocking, which arises when two
interferers are close to each other and therefore an obstruction
that blocks the first interferer may likely block the second
interferer. Closed form expressions for the blockage correlation
coefficient and the distribution of the SINR are provided for
the case of two dominant interferers and a fixed number of
blockages drawn from a binomial point process. Finally, the
effects of antenna directivity and the spatial randomness of the
interferers are taken into account, resulting in SINR curves that
fully account for correlated blocking, which are compared against
curves that neglect correlation. The results provide insight into
the validity of the commonly held assumption of independent
blocking and the improved accuracy that can be obtained when
the blocking correlation is taken into account.

I. INTRODUCTION

Communicating at millimeter-wave (mmWave) frequencies
is attractive due to the potential to support high data rates
at low latency [1, 2]. The mmWave band is characterized by
high attenuation, which is both a blessing and a curse [3].
On the one hand, the desired signal is highly attenuated, and
to overcome the attenuation, high gain directional antennas
are required; however, due to the small wavelength, compact
multi-element antenna arrays are feasible, even on a compact
user terminal. On the other hand, interference tends to also be
highly attenuated, and thus the band is characterized as having
reasonable interference isolation.

Due to these characteristics, mmWave has emerged as
a promising solution for wireless personal-area networks
(WPAN) and as an enabler for emerging applications such as
high-resolution untethered virtual reality, augmented reality,
and mixed reality [4–6]. These technologies have significant
military applications, as virtual reality can help to better train
the warfighter, while mixed/augmented reality has the potential
to provide enhanced situational awareness.

Another characteristic of mmWave is that it is prone to
blockage by objects in the environment, including human
bodies. On the battlefield, blockages may include soldiers,

tanks, helicopters, and other equipment creating a dynamic
environment characterized by changing blocking conditions.
Blocking makes it especially difficult to provide universal
coverage with a cellular infrastructure. For instance, block-
age by walls provides isolation between indoor and outdoor
environments, making it difficult for an outdoor base station
to provide coverage indoors [7].

The performance of mmWave systems can be characterized
by the outage probability, or equivalently, by the cumulative
distribution function (CDF) of the signal-to-interference ratio
(SINR). Alternatively, the performance can be characterized
by the coverage probability, which is the complimentary CDF
of the SINR, or the rate distribution, which can be found by
using information theory to link the SINR to the achievable
rate. Prior work has considered the SINR distribution of
mmWave personal networks [8–10]. Such work assumes that
the blockages are drawn from a point process (or, more
specifically, that the centers of the blockages are drawn from
a point process and each blockage is characterized by either
a constant or random width). Meanwhile, the interferers are
either in fixed locations or their locations are also drawn from a
point process. A universal assumption in this prior art is that
the blocking is independent; i.e., each interferer is blocked
independently from the other interferers.

In actual networks, blocking might be correlated. This is
particularly true when two interferers are close to each other,
or more generally when two interferers have a similar angle
to the reference receiver. In this case, when one interferer
is blocked, there is a significant probability that the other
interferer is also blocked. However, correlated blocking can
arise even when interferers are not close. Take, for instance,
an extreme case where there is just one blockage in the
environment and two interferers located far apart from each
other. If the first interferer is blocked, then the second one
cannot be blocked, giving rise to a negative correlation.

As blocking has a major influence on the distribution of
the interference, it must be carefully taken into account.
Independent blocking is a crude approximation that fails to
accurately capture the true environment, especially when the
interferers are closely spaced or when there are few sources of
blocking. We note that blocking can be correlated even when
the sources of blockage are placed independently according
to a point process. The issue of blockage correlation was
recently considered in [11, 12], but it was in the context of
a localization application where the goal was to ensure that a
minimum number of positioning transmitters were visible by
the receiver. As such, it was only concerned with the number
of unblocked transmissions rather than the distribution of the
received aggregate signal (i.e., the interference power).
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In this paper, we accurately characterize the performance
of mmWave WPAN systems in the presence of correlated
blocking. We assume that an arbitrary number of blockages
are placed according to a point process. For ease of exposition,
we consider the case of two dominant interferers, though the
methodology can be extended to multiple interferers. The
signal model is such that blocked signals are completely
attenuated, while line-of-site (LOS), i.e., non-blocked, signals
are subject to an exponential path loss and additive white
Gaussian noise (AWGN). Though it complicates the exposition
and notation, the methodology can be extended to more
elaborate models, such as one wherein all signals are subject
to fading and NLOS signals are only partially attenuated (see,
e.g., [10]).

The remainder of the paper is organized as follows. We
begin by providing the system model in Section II, wherein
there are two interferers and an arbitrary number of blockages,
each drawn from a binomial point process. Section III provides
an analysis of the SINR distribution, where the results depend
on the blockage correlation coefficient. Section IV derives
the blockage correlation coefficient using arguments based
on the geometry and the properties of the blockage point
process; i.e., by using stochastic geometry. Section V considers
furthermore the effects of antenna directivity and randomly
placed interferers by allowing the interfering transmitters to
have a random location and orientation. The section leverages
the analysis provided in [13]. Finally, Section VI concludes the
paper, suggesting extensions and generalizations of the work.

II. SYSTEM MODEL

Consider a mmWave WPAN consisting of a reference
transmitter-receiver pair surrounded by both blockages and
interfering transmitters. The network is contained in an ar-
bitrarily shaped region A, where the variable A is used to
denote both the region and its area. Any additional sources
of interference located outside of A are assumed to be com-
pletely attenuated and therefore do not directly factor into the
performance of the network, though they may contribute to
the noise floor.

The goal of our work is to investigate the influence of
correlated blocking on the system performance. While it is
possible for there to be more than two sources of interference,
and these interferers may be subject to correlated blocking, the
main concept is best exposed by limiting the discussion to just
two interferers. As mmWave systems tend to be limited by a
few dominant interferers, this limitation is a practical one in
most cases. However, Section VI contemplates ways to extend
the analysis to the case of multiple interferers.

Hence, there are three transmitters: A source transmitter and
two interferers. Let the variable Xi denote the transmitter and
its location. In particular, let X0 denote the source transmitter,
and X1 and X2 denote the interferers. Each location is
represented by a complex number Xi = Rie

jφi , where Ri
represents the distance from the receiver to the ith transmitter
and φi represents the (azimuth) angle from the receiver to the
transmitter Xi. Without loss of generality, R1 6 R2. Fig. 1
shows an example of the network topology. Here, the network

Area “𝑎1” Area “𝑎2”

Overlapping area “v”

Total area “A”
𝑋1 𝑋2

Receiver

Fig. 1: Example network topology. Denoted by a red star, the receiver
is located at the center of the circular region A. Denoted by red
dots, the two interferers are in the northern part of A. The blocking
zones of each interferer are indicated by colored rectangles, and their
intersection is represented by v.

region A is a circle, though our methodology does not require
A to be any particular shape. The receiver is at the center of A
(indicted by the red star), and the two interferers are located
in the northern part of A (indicated by the red dots).

Within the network, there are K distributed blockages. As
in [12], each blockage is modeled as a point, a line segment
of length W centered at the point, and the line segment’s
orientation angle. The points are distributed according to a
binomial point process, and as such, they are independently
and uniformly placed on A. As in [12], the orientation angles
are selected such that the line segment is perpendicular to the
line between the receiver and the center of the blockage, which
is equivalent to saying that the line segment is actually the
projection of the visible face of the blockage rather than the
entire object. Although W can itself be random, we assume
here that all blockages have the same value of W . If a line
segment cuts the path between Xi and the receiver, then the
signal from Xi is non line-of-sight (NLOS), while otherwise it
is line of sight (LOS). Here, we assume that NLOS signals are
completely blocked while LOS signals experience exponential
path-loss with a path-loss exponent denoted by α.

Each interferer has a blockage region associated with it,
indicated by the colored rectangles in Fig. 1. We use ai to
denote the blockage region associated with Xi, i = {1, 2},
and its area. If the center of a blockage falls within ai, then
Xi will be blocked since at least some part of the blockage
will intersect the path between Xi and the receiver. From the
given geometry, it is clear that ai = WRi. Unless X1 and X2

are exactly on opposite sides of A, i.e. |φ1 − φ2| = π, there
will be an overlapping region v common to both a1 and a2.
Because of the overlap, it is possible for a single blockage to
block both X1 and X2 if the blockage falls within region v.
This is an example of positive blockage correlation. However,
it is also possible to have negative blockage correlation. For
instance, if there is just a single blockage (i.e., K = 1), then
if the blockage lies in region a1 \ v (i.e., in a1 but not in v),
then it cannot be in a2. In this case, X1 will be blocked, but
X2 cannot be blocked. As we will show, negative correlation
is also possible even when K > 1.



III. SINR OUTAGE ANALYSIS

The signal-to-interference and noise ratio (SINR) at the
receiver is given by

SINR =
Ω0

c+

2∑
i=1

(1−Bi)Ωi

(1)

where Ωi = R−α
i is the received power from transmitter Xi

(recalling that X0 is the source transmitter, X1 and X2 are the
two interferers, and α is the path-loss exponent), the constant
c is selected so that the signal-to-noise ratio (SNR) is the value
of SINR when the interference is turned off (SNR = Ω0/c→
c = Ω0/SNR), and {B1, B2} are a pair of Bernoulli random
variables, which may in general be correlated.

The variable Bi is used to indicate that Xi is blocked, and
thus when Bi = 1, Ωi does not factor into the SINR. Let
pB1,B2

(b1, b2) be the joint probability mass function (pmf)
of {B1, B2}. Let pi denote the probability that Bi = 1.
Furthermore, let qi = 1− pi. Letting ρ denote the correlation
coefficient between B1 and B2, the joint pmf is found to be

pB1,B2(b1, b2) =


q1q2 + ρh for b1 = 0, b2 = 0

q1p2 − ρh for b1 = 0, b2 = 1

p1q2 − ρh for b1 = 1, b2 = 0

p1p2 + ρh for b1 = 1, b2 = 1

(2)

where h =
√
p1p2q1q2. A proof of (2) can be found in the

Appendix. See also [14].
Because blockages are uniformly distributed over A, the

probability that a given blockage lands in ai is equal to ai/A,
and hence the probability it is outside ai is 1 − ai/A. Since
blockages are independently placed, the probability that all K
blockages are outside ai is (1−ai/A)K , and when this occurs,
Xi will be be LOS (i.e., not blocked). Conversely, Xi will be
NLOS (i.e., blocked) when not all of the blockages are outside
ai, which occurs with probability

pi = 1−
(

1− ai
A

)K
. (3)

The goal of this section to formulate the CDF of the SINR
FSINR(β), which quantifies the likelihood that the SINR at
the receiver is below some threshold β. If β is interpreted
as the minimum acceptable SINR required to achieve reliable
communications, then FSINR(β) is the outage probability of
the system Po(β) = FSINR(β). The coverage probability
is the complimentary CDF, Pc(β) = 1 − FSINR(β) and is
the likelihood that the SINR is sufficiently high to provide
coverage. The rate distribution can be found by linking the
threshold β to the transmission rate, for instance by using the
appropriate expression for channel capacity.

8 9 10 11 12 13 14 15 16

SINR threshold (dB)

0.7

0.75

0.8

0.85

0.9

0.95

1

C
D

F
 o

f S
IN

R

 = -0.1

 = 1

 = 0

Fig. 2: The CDF of the SINR FSINR(β) for different values of ρ. The
thick black line shows the CDF when ρ = 0, the dashed blue line
shows the case when ρ = −0.1, and the solid blue lines correspond
to positive values of ρ in increments of 0.1.

The CDF of SINR evaluated at threshold β can be deter-
mined as follows:

FSINR(β) = P [SINR ≤ β]

= 1− P
[ 2∑
i=1

Ωi(1−Bi)︸ ︷︷ ︸
Z

≤ Ω0

β
− c
]

= 1− FZ
(

Ω0

β
− c
)
. (4)

The discrete variable Z represents the sum of the unblocked
interference. To find the CDF of Z we need to find the
probability of each value of Z, which is found as follows.
The probability that Z = 0 can be found by noting that Z = 0
when both X1 and X2 are blocked. From (2), this is

pZ(0) = pB1,B2(1, 1) = p1p2 + ρh. (5)

The probability that Z = Ωi, i ∈ {1, 2} can be found by noting
that Z = Ωi when only Xi is LOS. From (2), this is

pZ(Ω1) = pB1,B2
(0, 1) = q1p2 − ρh. (6)

pZ(Ω2) = pB1,B2
(1, 0) = p1q2 − ρh. (7)

Finally, by noting that Z = Ω1 + Ω2 when both X1 and X2

are LOS leads to

pZ(Ω1 + Ω2) = pB1,B2
(0, 0) = q1q2 + ρh. (8)

From (5) to (8), the CDF of Z is found to be:

FZ(z)=



0 for z < 0

p1p2 + ρh for 0 ≤ z < Ω2

p1 for Ω2 ≤ z < Ω1

p1 + q1p2 − ρh for Ω1 ≤ z < Ω1 + Ω2

1 for z ≥ Ω1 + Ω2.

(9)



When R1 = R2, and thus Ω1 = Ω2 = Ω, p1 = p2 = p, and
q1 = q2 = q, the CDF is

FZ (z) =



0 for z < 0

p2 + ρpq for 0 ≤ z < Ω

1− ρpq − q2 for Ω ≤ z < 2Ω

1 for z ≥ 2Ω.

(10)

Fig. 2 shows the effect that the value of the correlation
coefficient ρ has upon the CDF of SINR, which is found
by substituting (10) into (4). The curves were computed with
R1 = R2 = 5, α = 2, and SNR = 15 dB. The value of p was
computed using (3) by assuming W = 1, K = 20, and that
A is a circle of radius 6. The CDF is found assuming values
of ρ between ρ = −0.1 to ρ = 1 in increments of 0.1. The
thick black line represents the case that ρ = 0, corresponding
to uncorrelated blocking. The dashed blue line represents the
case when ρ = −0.1. The solid blue lines correspond to
positive values of ρ in increments of 0.1, where the thinnest
line corresponds to ρ = 0.1 and the thickest line corresponds
to ρ = 1.

Fig. 2 shows a first step up at 9.5 dB, and the increment
of the step is equal to the probability that both interferers are
LOS. The magnitude of the step gets larger as the blocking
is more correlated, because (positive) correlation increases
the chance that both interferers are LOS (i.e., pB1,B2(0, 0)).
Negative correlation actually reduces the magnitude of the
step. The next step up occurs at 11.5 dB, which is the
SINR when just one of the two interferers is blocked. The
magnitude of this jump is equal to the probability that just
one interferer is blocked, and this magnitude decreases with
positive correlation. Finally, there is a step at 15 dB, which
corresponds to the case that both interferers are blocked, in
which case the SINR equals the SNR. Notice that when ρ = 1,
the two middle steps merge. This is because when ρ = 1, it is
impossible for just one interferer to be blocked, so the curve
goes directly from SINR = 9.5 dB to SINR = 15 dB.

IV. BLOCKAGE CORRELATION COEFFICIENT

Let’s now consider how to find ρ, the blockage correlation
coefficient. From (2),

ρ =
pB1,B2

(0, 0)− q1q2
h

(11)

where pB1,B2
(0, 0) is the probability that both X1 and X2

are not blocked. Looking at Fig. 1, this can occur when all
blockages are outside areas a1 and a2. Taking into account
the overlap v, this probability is

pB1,B2
(0, 0) =

(
1− a1 + a2 − v

A

)K
(12)

Fig. 3 and Fig. 4 show ρ as a function of the angular
separation (θ) between X1 and X2, where θ = | φ1 − φ2 |.
As with Fig. 2, R1 = R2 = 5, and A = 2π62. In Fig. 3,
a fixed value of K = 1 is used and W is varied. In Fig. 4,
W = 3 and the value of K is varied. In Fig. 3, the black
dots represents simulation results, which are shown merely to
confirm the validity of the approach.
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Fig. 3: The correlation coefficient (ρ) versus the angular separation
between X1 and X2 (θ = | φ1−φ2 |) for different values of blockage
width (W ). The black dots represent simulation results. The curves
show the exact analytical expression found using the methods of this
paper.
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Fig. 4: The correlation coefficient (ρ) versus the angular separation
between X1 and X2 (θ = | φ1−φ2 |) for different values of number
of blockages (K).

Both figures show that ρ decreases with increasing θ. This is
because the area v gets smaller as θ increases. As θ approaches
π radians, v approaches zero, and the correlation is minimized.
Note that the minimum value is actually less than zero,
showing the possibility of negative correlation. The negative
correlation can occur when a1 and a2 are non-overlapping
because if X1 is blocked by m blockages, then there are only
K−m blockages left that could possibly block X2. The figures
show that correlation is more dramatic when W is large, since
a single large blockage is likely to simultaneously block both
interferers, and when K is small, which corresponds to the
case that there are fewer blockages.

Fig. 5 shows the CDF of the SINR for the same network
with different values of W and K. The area A is again a
circle with radius 6, R1 = R2 = 5, SNR = 15 dB and θ =
25◦. The solid blue line shows the SINR distribution found by
accurately accounting for correlated blocking; i.e., by using
the methodology of this section to find ρ. The dashed red line
corresponds to the CDF assuming blocking is independent;
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(b) K = 2 and W = 3
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(c) K = 5 and W = 2
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(d) K = 5 and W = 3

Fig. 5: Comparison of CDF of SINR that accounts for correlated
blockage (solid blue line) against independent blockage (dotted red
line).

i.e., fixing ρ = 0. From (10), the difference between the two
curves is equal to ρpq, and thus the difference will grow if ρ
increases and/or p increases, as long as p < 0.5. By comparing
Fig. 5(a) to Fig. 5(b) or Fig. 5(c) to Fig. 5(d), the gap between
the two CDFs increases as W goes from 2 to 3. This can be
explained by referring to Fig. 3, which shows that ρ increases
for sufficiently small θ as W increases. By comparing Fig.
5(a) to Fig. 5(c) or Fig. 5(b) to Fig. 5(d), the gap between the
two CDFs increases as K goes from 2 to 5. Although Fig. 4
shows that ρ decreases with increasing K at moderate θ, this
behavior is offset by the fact that p increases with K, per (3).
Thus the gap actually increases with increasing K.

V. ANTENNA DIRECTIVITY AND SPATIAL RANDOMNESS

Thus far, we have assumed that the interferers are in fixed
locations and the antennas are omnidirectional. In practice,
the locations of the interferers may themselves be random,
and directional antennas may be used. When the antennas are
directional, the received power from the ith interferer is

Ωi = gr(φi)gt(|φi − ψi| − π)R−α
i (13)

where gr(.) is the antenna gain of the receiver, gt(.) is the
antenna gain of the transmitter and ψi is the azimuth angle
of interferer’s transmit antenna. Here, we assume the antenna
patterns are function of the azimuth angle only. The red solid
line in Fig. 6 shows an example antenna pattern for a 4-element
planar array [15].

Often, in the mmWave literature, the exact antenna pattern is
approximated with a sectorized model, where the antenna gain
is just one of two values corresponding to the main lobe and
the side lobe. The blue dashed line in Fig. 6 shows a sectorized
antenna that approximates the actual antenna pattern [8, 9].

The direction ψi that Xi is pointing is generally unknown
and may be modeled as a random variable. Since Ωi is a
function of ψi, it is then a random variable, even if Xi is in a
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Fig. 6: Actual antenna model (solid red line) versus sectorized
antenna model (dashed blue line).

fixed location. For a WPAN, we may assume ψi is uniformly
distributed from 0 to 2π radians; i.e, ψi ∼ U(0, 2π).

Fig. 7 shows performance when antenna directivity is taken
into account. Two pairs of curves are shown. The first pair
(in red) shows the CDF when the actual antenna pattern of
Fig. 6 is used. The second pair (in blue) shows the CDF when
the sectorized model of Fig. 6 is used as an approximation.
For each pair of curves, one curve (with a solid line) shows
the CDF when the blockage correlation is taken into account
and the other curve (with the dashed line) shows the CDF
when the blocking is assumed to be independent. The curves
are generated by again assuming that A is a circle of radius
6 and an SNR = 15 dB. There are K = 5 blockages of
width W = 2. The interferers are in fixed locations with
R1 = 4, R2 = 5, and θ = 25◦. We note that there is a
significant difference in this case between the CDFs predicted
using the actual antenna model vs. the curves generated using
the sectorized approximation. To a lesser extent, there is a
difference for each antenna model between the curve that
accounts for correlation and the one that assumes independent
blocking, and the difference is more pronounced at higher
SINR thresholds.

If, in addition, the location of the Xi are random, then each
Ωi is a random variable that depends on both the location and
directivity of the interferers. Fig. 8 uses the same parameters
that were used in Fig. 7 except that now the interferers are
randomly placed. In particular, the two interferers are placed
independently and uniformly within the circular area A. The
CDF is found by averaging over 1000 such placements (i.e.,
network realizations). When the locations are random, the dif-
ference between the dashed and solid curves begins to tighten
up, implying that the effect of correlation is less important.
This is because when randomly placed, the two interferers
are often far apart from one another. However, correlation is
important for certain regions of the plot, particularly at high
values of threshold. Moreover, the difference between the two
antenna models is less pronounced, especially at lower values
of SINR threshold.
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Fig. 7: Comparison of the CDF of SINR for a particular network
realization with the actual antenna pattern (red curves) vs. with
a sectorized antenna model (blue curves). Solid lines account for
correlated blocking while dashed lines assume independent blocking.
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Fig. 8: The CDF of SINR when averaged over 1000 network network
realizations. Red curves use an actual antenna pattern and blue curves
use a sectorized antenna model. Solid lines account for correlated
blocking while dashed lines assume independent blocking.

VI. CONCLUSION

In a mmWave WPAN system, the interference may be sub-
ject to correlated blocking. This is true even if the individual
blockages are independently placed, since it is possible for a
single blockage to block multiple interferers if the blockage
is sufficiently wide and the interferers sufficiently close. The
commonly held assumption of independent blocking leads
to an incorrect characterization of the performance of the
system, for instance, when it is quantified by the distribution
of the SINR. By using the methodology in this paper, the
correlation between two sources of interference may be found
and factored into the analysis, yielding more accurate results.

The analysis can be extended in a variety of ways. In Section
V, we have already shown that it can be combined with an
analysis that accounts for antenna directivity and the random

location and orientation of the interferers. While this paper
has focused on the extreme case that LOS signals are AWGN
while NLOS signals are completely blocked, it is possible
to adapt the analysis to more sophisticated channels, such as
those where both LOS and NLOS signals are subject to fading
and path loss, but the fading and path loss parameters are
different depending on the blocking state. See, for instance,
[10] for more detail.

Finally, while this paper focused on the pairwise correlation
between two interferers, it can be extended to the more general
case of an arbitrary number of interferers. One way to handle
this is to only consider the correlation of the two closest
interferers (the most dominant ones) while assuming that all
other interferers are subject to independent blocking. Another
solution is to group interferers into pairs, and only consider
the pairwise correlation, while neglecting higher order effects.
As performance in a mmWave system is typically dominated
by just a few interferers, we anticipate that either of these ap-
proaches would yield accurate results. We also anticipate that
when several interferers are present, the effects of correlation
will be even more pronounced in a random network, as the
likelihood that two interferers are close together increases with
the number of interferers.

APPENDIX

The correlation coefficient between B1 and B2 is given by

ρ =
E[B1B2]− E[B1]E[B2]√

σ2
B1
σ2
B2

(14)

where the expected value and the variance of the Bernoulli
variable Bi is given by

E[Bi] = pi (15)
σ2
Bi

= piqi. (16)

By substituting (15) and (16) into (14) and solving for
E[B1B2],

E[B1B2] = p1p2 + ρ
√
p1p2q1q2 = p1p2 + ρh. (17)

We can relate pB1,B2(b1, b2) to E[B1B2] as follows:

E[B1B2] =
∑
b1

∑
b2

b1b2pB1,B2
(b1, b2) = pB1,B2

(1, 1),

where solving the sum relies there being only one nonzero
value for b1b2. By solving for pB1,B2(1, 1) and using (17),

pB1,B2(1, 1) = p1p2 + ρh. (18)

We can relate pB1,B2
(b1, b2) to E[B1] as follows:

E[B1] =
∑
b1

∑
b2

b1pB1,B2
(b1, b2)

= pB1,B2
(1, 1) + pB1,B2

(1, 0). (19)

Solving for pB1,B2(1, 0),

pB1,B2(1, 0) = E[B1]− pB1,B2(1, 1) = p1q2 − ρh.

Similarly, it can be shown that

pB1,B2
(0, 1) = q1p2 − ρh. (20)



Finally, since∑
b1

∑
b2

pB1,B2
(b1, b2) = 1, (21)

it follows that

pB1,B2
(0, 0) = 1− pB1,B2

(1, 0)− pB1,B2
(0, 1)− pB1,B2

(1, 1)

= q1q2 + ρh. (22)
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