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Abstract—Direct-sequence spread-spectrum (DSSS) is com-
monly used to mitigate the effect of jamming and to operate
under an adversary receiver’s thermal noise floor in order to
avoid signal detection. Unfortunately, the discrete nature and
unique distribution of DSSS spreading sequences make it rela-
tively easy to detect the resulting transmitted signals. To overcome
this issue, this paper proposes a machine learning based scheme
that generates featureless, non-repetitive noise-like spread signals.
The proposed scheme provides several benefits over the standard
DSSS system including the ability to generate signals with low
probabilities of detection/intercept, additional processing gain
and also an uncoordinated synchronisation method.

I. INTRODUCTION

Machine Learning (ML) has been successfully applied in
many fields including wireless communications. Recently,
several ML-based schemes have been proposed for the phys-
ical layer [1, 2]. One of these proposed schemes [1] views
communication systems as an end-to-end reconstruction op-
timisation task and jointly optimises both transmitter and
receiver components against a performance target for a given
channel environment. This paper takes a similar ML approach
and proposes a Jamming-Resilient (JR) signalling scheme to
generate communication signals that have Low Probabilities
of Detection and Intercept (LPD/LPI). LPD/LPI features of a
communication waveform make it difficult for an unintended
receiver to detect and/or extract useful features from transmis-
sions. These extracted features could be used by an adversary
to determine the geographical location of the transmitter, ex-
ploit system’s communication protocols or jam transmissions.
Features from LPD/LPI signals are extracted using methods
that use advanced signal processing techniques such as time-
frequency transforms, higher-order moments, cyclostationary
analysis, etc. [3].

A signalling scheme with good JR/LPD/LPI capability has
the following desirable attributes and functionality:

A1. Gaussianity: This involves making the modulated sig-
nals featureless and indistinguishable from naturally
occurring thermal white noise. This requires the signal
to be Gaussian distributed and have a flat power spectral
density [4, 5].

A2. Ability to operate under receiver’s noise floor: This is
achieved using DSSS-based techniques to spread the
narrowband message signal over a wide bandwidth,
reducing required transmit power per channel symbol.
These techniques are also widely used for anti-jamming
wireless communication [6].

A3. Physical layer security: This involves complementing
the overall security of the system through techniques
adopted to secure transmission at the physical layer.
Traditionally, data security is achieved using encryp-
tion/decryption algorithms and is implemented at upper
network layers (e.g. data link layer). These algorithms
normally encrypt only the information (message) com-
ponent of the transmission. This creates several vulner-
abilities such as exposing details about the traffic flow
and the source/destination addresses that could be used
to launch denial of service attacks [7].

A4. Non-repetition: This requires to use non-repetitive
spreading sequences to reduce cyclic, temporal/spectral
features [8].

A5. Uncoordinated synchronisation: This requires a mecha-
nism to acquire the signal and perform frame synchroni-
sation without the use of a shared key or a fixed unique
word [9].

Using the desired attributes listed above as a basis, this paper
uses ML techniques to develop a synchronisable communica-
tion scheme that is shown to encapsulate these featureless.

The rest of this paper is organised as follows. Section II
briefly describes the standard DSSS system and features of its
signals. The proposed ML-based scheme is then presented and
its performance is evaluated in Section III. Finally, concluding
remarks are presented in Section IV.

II. STANDARD DSSS SYSTEM

The block diagram of a standard DSSS system is depicted
in Figure 1. In this system, the input source data is first

Fig. 1. Block diagram of a standard DSSS system

encoded by an error correction code and then spread by
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a binary Pseudo-Noise (PN) sequence. Spreading is per-
formed by combining an N -length PN sequence with each
encoded/modulated data bit. Each symbol in the spread signal
is referred to as a chip, and each bit can get a different
sequence of chips. The generated chips are then filtered,
modulated (by a carrier) and then amplified before transmitting
it over a channel. Upon reception, the receiver despreads and
decodes the wideband signal to retrieve the transmitted bits.
Despreading is normally performed by correlating the received
signal with the same PN sequence used by the transmitter
in a synchronous manner. The output from the correlator is
positive if the transmitted bit is one and negative if it is zero.
On retrieving the transmitted bit sequence, the receiver then
searches for a pre-defined unique word in the bit stream to
determine the start of each frame.

Ideally, spreading sequences are required to have Autocor-
relation Functions (ACF) with vanishing magnitudes, except at
zero delay. However, PN sequences tend to produce detectable
spikes on its ACF due to its unique distribution. M-sequences
are one of the commonly used PN sequences [6]. These
sequences are typically generated using Linear Feedback Shift
Registers (LFSR) in a deterministic manner and can have short
periodic cycles if a large number of LFSRs are not used. These
sequences have been demonstrated to have relatively poor LPD
properties due to its periodic nature and simple construction
method [10]. Further, PN sequences have the potential to be
easily predictable and hence can compromise security of the
system. Some of the DSSS systems also rely on a shared secret
key between the transmitter and the receiver to generate the
random spreading sequence at the receiver. However, from an
implementation point of view, establishing this key securely
prior to every transmission is difficult and challenging [9].

Spreading allows communication at low Signal-power to
Noise-power Ratios (SNR), making it difficult for an unin-
tended receiver to detect the signal. The reduction in SNR is
achieved by the amount of spreading used (processing gain).
The total processing gain, PG, achieved from a coded system
with Binary Phase Shift Keying (BPSK) is equal to the sum
of waveform spreading gain, coding gain and gain due to code
rate.

Figure 2 shows the signal constellation of a PN-based DSSS
transmit signal that uses two spreading sequences to spread
data bits 1 and 0. This signal is modulated with Quadrature
Phase Shift Keying (QPSK) and uses a spreading factor of
64. The signal constellation of the QPSK-modulated DSSS-PN
system shows four distinct, equally-spaced points on its signal
set. Figure 3 show Partial Autocorrelation Functions (PACF)
[11] of the DSSS-PN signal and Gaussian noise sequence
respectively. Compared to standard ACF, PACF provides a
more clear picture of the correlations in the time signal. The
PACF for the Gaussian noise case shows no correlation in time.
Its PACF function has a value of one at the zero-lag with all
other values within the confidence band, indicating statistically
insignificant correlation. However, PACF for the DSSS-PN
case shows strong correlated components demonstrating peri-
odic use of the same spreading sequence. It was also observed

Fig. 2. Signal constellation of the DSSS-PN (QPSK) transmit signal

(a) DSSS-PN signal (b) Gaussian noise

Fig. 3. Partial autocorrelation functions

that the power spectrum of the Gaussian distributed noise is
flatter than that of the DSSS-PN signal.

The following section describes a ML-based scheme for
generating featureless spread signals.

III. ML-BASED SPREAD SPECTRUM (MLSS)

Machine learning (ML) is a branch of artificial intelligence
that gives systems the ability to automatically learn and
improve performance from experience without being explicitly
programmed [2]. During the last few years, application of ML
techniques for solving problems in wireless communication
has gained tremendous popularity in the research community
[12]. ML techniques have been applied to develop detection
and equalisation schemes, channel estimation methods, chan-
nel decoding and demodulation schemes, etc. [13].

A. The Autoencoder Concept

An interesting ML-based concept for the physical layer
has been proposed in [1]. This concept, referred to as the
Autoencoder, views the complete communication system as
an end-to-end optimisation problem and tries to reconstruct
the transmitted message at the receiver output. This is a
deviation from the conventional design approach where signal
processing modules (encoder, modulator, channel estimator,
demodulator, etc.) are individually optimised using commu-
nication theory for a known channel model. In contrast, the
Autoencoder concept promises a method that can be used to



develop waveforms for complex environments with unknown
channel models. Further, it also shows a way to develop
advanced communication systems with increased ability to
adapt and optimise to a dynamically changing environment
using real-time learning. The Autoencoder architecture used in
[1] is a fully-connected feed-forward neural network similar
to the network shown in Figure 4. This network uses multiple
hidden layers for deep learning. The channel is modelled as
an Additive White Gaussian Noise (AWGN) channel. For a
message block size of k, the network takes a vector of length
2k as the input. The layer in the centre of the network is
depicted as the channel with n neurons. The n analogue inputs
that feed this layer denote the transmitted n symbols. Once
the network is trained to minimise the error rate, the receiver
(referred to as decoder) attempts to classify the corrupted
transmitted message.

With its many advantages, there are several challenges that
have to be addressed before the Autoencoder can be used for
more useful scenarios. Some of these challenges are listed
below.

(i) The implementation of Autoencoder is restricted by the
number of inputs to the network. For example, a message
length of k = 128 bits would require an input vector
of 2128 elements. Each element goes through a unique
neuron in the input layer. Implementing a network with
such a large number of input neurons is practically
impossible.

(ii) The deep-learning architecture with multiple hidden
layers also adds to the computational intensity of the
encoding and decoding operations. However, it should
be noted that, depending on the message length and
channel complexity, use of a deep-learning architecture
may be required to achieve an acceptable level of
performance.

Taking these issues and challenges into consideration, this
section proposes two single hidden-layer feed-forward neural
architectures for generating featureless Gaussian signals.

B. Proposed MLSS Architecture

The proposed network is shown in Figure 4. In the standard
DSSS system, each data bit is spread using an N -length PN
sequence. In contrast, the proposed network can be viewed
as an ML-based spreading network that spreads data, block
by block. Similar to the Autoencoder described earlier, this
network takes an input vector of length 2k elements with one
element set to one and others set to negative one. Once trained,
this network spreads each k-bit block of data to kxN analogue
channel chips (symbols). Assuming the length of each block is
sufficiently large, it will be extremely difficult to despread and
retrieve message blocks without knowing the network’s trained
weights [14]. This feature enhances transmission security of
the system.

Fig. 4. Single hidden layer neural network

For the proposed system, the energy per chip to noise power
spectral density ratio Ec/N0, also referred to as SNR in this
paper can be expressed as,

SNR[dB] =
Eb

N0
[dB]− 10 log10(N) (1)

where Eb/N0 is the energy per information bit to noise power
spectral density ratio and N = n/k, where N is the spreading
factor, k is length of data block and n is the number of channel
symbols.

The proposed network uses the one-step secant backprop-
agation algorithm [15] to minimise the loss function and
find the optimal weights of the network. Softmax and cross-
entropy functions are used for the output layer activation
and the training loss functions respectively. Softmax function
calculates output (m̂i) using the following expression,

m̂i =
eẑi∑2k

i=1 e
ẑj
, for j = 1, ..., 2k (2)

where ẑi are the inputs to the activation function. The cross-
entropy loss, L, is calculated using,

L =
1

2k

2k∑
i=1

li, (3)

where,
li = −pi log(p̂i), for i = 1, ..., 2k (4)

and

p̂i = max(min(m̂i, 1− ε), ε), (5)
pi = max(min(mi, 1), 0), (6)

where mi and m̂i represent the input and output values of
the network and ε is the smallest number on the machine on
which training is being performed. The network determines the
most likely transmitted message by finding the index, i, of the
highest probability value in the network output vector {m̂i}.
The performance of the proposed network is investigated in
the following section.



1) Performance Investigation: Figures 5 and 6 show Bit
Error Rate (BER) performance against SNR and Eb/N0 re-
spectively for the system with an input message block size,
k = 8 bits and a spreading factor, N = 32. The network
uses 28 (i.e. 256) inputs/outputs to denote individual message
blocks. The number of outputs from the hidden layer (i.e.
transmitter output) is 256 analogue values. These values are
modulated and transmitted by mapping the generated values
on to a one-dimensional signal constellation. The performance
of the MLSS system is also compared with the BPSK-
modulated DSSS-PN system. The network is trained on a
noise-free channel. The network settings used during training
and performance evaluations are shown in Table I.

TABLE I
MLSS NETWORK SETTINGS

Parameter Setting
Training algorithm One-step secant backpropagation
Number of hidden layers 1
Number of inputs - Input layer 256
Number of neurons - Hidden layer 256
Number of neurons - Output layer 256
Activation function - Hidden layer Linear
Activation function - Output layer Softmax
Loss function Cross-entropy
Channel AWGN
Trained SNR ∞ (Noise-free)
Weight/bias initialisation Uniformly distributed {−1, 1}
Number of trained weights 131584

Fig. 5. SNR performance of MLSS system, N=32

Figure 5 shows that, to achieve a target BER of 10−6, the
MLSS system can operate 4.3dB below the corresponding
operating SNR required for the DSSS-PN system. It should
be noted that this gain in SNR is achieved by keeping the
spreading factor (and bandwidth expansion) the same for both
systems. The BER performance shown in Figure 6 indicates
that the trained system (i.e. trained on a noise-free channel)
performs close to the theoretical Maximum-Likelihood De-
coding (MLD) limit and optimum Soft-Decision Decoding

Fig. 6. BER performance of MLSS system, N=32

(SDD) performance of the Walsh-Hadamard code (n=256,
k=8, dmin=128, T=63). Here, the parameters dmin and T
are the minimum Hamming distance and error correcting
capability of the code.

The signal constellation and ACF of the MLSS signal are
shown in Figure 7. The ACF plot indicates no repetitive
patterns in the signal sequence. Each point in the signal
constellation is represented by a non-overlapping signal pair
(si, s(i+1)). The plotted constellation shows a non-Gaussian
distribution as a large number of individual signal values
converge on zero. Signals with more noise-like features with
Gaussian distribution can be generated by training the network
on an AWGN channel, as demonstrated in the following
section. The training process finds an optimal set of weights
by adjusting its signal distribution to that of the channel.

C. Computationally Efficient Architecture

The architecture proposed in the previous section require
2k neurons on its input layer for a message block size of
k bits. As a result, the complexity of the network increases
exponentially with the size of the message block, hindering
its implementation for more useful cases. A computationally
more efficient network architecture is proposed in Figure 8.
This network uses k neurons on its input and output layers.
The input vector is represented by {bi}, i = 1, 2, ..., k, where bi
denotes ith bit in the message block. Before feeding this vector
to the network, the elements zero and one in the vector are first
mapped to negative one and one respectively. The number of
weights in the network is 133152. The network is trained on an
AWGN channel at sufficiently low SNR to generate Gaussian
distributed analogue symbols from its hidden layer. It was



(a) Signal constellation

(b) Autocorrelation

Fig. 7. Features of the MLSS signal trained in noise-free environment

Fig. 8. Single hidden layer neural network with direct inputs

observed that the proposed network architecture with reduced
input dimension performs close to the uncoded system (Eb/N0

vs BER) and does not give any coding gain. To compensate for
this, the fully trained network is concatenated with a suitable

TABLE II
MOMENT COMPARISON OF MLSS WITH THEORY

Moment SGD MLSS
1st 0 0.00
2nd 1 1.00
3rd 0 0.00
4th 3 2.98
5th 0 0.00
6th 15 14.73
7th 0 -0.05

error correction coding scheme to achieve an acceptable level
of performance. This network setup provides a good tradeoff
between complexity and performance.

The proposed network is trained using the same back-
propagation algorithm used for the previous architecture. The
Elliot Symmetric Sigmoid (ESS) function [16] is used as the
activation function at the output layer. Unlike many common
activation functions, ESS does not use exponentials and hence
is computationally very efficient. However, compared to other
Sigmoid functions, ESS may require more training iterations
to achieve the same accuracy. ESS function is defined by,

m̂j =
1

1 + |zj |
, for j = 1, ..., 2k (7)

Mean Absolute Error (MAE) function is used as the loss func-
tion. MAE for the proposed network architecture is defined by,

MAE =
1

2k

2k∑
i=1

|mi − m̂i| (8)

The performance of the described network is investigated in
the following section.

1) Performance Investigation: Performance of the network
is investigated using a message block size of 32 bits with a
2048-neuron hidden layer. This provides a processing gain of
64. The network is trained at an SNR of -12dB (corresponding
to an Eb/N0 of 6dB). Figure 9 shows the signal constellation
and autocorrelation functions of the noise-free MLSS signal
generated from the trained network. The signal constellation
shows a noise-like signal. The autocorrelation functions ob-
tained indicate no correlation in the signal. The distribution
of the noise-free chips generated from the trained network
is compared with the Standard Gaussian Distribution (SGD)
in Figure 10 and Table II. These results are obtained using
2048x105 analogue values. The probability distribution of the
MLSS signal (Figure 10) closely matches the theoretical Gaus-
sian distribution. The Gaussianity of the noise-free MLSS
signal is also validated by computing higher order moments.
The estimated moments (Table II) indicate an acceptable level
of similarity with the theoretical Gaussian distribution.

The BER performance of the network is shown in Figure
11. This figure presents results for the uncoded and coded
MLSS systems. Two coded systems are developed by con-
catenating error correction codes with the network trained with
noise. The first coded system uses an extended BCH (31,11)



(a) Signal constellation

(b) Autocorrelation (c) Partial autocorrelation

Fig. 9. Features of the noise-free MLSS signal (trained at Eb/N0 = 6dB,
SNR = -12dB)

Fig. 10. Distribution of the noise-free MLSS signal

code, while the second uses a 1/2-rate LDPC (1944, 972)
code. Performance results obtained show that the LDPC-coded
MLSS system gives a total processing gain of approximately
27.5dB. This system achieves a BER of 10−6 at an SNR
of -17dB (Eb/N0 = 4dB). Soft-decision decoding was used
for both BCH and LDPC decoding. Noise variance required
for computing Log-Likelihood Ratios (LLR) for the LDPC

Fig. 11. BER performance of direct input MLSS system (Trained at SNR =
-12dB), N=64 [k=32, n=2048]

decoder were estimated using the noisy chips acquired at the
receiver.

D. Implementation of the MLSS Signal
A Software-Defined Radio (SDR) transmitter for the

proposed scheme is implemented on MATLABTM/GNU-
Radio/EttusTM-USRP. The LDPC-coded MLSS signal gener-
ated from the trained network is interpolated, and filtered using
a Root-Raised-Cosine filter. The bandlimited signal (confined
to a bandwidth of 10 MHz) is then transferred to an Ettus
Universal Software Radio Peripheral (USRP). At the USRP,
the MLSS signal is upconverted to a carrier Radio Frequency
(RF) of 1 GHz and then transmitted from its transmit port
and received back to the SDR through its receive port. The
power spectrum of the bandlimitted received signal is shown
in Figure 12. The captured signals show a flat power spectrum,

Fig. 12. Spectrum of the implemented LDPC-coded MLSS signal

indicating the Gaussian noise-like feature of the MLSS signal.
With the estimated processing gain of 27.5dB and Gaussian
distributed nature of the signal, the received signals can
easily blend into the receiver’s background noise, making it
indistinguishable.



E. Synchronisation of the MLSS System

In the DSSS-based systems, the spreading sequences are
known to both transmitter and receiver. The key objective of
synchronisation is to align the spreading sequences used by the
transmitter with that used at the receiver. The receiver normally
initiates generating sequences using a secret key known to
the transmitter. Synchronisation is performed by correlating
the received signal with the receiver-generated sequence. Syn-
chronisation between the spreading and despreading sequence
is established when the correlation magnitude exceeds a
threshold. This process is referred to as sequence acquisition.
Once the two sequences are aligned, the receiver then locates
the start of a pre-defined unique word (or preamble) in the
despread bit stream to determine the start of the frame. This
process is referred to as frame synchronisation.

The synchronisation technique proposed for the MLSS
system is depicted in Figure 13. The proposed technique

Fig. 13. MLSS synchronisation

carries out sequence acquisition and frame synchronisation
jointly by encoding the network message block with a
Cyclic Redundancy Check (CRC) code. At the transmitter,
the trained network encoder maps the CRC-coded block to
a set of channel symbols for transmission. At the receiver,
the trained network decoder acquires a stream of channel
symbols, decodes and then performs a CRC check on it.
Synchronisation is established when the CRC check passes
and the corresponding time offset is used to determine start
of future frames. CRC-coded message blocks can also be
transmitted at regular intervals to maintain synchronisation.
It is assumed that the message blocks are encrypted and
preferably interleaved across multiple blocks to randomise and
minimise data repetition at the input of network encoder. The
Init Parameters field in the message block can be filled with
dummy random values or if required, used to deliver vital
system parameters to the receiver. MLSS can also be used
to convey initialisation parameters for other noise signalling
schemes, such as Chaos-based signalling techniques [8] that
are difficult to synchronise.

IV. CONCLUSION

Motivated by the poor LPD/LPI capability of the standard
DSSS-PN systems, this paper proposes a scheme that is
shown to generate synchronisable featureless signals using
machine learning. Error performance of this scheme and the

characteristics of the generated signals are investigated and
compared with the standard DSSS signals. The results obtained
show that the proposed scheme generates uncorrelated spread
signals with good JR/LPD/LPI features. Gaussianity of the
signals are analysed using its distribution and higher-order
moments. Autocorrelation functions are also plotted to identify
any repetitive patterns in the signal. These tests reveal no
identifiable features. However, it should be noted that the trans-
mit filter, HPA and RF modulation can add some detectable
features to the signal and more advanced methods such as
cyclostationary-based techniques [17, 18] would be required to
identify any possible existence of such features in the signal.
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