
Analyzing Root Causes of Intrusion Detection
False-Negatives: Methodology and Case Study

Eric Ficke∗, Kristin M. Schweitzer†, Raymond M. Bateman†, Shouhuai Xu∗
∗Department of Computer Science, University of Texas at San Antonio

†U.S. Army Research Laboratory South - Cyber

Abstract—Intrusion Detection Systems (IDSs) are a necessary
cyber defense mechanism. Unfortunately, their capability has
fallen behind that of attackers. This motivates us to improve
our understanding of the root causes of their false-negatives. In
this paper we make a first step towards the ultimate goal of
drawing useful insights and principles that can guide the design
of next-generation IDSs. Specifically, we propose a methodology
for analyzing the root causes of IDS false-negatives and conduct
a case study based on Snort and a real-world dataset of cyber
attacks. The case study allows us to draw useful insights.

Index Terms—Intrusion Detection, Intrusion Detection Sys-
tems, Root Cause Analysis, False Negatives, Snort, Suricata,
Flow-based Intrusion Detection

I. INTRODUCTION

Intrusion Detection Systems (IDSs) are an indispensable
cyber defense tool. However, recent studies show that they
have seen significant losses in detection effectiveness (see, e.g.,
[1], [2]). While it may be intuitive to speculate that attackers
have been outmaneuvering IDS developers in this adversarial
game of cat and mouse, as hinted in [2], we need to precisely
pin down the causes of such decreasing effectiveness. It is
important then, to seek approaches to make IDSs as useful as
possible. This motivates us to investigate the root causes of
intrusion detection false-negatives using modern cyber attack
datasets with known ground truth.

A. Contributions

In this paper we make the following contributions. First,
we propose a methodology for systematically identifying
and analyzing the root causes of IDSs’ false-negatives. The
methodology would be equally applicable to, or easily adapted
to accommodate, any specific IDS and cyber attack datasets.

Second, in order to show the usefulness of the methodology,
we conduct a case study based on the widely-used Snort
intrusion detection system against a modern cyber attack
dataset, which is made available by the authors of [3]. This
case study leads to the following findings: (i) Some Snort
rulesets have weak rules or miss certain attacks entirely, and it
may be better to use more than one ruleset. (ii) Alerts do not
always provide meaningful information, which may prevent
human defenders from understanding the nature of the given
attack. (iii) Some rules do not follow Snort’s design principles,
which can provide a false sense of security without accurately
detecting the intended attacks. (iv) Some attacks do not utilize
packet payloads in their implementation, so IDSs that rely on
payload inspection may not be capable of detecting them.

B. Related Work

By design, IDSs may use one of two approaches to identify
cyber attacks: (i) comparing the traffic to known signatures of
malicious use, or (ii) using machine learning to detect anoma-
lous traffic [4]. Signature-based detectors are well established
and widely used to detect known attacks. However, this tech-
nique is limited because it requires expert knowledge of attack
semantics to identify signatures and develop corresponding
rules. This means that signature-based detection systems often
suffer from the inability to detect 0-day attacks (e.g., [5]).
Anomaly detection (e.g., [6], [7]) aims to go beyond this
limitation of signature-based detection, but has encountered
many obstacles preventing it from producing reliable results
[8]. As a result of these limitations, anomaly detection has not
seen widespread deployment (although it continues to garner
research effort in the hopes of achieving such viability). Some
work has been done toward measuring the effectiveness of IDS
[2], [9], but not the inherent limitations of IDSs. Moreover,
recent focus has shifted from the traditional packet-based view
to a flow-based view for measuring IDS effectiveness [10].
This shift leads us to utilize flow-based view in our study.

To the best of our knowledge, this is the first paper that aims
at systematically understanding and analyzing the root causes
of intrusion detection false-negatives, with the ultimate goal
of drawing new insights and principles to guide the design
of the next generation IDSs. This is true despite the recent
resurgence in studying IDSs (see, for example, [2], [9], [11],
[12], [13], [14] and the references therein). In a broad sense,
the present study falls into the broader field of cybersecurity
data analytics [15], [16], [17], [18], [19], [20].

C. Paper Outline

Section II describes the methodology for analyzing the
root causes of intrusion detection false-negatives. Section III
presents our case study. Section IV discusses the limitations
of the present study. Section V concludes the present paper.

II. ROOT CAUSE ANALYSIS METHODOLOGY

We propose a data-driven approach to empirically identify
false-negative instances of an IDS, and then analyze the
root causes of the false-negative instances. This leads to
the following methodology of four steps: (i) characterize the
design principles of an IDS to understand its goals and define
the scope; (ii) pre-process data with known ground truth;
(iii) identify and analyze false-negatives; and (iv) draw new

ar
X

iv
:1

90
9.

08
72

5v
1 

 [
cs

.C
R

] 
 1

8 
Se

p 
20

19



principles to to guide the design of the next generation IDSs.
These steps are highlighted in Figure 1 and elaborated below.

Characterize design 
principles of an IDS

Data Pre-Processing

Packet 
representation

Flow 
representation

Ground truth

Identifying & analyzing 
false-negatives

Drawing new design 
principles

Fig. 1. An overview of the root cause analysis methodology.

A. Characterizing Design Principles of an IDS

Given an IDS, it is important to understand its design
principles, and therefore its goals, because we cannot attribute
a false-negative to the failure of an IDS if it is not designed
to cope with such instances. That is, we need to understand
what kinds of failures are indeed false-negative instances with
respect to the goals of an IDS. For example, an IDS designed
to cope with malicious uses may consider a ping sweep (i.e.,
a network scan using ICMP ping packets to identify online
hosts) as malicious and label it as such, but an anomaly
detector may observe similar traffic on a regular basis and
therefore label the instance as normal.

B. Data Pre-Processing

Suppose we are given a dataset of attacks (e.g., full packet
capture with ground-truth tags), we propose creating two
databases from the dataset: one for flow-based representation
(i.e., treating each network flow as a processing unit), leading
to a flow-based database; and the other for packet-based
representation (i.e., treating each Internet Protocol or IP packet
as a processing unit), leading to a packet-based database. This
cross packet-flow analysis is important because newer IDSs are
shifting toward flow-based alert generation [10] and therefore
cannot be compared to the packet-based alerts generated by
legacy IDSs without using a cross packet-flow analysis. A
network flow is typically specified by a tuple of 5 elements:
source IP address, destination IP address, source port number,
destination port number, and protocol. Each flow has a start
time (specifying when it starts) and a stop time (specifying
when it is terminated). We propose creating a mapping for
each packet to its corresponding flow, in which each field of
the 5-tuple must match and the packet’s timestamp must fall
between the corresponding flow’s start and end times.

In order to create ground-truth tags at the packet or flow
level, we can utilize the packet-flow mapping mentioned above
for both the given ground truth and the IDS-generated alerts,
either of which may be at the packet-level or flow-level. Ad-
ditionally, we prepare alerts by processing the network traffic
according to the IDS’s specifications for processing logged
Packet CAPture (PCAP) files. The IDS must be configured to
match the network architecture of the original network.

C. Identifying and Analyzing False-Negative Instances

Having pre-processed network traffic data as described
above, we propose identifying false-negative instances as
shown in the following steps. First, we use the map-
ping between the packets and flows to match up the
ground truth to the experimental results. With this, we can
query the flow-based database to determine which attacks
were identified correctly or not. For example, the query
flows.find({Tag:Attack,Alert:True}), would re-
turn all malicious flows which correctly resulted in IDS alerts.

Results

Results

Results

Flow Database

Alerts Attacks

False 
Negatives

False 
Positives

True 
Positives

Develop-
ment

Design

Distri-
bution

Analysis Types

Fig. 2. The detailed analysis procedure. Output from the flow database queries
are scrutinized according to the IDS’s development lifecycle, albeit in reverse.

Second, we analyze the design of the IDS being tested,
as shown in Figure 2, by considering flaws in the IDS’s
distribution system, the development process, and the design
of the engine itself. The flaws that are identified are then
synthesized into results.

D. Drawing New Principles

The previous step allows us to draw insights into the
root causes of false-negatives and initiate an approach to
reducing them. These insights will serve as a starting point for
drawing guiding principles for designing future IDSs. These
new principles may add to the existing set of principles that
guided the design of the IDS in question, or may supersede
some of them.

III. CASE STUDY

In this section we report our case study on applying the
afore-presented methodology to identify false-negatives and
analyze their root causes for Snort, which is a signature-
based IDS. We choose Snort for the case study because it
is one of the most popular IDSs and because it is an open-
sourced system; the latter is important because we often need
to analyze, for example, the rules or engines that are triggered.
As a preliminary study, we use only the rulesets that are
directly available from Snort at the time of installation, with
no modification.



A. Characterizing Snort Design Principles
According to Snort’s design principles (described in Section

3.9 of the Snort Manual [21]), the following should be
considered when designing Snort rules for examining traffic.

(i) Content matching: For achieving a high performance
in examining network traffic, the examination operation
should match specific bytestrings so as to quickly rule
out traffic that cannot match the rule in question.

(ii) Catching vulnerabilities, not exploits: For assuring that
rules cannot be evaded by the modification of exploit
code, the examination operation should use rules that
target vulnerabilities, meaning that these rules can be
generalized so that they will identify any exploits that
may be used against the vulnerability in question. This is
important because there may be infinitely many exploits.

(iii) Considering protocol oddities: “Protocol oddities” may
include support for variable-length character encodings,
format strings, etc, which may be leveraged by attackers
to make their attack evade Snort. This principle hopes
to assure that attackers cannot evade rules by making
minor modifications to the protocols in question while
obeying their specifications. Such rules should be able
to understand the behavior of a target protocol so as to
better determine whether a traffic is malicious or not.

(iv) Checking discrete values before recursive ones: In order
to further improve Snort performance in examining
network traffic, as with content matching, discrete values
may allow one to quickly rule out unlikely-malicious
network traffic and effectively reduce the time that is
spent on processing a network packet.

(v) Optimizing for variable-length encodings: The idea be-
hind this principle is to improve Snort’s performance
by skipping over variable-length data if its content is
not pertinent to an attack signature. By skipping over
such data, Snort can reduce processing time by finding
relevant fields faster. For example, a Remote Procedure
Call (RPC) allows strings to be encoded by specifying
a 4-byte length before the string, but fixed values may
appear after such strings. In this case, reading the string
length and skipping over an appropriate length in bytes
may be faster than checking each byte in the string so
that it must be completely parsed.

While several of these principles relate only to the runtime
of Snort’s processing, we take note of Principles (ii) and (iii)
because they have important implications. Specifically, if the
rules that wrongly label network traffic do not follow these
principles, we will attribute the inaccuracy to a failure of the
rule developers in properly following Snort’s design principles.
In other words, the root cause of these false-negatives may be
the poor design of Snort rules (i.e. attack signatures), rather
than the poor enforcement of rules (i.e. distribution, processing
or other aspects).

B. Data Pre-Processing
The dataset comes from a testbed network of user-generated

attack traffic from the University of New Brunswick’s Infor-

mation Security Centre of Excellence (ISCX) [3]. The dataset
contains mixed malicious and benign traffic from a realistic
network architecture, including flow descriptors and ground-
truth tags. More specifically, the dataset contains benign traffic
generated from some statistical models of real traffic, as well
as manually conducted attacks. We choose this dataset because
it includes well documented and diverse attack scenarios and
has been accepted by the research community for evaluating
IDSs. Other datasets were considered, but these are more
limited because they do not describe which attacks exist in
the data, the data must be sanitized because of the presence of
sensitive information, or they do not include complete packet
captures. We use Python’s MongoDB module, pymongo, to
manage a database for packets and a database for flows.

The dataset contains nine distinct attacks [3], which we
categorize as follows, based on the goals of the IDS:

(I) Vulnerability-leveraging attacks: These attacks explicitly
target software vulnerabilities.

• Adobe printf buffer overflow: This attack exploits a
vulnerability that is caused by an input validation
error in a PDF viewer application, which allows
remote code execution.

• SMB stack overflow: This attack exploits a vulner-
ability that is an input validation error in Server
Message Block (SMB) software, which allows re-
mote code execution.

• SQL injection: This attack exploits a vulnerability
that is an input validation error in the Structured
Query Language (SQL) server, which allows remote
code execution.

• Slowloris DoS attack: This Denial-of-Service (DoS)
attack consumes the limited number of connections
that a web server is able to establish at once, without
producing any meaningful traffic.

(II) Auxiliary attacks: These behaviors are not inherently
malicious, but are often leveraged by attackers.

• Reverse shell: An attack payload which causes the
exploited host to establish a remote connection to
the attacker’s server so that the attack may issue fur-
ther commands to their newly compromised victim.

• Nmap scan: A combination of ping and SYN pack-
ets sent to a broad range of IP addresses and ports
in order to determine which hosts are online and
listening on the network.

• IRC command & control: Internet Relay Chat chan-
nels may used by attackers after exploiting a victim
in order to issue further commands to compromised
systems.

(III) Brute force attacks: These attacks do not target specific
software vulnerabilities, but hope to overwhelm the
target by sheer volume of attacks.

• DDoS (Distributed Denial-of-Service) attack: Bots
create massive amounts of normal-looking traffic in
order to slow down or freeze an individual system
or network.



• SSH brute force login attempts: Bots attempt to gain
unauthorized access to user accounts by repeatedly
guessing passwords for known user accounts.

We focus on the category (I) attacks mentioned above
because Snort’s primary goal is to detect malicious uses.
This can be further justified as follows. The category (II)
activities mentioned above represent behaviors that are not
inherently malicious (even though they may be leveraged in
attacks); this justifies why we do not measure Snort’s ability
to detect attacks which fall in this category. Likewise, we
exclude the attacks in category (III) for the following reasons.
First, Brute force DDoS attacks are not caused by vulnera-
bilities in software; rather, they are the result of excessive
volume of legitimate-looking traffic overwhelming the network
and/or host resources [22]. Note that category (III) attacks do
not include the Slowloris attack in category (I), which is a
semantic DoS attack against a vulnerable protocol (i.e., the
scale of traffic required for full effect is achievable with a
single source machine, whereas a DDoS requires many more
hosts to sufficiently affect the target). Second, the SSH brute
force login attack targets the password generation practices of
users; this is not a software vulnerability, so such attacks are
not primary concerns according to Snort’s design principles—
instead, this attack can be better detected using an account-
specific counter (as in practice). For these reasons, we only
hold Snort accountable to the attacks in category (I).

C. Identifying and Analyzing False-Negatives

Now we analyze four instances of false-negatives encoun-
tered when using Snort to analyze the aforementioned dataset.
In each case, we describe the attack, analyze the root cause
of its false-negative, and draw some insight.

1) A case of the Adobe printf buffer overflow attack:
a) The attack: This attack is executed by sending a

malicious PDF file to a target users’ email system as an
attachment, which is a widely used social-engineering attack
tactic. In the case described in the dataset, a malicious
PDF is sent to the user whose workstation holds IP address
192.168.1.105. The workstation uses the POP email proto-
col over port 110 to fetch the email from the mail server
(192.168.5.122) [3]. Comparing this to the ground truth, we
find that this interaction is not marked as malicious in the
dataset’s ground truth while it should be. On the other hand,
Snort generates several alerts corresponding to the traffic.
Included in these are two unique signatures: “[139:1:1]
(spp_sdf) SDF Combination Alert” (indicating the
presence of sensitive data, such as email addresses) appears
twice, and “[129:12:1] Consecutive TCP small
segments exceeding threshold” appears 8 times
(indicating an anomaly detected by Snort’s stream5 processor).
However, it is not considered malicious for TCP segments to
be unusually small, even in relatively high quantity. Neither of
these alerts suggest the presence of a buffer overflow attack,
indicating a false-negative.

b) Root cause analysis: Snort’s alerts do not describe,
or even hint at, the presence of a buffer overflow attack;

rather, these alerts give vague information from the sensi-
tive data preprocessor (originally the “Sensitive Data Fil-
ter”, or SDF) and small TCP segments (which has no
semantic value to human defenders). Further exploration
into an alternate ruleset (Emerging Threats [23]) reveals
that this attack is detectable by signature-based IDS. The
rule is available as “2800385 - ETPRO WEB_CLIENT
Adobe Reader and Acrobat util.printf Stack
Buffer Overflow”. Since this is not in Snort’s default
ruleset, we conclude that it was not considered important for
general use. Second, the fact that the attack is described in the
paper describing the dataset [3] but is not tagged in the dataset
raises concerns for the reliability of ground truth within the
dataset. From these observations, we draw two insights:

Insight 1: Alternative rulesets must be considered because
developers may not adopt rules designed by others into their
own default set.

Insight 2: Alerts must provide meaningful information that
allows human defenders to understand the nature of an alert
in question because it is not sufficient to simply report alerts
without presenting useful or self-explaining information.

2) A case of the SMB stack overflow attack:
a) The attack: In the SMB stack overflow attack, a

maliciously crafted packet is sent to the SMB server. The
packet overflows a stack buffer on the target, allowing an
attacker to execute arbitrary code. In this case, the attacker
uses the vulnerability known as MS08-067 against the host
at 192.168.2.113. Using our flow database, we access the
relevant traffic marked as malicious. Comparing this to our
Snort output, we find no alerts. Looking into the existing Snort
rules, we surprisingly find several rules designed to detect
(and marked explicitly for) MS 08-067. Unfortunately, none
of these rules were triggered from the attack in the data. As
such, this represents a false negative of the IDS.

b) Root cause analysis: This false-negative is
particularly surprising because the SMB stack overflow
used in this instance (i.e. exploiting vulnerability MS08-067)
is extremely well-known among the community and has been
well-documented. The fact that Snort does not detect this
attack with the default ruleset configuration is unexpected. In
light of this, we consider another IDS (namely Suricata [24])
to see if this problem is specific to Snort. After following the
same processing procedure as before (using Suricata’s default
configuration and ruleset), Suricata indeed produced an alert
corresponding to the attack. Specifically, Suricata generated
alerts as “[1:2008705:5] ET NETBIOS Microsoft
Windows NETAPI Stack Overflow Inbound -
MS08-067 (15)”. Since this alert precisely describes the
attack including the vulnerability which was targeted, it is
considered sufficient for the sake of detection. Noting the
difference between Snort’s result and Suricata’s, we draw:

Insight 3: Even within a class of IDS (e.g. open-source,
misuse detectors), different products have different detection
capabilities. Thus, it is important to test each individually,
rather than treating a class of IDSs as the sum of each product.

3) A case of the SQL injection attack:



a) The attack: In an SQL attack, the adversary submits
a query with special characters to escape the unsanitized input
field. Common versions of the attack include quotation marks,
apostrophes and other special characters. Here, the attack is
launched against the web server hosted at 192.168.5.123. We
compare the ground truth with the alerts in the flow database.
Of the 62 instances tagged as malicious, Snort created alerts
for only 4. Specifically, they are labeled “[129:12:1] Consec-
utive TCP small segments exceeding threshold”. As with the
Adobe printf attack, this alert is not representative of the attack
at hand, so we consider this a false negative.

b) Root cause analysis: Some Snort alerts have been
written in attempts to detect this attack, but they did not trigger
in this instance. One example is “[1:19439:8] SQL 1 =
1 - possible sql injection attempt”. This rule
looks for the string “1=1” in the packet, which is commonly
used after the input string has been escaped. However, this
string is specific to the exploit’s implementation and not the
vulnerability itself. As such, it clearly did not follow Snort’s
design principle, (ii) catching vulnerabilities, not exploits.
Following this observation, we draw the following insight:

Insight 4: IDS rules must follow the principles established
to guide their development. As a first line of defense, this is
especially important for open-source IDSs because attackers
can analyze their rules when attempting to evade them without
trial and error against live systems.

4) A case of the Slowloris DoS attack:
a) The attack: The final attack we look at is the instal-

lation and execution of the Slowloris DoS software. In this
attack, an attacker establishes numerous connections to a target
server, until it has filled every socket available on the target,
preventing it from accepting new connections from normal
users. Slowloris is the name of a common software used for
such an attack. In this case, the attackers utilize several of their
previously compromised victims to amplify the efficacy of the
attack, targeting the web server at 192.168.5.122. According
to the tags included in the dataset, the compromised victims
initiated 1969 connections to the target during their attack.
In this version of Slowloris, we note that the packets sent
do not contain payloads. Looking at the Snort output, we
find several alerts showing the attacks labeled “[139:1:1]
(spp_sdf) SDF Combination Alert”. As with the
Adobe printf attack, this alert is not representative of the actual
attack in progress. As such, this is another false-negative.

b) Root cause analysis: Since Snort does not have any
rules designed to detect attacks such as Slowloris, we look
to other community-proposed rules that might be sufficient.
One relevant rule, which is proposed in [25], is based on a
pattern identified from an instance of Slowloris (specifically,
it identifies that the connection is kept alive by repeatedly
sending arbitrary ‘X-a: ’ header values). Unfortunately, the
version of Slowloris in our data does not present the same
pattern, meaning that even this rule would not catch the attack.
Since this instance does not use payloads after the initial
connection, it is important to find another means to detect
the attack. In light of this, we draw the following insight:

Insight 5: Signature-based IDSs are limited by their depen-
dence on packet payload inspection, because some attacks do
not utilize payloads.

D. Drawing New Principles

Now we further abstract the insights drawn above into some
new principles to guide the design of future IDSs. First, by
summarizing and abstracting Insights 1 and 3-5, we have:

Principle 1 (clear specification): The capabilities (and
weaknesses) of an IDS should be specified, or even quantified,
with respect to (i) the types of vulnerabilities or attacks it
aims to defend against, (ii) the input it needs (e.g., header vs.
payload information), and (iii) their guiding principles.

Second, Insight 2 highlights the importance of making alerts
meaningful to defenders. Previous study [26] has shown the
importance of understanding the semantics of alerts, or more
specifically the notion of attack narratives, as an effective
approach to make sense of alerts. The notion of attack nar-
ratives aims to piece together information regarding several
related attacks into a structured and human-understandable
representation, which may be further put into the context of
Mandiant’s Attack Life Cycle [27] and/or Lockheed Martin’s
Cyber Kill Chain [28]. That is, alert semantics are important
for understanding the threat situation and responding to cyber
attacks. Without meaningful alert semantics, human operators
will be unable to quickly understand and respond to attacks.
In light of this observation, we note that many attacks in
the wild target known vulnerabilities, for which patches are
often published at the time of their disclosure. Much of the
analysis time for such attacks could be reduced if those
vulnerable systems have already been patched. In other words,
an intrusion detection system that is aware of the software
states / versions running within an enterprise network may be
able to predict whether an attack will be successful. This may
provide a means to prune unnecessary alerts and reduce the
interaction necessary between intrusion detection systems and
human operators. This leads to:

Principle 2 (IDS-defender interface): IDSs must provide
user-understandable alerts. One approach to achieving this
is to make IDSs aware of the software stack postures (e.g.,
the presence of certain vulnerabilities). In this way, IDSs
may achieve a higher capability in helping human defenders
understand and respond to cyber attacks.

Third, since intrusion detection systems often produce more
alerts than what can be monitored by human defenders, it
is important to present the most critical alerts to the human
defenders. To this end, we propose defining standards by
which the notion of intrusion impact may be quantified. With
this concept, intrusion alerts may report on the worst-case or
best-case impact estimates for a given attack. This leads to:

Principle 3 (inherent alert prioritization): IDSs themselves
should prioritize alerts to defenders. Approaches to achieving
this may include quantifying intrusion impact or describing
attack narratives as mentioned above. This would enable
prioritization of alert response.



IV. DISCUSSION

The present study has the following limitations, which serve
as motivations for future studies. First, our methodology aims
to associate packets to flows for standardizing a comparison
between various IDSs. Several of the packets in the dataset
used in the case study were not uniquely mapped to flows, so
they were considered as belonging to all flows which matched
the 5-tuple, with the timestamp requirement relaxed.

Second, the case study is limited in scope to analyzing
Snort, a malicious use detector. As such, it does not include
anomaly detectors (e.g., IBM QRadar [29] and Flowmon ADS
[30]), which may not correspond directly to Snort. Moreover,
our study focuses on Snort and more specifically on its default
ruleset, which means that we likely missed better detection
capabilities of other popular rulesets (such as [23] and [24]).

Third, the dataset we analyze has some limitations as well.
In the course of analyzing the dataset, we notice the following
issues with the data. (i) Some attacks which were described
in the original paper that publishes the data did not appear
to be tagged as such in the dataset. This made it difficult to
precisely identify which alerts should be considered as relevant
for some attacks, such as the Adobe printf attack. (ii) Some
flows were tagged as malicious twice within the dataset. This
could affect the measurement of true-positives. The present
work is not affected by this issues, but those which measure
detection rate may have been affected (e.g. [9]).

Fourth, much of our methodology is still manually operated,
so applying it to various IDSs and datasets requires some time
to conduct transitions between each stage, as well as the final
querying of the database.

V. CONCLUSION

We explained the importance of understanding the root
causes of intrusion detection false-negatives. We introduced
a methodology for this purpose and reported a case study on
applying the methodology to analyze the root causes of Snort
with respect to a real-world cyber attack dataset. We drew
useful insights from this preliminary study. We hope that this
study will inspire many future investigations into designing
the next-generation intrusion detection systems.
Acknowledgements. We thank Arash Habibi Lashkari for
providing us the UNB ISCX 2012 dataset. This work was
supported in part by ARL grant #W911NF-17-2-0127 and NSF
CREST Grant #1736209.

REFERENCES

[1] A. Divekar, M. Parekh, V. Savla, R. Mishra, and M. Shirole, “Bench-
marking datasets for anomaly-based network intrusion detection: Kdd
cup 99 alternatives,” in IEEE ICCCS, pp. 1–8, 2018.

[2] J. D. Mireles, E. Ficke, J. Cho, P. Hurley, and S. Xu, “Metrics towards
measuring cyber agility,” IEEE Transactions on Information Forensics
and Security, pp. 1–1, 2019.

[3] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Computers & Security, vol. 31, no. 3, pp. 357 –
374, 2012.

[4] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,”
tech. rep., Technical report, 2000.

[5] J. Song, H. Takakura, and Y. Kwon, “A generalized feature extraction
scheme to detect 0-day attacks via ids alerts,” in 2008 International
Symposium on Applications and the Internet, pp. 55–61, IEEE, 2008.

[6] J. Gao, G. Hu, X. Yao, and R. Chang, “Anomaly detection of network
traffic based on wavelet packet,” in Proc. IEEE APCC’2006, pp. 1–5,
2006.

[7] N. Lu, S. Mabu, T. Wang, and K. Hirasawa, “Integrated fuzzy gnp rule
mining with distance-based classification for intrusion detection system,”
in Proc. IEEE SMC’2012, pp. 1569–1574, 2012.

[8] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 2010 IEEE symposium on
security and privacy, pp. 305–316, IEEE, 2010.

[9] E. Ficke, K. M. Schweitzer, R. M. Bateman, and S. Xu, “Characterizing
the effectiveness of network-based intrusion detection systems,” in IEEE
MILCOM’2018, pp. 76–81, IEEE, 2018.

[10] A. Sperotto and A. Pras, “Flow-based intrusion detection,” in IFIP/IEEE
IM’2011 Workshops, pp. 958–963, May 2011.

[11] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. Atkinson,
and X. Bellekens, “A Taxonomy and Survey of Intrusion Detection
System Design Techniques, Network Threats and Datasets,” arXiv e-
prints, Jun 2018.

[12] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne,
“Evaluating computer intrusion detection systems: A survey of common
practices,” ACM Comput. Surv., vol. 48, pp. 12:1–12:41, Sept. 2015.

[13] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey on
systems security metrics,” ACM Comput. Surv., vol. 49, pp. 62:1–62:35,
Dec. 2016.

[14] J.-H. Cho, S. Xu, P. M. Hurley, M. Mackay, T. Benjamin, and
M. Beaumont, “Stram: Measuring the trustworthiness of computer-based
systems,” ACM Comput. Surv., vol. 51, no. 6, pp. 128:1–128:47, 2019.

[15] S. Xu, “Cybersecurity dynamics: A foundation for the science of
cybersecurity,” in Proactive and Dynamic Network Defense (Z. Lu and
C. Wang, eds.), vol. 74, pp. 1–31, Springer Nature Switzerland AG,
2019.

[16] S. Xu, “Cybersecurity dynamics,” in Proc. Symposium on the Science
of Security (HotSoS’14), pp. 14:1–14:2, 2014.

[17] L. Xu, Z. Zhan, S. Xu, and K. Ye, “An evasion and counter-evasion
study in malicious websites detection,” in Proceedings of IEEE 2014
Conference on Communications and Network Security (IEEE CNS’14),
2014.

[18] L. Xu, Z. Zhan, S. Xu, and K. Ye, “Cross-layer detection of malicious
websites,” in ACM CODASPY’13, pp. 141–152, 2013.

[19] Z. Zhan, M. Xu, and S. Xu, “Characterizing honeypot-captured cyber
attacks: Statistical framework and case study,” IEEE Transactions on
Information Forensics and Security, vol. 8, no. 11, pp. 1775–1789, 2013.

[20] Z. Zhan, M. Xu, and S. Xu, “Predicting cyber attack rates with extreme
values,” IEEE Transactions on Information Forensics and Security,
vol. 10, no. 8, pp. 1666–1677, 2015.

[21] “Snort - network intrusion detection & prevention system.” https://www.
snort.org/downloads, Mar 2018.

[22] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos
defense mechanisms,” ACM SIGCOMM Computer Communication Re-
view, vol. 34, no. 2, pp. 39–53, 2004.

[23] “Welcome to the emerging threats rule server.” https:
//rules.emergingthreats.net/, 2019.

[24] “Suricata — open source ids / ips / nsm engine.” https://suricata-ids.org/
download/, Mar 2018.

[25] D. T. and GoodKingRene, “Ids snort rule to catch slow-
loris.” https://security.stackexchange.com/questions/174454/
ids-snort-rule-to-catch-slow-loris, 2019.

[26] J. D. Mireles, J. Cho, and S. Xu, “Extracting attack narratives from
traffic datasets,” in Proc. CyCon U.S. 2016, pp. 118–123, 2016.

[27] Mandiant, “Apt1 report.” https://www.fireeye.com/content/dam/
fireeyewww/services/pdfs/mandiant-apt1-report.pdf, February 16, 2013
(Accessed July 08, 2016).

[28] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-
driven computer network defense informed by analysis of adversary
campaigns and intrusion kill chains,” in 2011 International Conference
on Information Warfare and Security, 2011.

[29] “Ibm qradar: The intelligent siem.” https://www.ibm.com/security/
security-intelligence/qradar, 2019.

[30] “Deal with security threats and operational issues confidently.” https:
//www.flowmon.com/en/products/flowmon/anomaly-detection-system,
2019.

https://www.snort.org/downloads
https://www.snort.org/downloads
https://rules.emergingthreats.net/
https://rules.emergingthreats.net/
https://suricata-ids.org/download/
https://suricata-ids.org/download/
https://security.stackexchange.com/questions/174454/ids-snort-rule-to-catch-slow-loris
https://security.stackexchange.com/questions/174454/ids-snort-rule-to-catch-slow-loris
https://www.fireeye.com/content/dam/fireeyewww/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeyewww/services/pdfs/mandiant-apt1-report.pdf
https://www.ibm.com/security/security-intelligence/qradar
https://www.ibm.com/security/security-intelligence/qradar
https://www.flowmon.com/en/products/flowmon/anomaly-detection-system
https://www.flowmon.com/en/products/flowmon/anomaly-detection-system

	I Introduction
	I-A Contributions
	I-B Related Work
	I-C Paper Outline

	II Root Cause Analysis Methodology
	II-A Characterizing Design Principles of an IDS
	II-B Data Pre-Processing
	II-C Identifying and Analyzing False-Negative Instances
	II-D Drawing New Principles

	III Case Study
	III-A Characterizing Snort Design Principles
	III-B Data Pre-Processing
	III-C Identifying and Analyzing False-Negatives
	III-C1 A case of the Adobe printf buffer overflow attack
	III-C2 A case of the SMB stack overflow attack
	III-C3 A case of the SQL injection attack
	III-C4 A case of the Slowloris DoS attack

	III-D Drawing New Principles

	IV Discussion
	V Conclusion
	References

