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Multi-Target Localization Using Polarization

Sensitive Arrays
William W. Howard, R. Michael Buehrer

Abstract—In this work we develop clustering techniques for
the Bearing Only Target Localization (BOTL) problem. Our
scenario has a receiver move along some path, generating bearing
estimates on some interval. Multiple emitting targets exist in the
environment, and may be physically close with respect to the
receiver distance. The first method is iterative and uses only
a series of observed bearings to multiple targets to establish
clusters. In each iteration, target positions are estimated using
a nonlinear least squares solution. The second technique uses
additional polarization information, and is shown to be more
effective while requiring more information. In addition the second
technique is non-iterative and requires far less computation. In
this work we presume knowledge of the number of targets. We
conclude by providing simulations of our method and show
that the proposed approach outperforms previously proposed
methods.

I. INTRODUCTION

Bearing-only target localization (BOTL) is a useful capa-

bility for any passive (non-emitting) system which wishes

to obtain the relative positioning of emitters in the environ-

ment. A passive measurements system is one which does

not explicitly emit energy into the environment, and instead

depends on the environment to provide information on the

targets. Specifically in this work we concentrate on Direction

of Arrival (DoA) estimates, where a receiver uses directional

information obtained from a direction-sensitive antenna or

array in a waveform emitted by a target to determine the

target’s direction. Other measurements types could include

acoustic or optical information.

Direction of Arrival estimation comes in various forms,

from brute-force maximum likelihood techniques to more

mathematically rigorous approaches like MUSIC and ESPRIT.

As DoA estimation has been widely covered in the literature,

we will not discuss it deeply.

The bearing angle is the angle from true north (or some

arbitrary universal direction) to the target from a given mea-

surement location. In a noiseless environment, the solution

to a BOTL problem can be found as the intersection of all

the bearing lines from several measurement locations, with

the measurement locations chosen according to some light

assumptions. If instead we consider a noisy environment, we

must turn to maximum likelihood or least squares techniques

to find a solution, as the bearing lines will intersect at more

than a single point.

Previous work [1] investigated the statistical performance

of an estimator which determines all of the intersection points
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of noisy bearing measurements to determine a target location.

This method proved inferior to least-squares approximations.

Closed-form solutions known as the Stansfield estimator

and Orthogonal Vector (OV) method were developed for the

BOTL problem in [1], [2]. Both of these are considered to be

linear least squares techniques, which are inherently biased.

Fortunately they are simple to implement, and provide decent

solutions. To eliminate the bias inherent to these estimators,

techniques such as Instrumental Variable (IV) [3], Constrained

Least Squares (CLS) [4], and Total Least Squares (TLS) [5]

were proposed. IV and CLS were shown to be asymptotically

unbiased, while the TLS solution was shown to be an asymp-

totically maximum likelihood estimator.

In addition, nonlinear least squares approximations have

been investigated. Nonlinear least squares can attempt to more

accurately capture the measurement model, where LoBs are

determined by an inverse tangent angle. In [6], the nonlin-

ear least squares technique is discussed and a Taylor series

approximation is obtained.

BOTL scenarios can largely be categorized into two bins:

those using a network of sensors, and those using multiple

observations from a moving platform. We’ll focus on the latter,

specifically an aerial vehicle which moves along some noisy

trajectory to observe a collection of four-dimensional DoA

measurements: azimuth angle (from true north), depression

angle, auxillary polarization angle and polarization phase

difference.

Multi-target algorithms have been investigated before. In

target-dense environment, algorithms which use LoB inter-

sections for position estimation will tend to fail due to the

formation of ghost nodes, where many LoBs intersect in a

location with no target. This was addressed in the work by

Reed and Buehrer [7], where each new LoB measurement is

clustered based on number of intersections with the LoBs used

to form the prior position estimate. The clustering technique

we will discuss here differs from this approach in the metric

used to assign new observations to target tracks, the clustering

technique, and scenario.

As opposed to previous clustering methods in the litera-

ture, our technique is specifically intended for spatially close

targets. Techniques that rely on LoB intersections to assign

labels to observations are not well suited to this scenario,

since the LoBs for both targets will have many intersections,

intensifying the ghost node problem.

Notation. We denote sets as cursive capital letters (A, E)

and elements of sets as lower case letters (a ∈ A). If there is

an index for the set, it will appear as a subscript (ei ∈ E). ˆHats

indicate an estimate. Negative indicies (X−i) indicate the set

without the specified index, X\Xi
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Contributions. We provide two clustering algorithms for the

BOTL problem. Both techniques are shown to be effective in

various noise conditions. In addition we discuss current least

squares estimation techniques, and compare several available

in the literature. We provide a discussion of the tradeoffs

between these two methods, as well as numerical simulations

to support our conclusions.

II. BACKGROUND

A. Problem Setup

Let the environment consist of a single receiver platform

along with N ≥ 1 target emitters. While ll of these are have

distinct positions in space, the targets may be physically close

when compared to the distance to the receiver. Each target

uses the same electromagnetic frequency, but has a possibly

different polarization. The receiver is capable of estimating the

direction of arrival for all emitters.

In the ith time step, 1 ≤ i ≤ T , let the receiver be at a

position Xi
r =

[

xi
r, y

i
r

]T
and let the targets be at positions

Xt = [xt,yt]
T
=

[

x1 x2 . . . xN

y1 y2 . . . yN

]

(1)

which do not change over time.

Via some Direction of Arrival estimator, the receiver collects

a bearing measurement for each target in the vector θ̂
i =

[

θi
1
, θi

2
, . . . , θiN

]

which is an estimate of the true bearing θ
i.

The measurements θ̂
i can be represented as

θ̂
i = θ

i +N i = tan−1

(

yt − yi
r

xt − yi
r

)

+N i (2)

where N i is zero-mean Gaussian noise with variance σ2.

Before continuing we must establish several assumptions

relating to the set of all receiver locations {Xr}. Generally,

for any BOTL algorithm to work, we need for the set of

measurements to follow two basic assumptions [3]:

• Assumption 1

There is more than one unique measurement location.

∃mi,mj ∈ M such that Pi 6= Pj (3)

• Assumption 2

The set {P} is not colinear with any target ta ∈ T .

Otherwise, the receiver will not collect enough information to

estimate the target location. Given these assumptions we’ll

assume either a compliant linear receiver trajectory or a

circular trajectory centered near the target(s).

From this series of estimates {θ̂j |j ≤ i}, the receiver can

use some algorithm P(θ̂,Xr) to acquire an estimate of the

target positions X̂t.

B. Target Localization

The BOTL problem has many solutions. We’ll discuss a

non-linear least squares method using a Levenberg-Marquardt

algorithm. In a least squares curve fitting problem, we seek

the values which minimize an objective function. For our case,

the objective function is the measurement equation, Eq. (2).

Generally speaking, the problem is posed as Eq. (4)

β̂ = argmin
β

(

m
∑

i=1

[yi − f(xi, β)]
2

)

(4)

where β is the parameter we’re trying to find, β̂ is the local

minimum found by the solving algorithm, yi is the collected

data, and xi is a known variable. It should be noted that the

Levenberg-Marquardt least-squares solver can only guarantee

the finding of a local minimum, not global.

In our application, we can substitute the vector of measure-

ments corresponding to a given target for yi. Further, since

we’re estimating target position X̂t, this becomes the space

we search over. Now we can see that the objective function

f(·) is

f(X i
r, R) = tan−1

(

yt − yi
r

xt − yi
r

)

(5)

where R is the space of target locations.

Now we can rewrite the least squares problem as

X̂ℓ
t = argmin

R





i
∑

j=1

[

θ̂jℓ − f(Xj
r , R)

]2



 (6)

III. CLUSTERING ALGORITHMS

In each time step i we have the set of N unlabeled mea-

surements θ̂i. Since each measurement corresponds to a single

target, we need some method of labeling the measurements

θ̂i. We can form a set Lℓ which contains the indicies of the

measurements in each time step which correspond to the ℓth

target. In other words, let Lℓ be the set of indicies such that

θ̂ℓ = ∪i
j=1

{θ̂j
L

j

ℓ

} (7)

is the set of all measurements θ̂ that correspond to the ℓth

target. Now, to form estimated labels, we can use a clustering

algorithm.

Algorithms such as K-Means exist to form clusters out

of data from mixed distributions. For instance, if we have

a vector W where each element wi is either sampled from

x1 ∼ N (µ1, σ
2) or x2 ∼ N (µ2, σ

2), then K-Means can be

used to estimate which elements come from which distribution.

Since each of our measurements θ̂ are sampled from a

different distribution, due to the receiver motion, we are unable

to use K-means without introducing additional information.

We’ll discuss two clustering methods. The first depends

only on bearing measurements, and uses an iterative process

to assign labels. The second method includes polarization

measurements, which will not change due to the position of

the receiver.

a) By Bearing: Let P(θ̂,Xr) be an unbiased estimator

of target position, using a set of measurements θ̂ and a set of

receiver positions Xr as inputs. By using a prior estimate of

target locations Xi−1

t and the current receiver location Xi
t, we

can form the predicted bearing angles θ
i

from Eq. (8).

θ
i
= tan−1

yj−1

t − yjr

xj−1

t − xj
r

(8)
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Then, by using some cost-minimizing algorithm, we can form

a one-to-one map from the next measurements θ̂i to the target

positions Xi−1

t . To see this, we can first define the angular

distance between two angles φ1 and φ2 as the Euclidean

distance and denote this as dφ1,φ2
. Then, take the angular

distance between each pair of predicted and measured bearing

angles and form a matrix.













d
θ1,θ̂1

d
θ1,θ̂2

. . . d
θ1,θ̂N

d
θ2,θ̂1

. . . . . .
...

...
...

. . .
...

d
θN ,θ̂1

. . . . . . d
θN ,θ̂N













(9)

Note that the notation θn and θ̂n does not imply that θn is

the predicted measurement for θ̂n, and the indices merely

represent ordering. We can then use some cost-minimizing

algorithm (e.g. the Hungarian algorithm [8], also known as

the Munkres assignment algorithm (MAA) [9]) to update the

set of estimated labels Lℓ as

Lℓ = [Lℓ, n] (10)

where n is the measurement index that corresponds to each

predicted index ℓ. Then, the jth element of Lℓ will be the

estimated label for θ̂j .

Using all previous measurements as well as the new ones,

we can form a new estimate of each target’s position by using

P . Algorithm (1) formalizes this argument.

Algorithm 1: Iterative Target Localization

Result: X̂i
t

Input [X̂t]
i−1

0
, [X̂r]

i
1
, [θ̂]i

1
, [L̂]i

1

for j = 1 : i do

for ℓ = 1 : K do

θ
j

ℓ = tan−1
y
j−1

t,l
−yj

r

x
j−1

t,l
−x

j
r

end

L̂j = MAA
(

θ
j
, θ̂j
)

for ℓ = 1 : K do

X̂t,ℓ = P
(

∪j
k=1

{θ̂k
Lk

ℓ

}, [Xr]
j
1

)

end

end

Initialization. We assume that this algorithm is initialized

with some target location estimate
[

X̂t

]

0

. Alternatively, the

algorithm can be self-starting by using K-Means clustering on

the first few bearing estimates. This works so long as the total

receiver displacement during the initialization phase is small

(relative to the target distance) such that there is no overlap

in bearing angle.

b) By Polarization: While this method relies on a less

arbitrary array geometry (in other words, a geometry which

provides polarization information), it can also provide more

accurate results, especially in specific target/receiver configu-

rations. Estimation of polarization angles requires use of an

array that is polarization sensitive. We’re specifically assuming

the use of a vector-sensor, which consists of a dipole triad

and a magnetic loop triad and is capable of resolving DoA

estimates in a wide aperture with azimuth θ ∈ [0, 2π], elevation

φ ∈ [−π/2, π/2], auxiliary polarization angle γ ∈ [0, π/2] and

polarization phase difference η ∈ [−π, π].
For this method to work, the transmitters are assumed to

have different polarization angles. This assumption is not too

restrictive, since it’s likely for handheld or vehicle mounted

transmitters to be slightly misaligned. In addition, due to

the fact that different arrays will have different polarization

characteristics, we can expect for dissimilar emitters to be

identifiable via their polarization angles. As we’ll show later,

we should expect for emitters with more similar polarization

angles to require a higher SNR (and therefore a lower mea-

surement variance) to successfully cluster estimates.

Now, rather than relying on the previous position estimate,

we can directly cluster similar polarization angles, since the

the expected polarization measurements will not change with

different receiver locations.

Algorithm 2: Non-Iterative Target Localization

Result: X̂i
t

Input [X̂r]
i
1
, [θ̂]i

1

L̂j = K-means([γ, η])
for ℓ = 1 : K do

X̂t,ℓ = P
(

∪j
k=1

{θ̂k
Lk

ℓ

}, [Xr]
j
1

)

end

IV. RESULTS

A. Single Target Simulations

In order to establish expectations for multi-target local-

ization, we’ll first discuss the single target case. A useful

tool in this sort of analysis is the Cramer-Rao Lower Bound

(CRLB). The CRLB is a statistical lower limit on the variance

of any unbiased estimator. The CRLB for BOTL problems has

been variously derived in the literature.

CRLB(θ) = σ

√
T

√

(
∑

cos2 θ
∑

sin2 θ
)

−∑ (cos θ sin θ)
2

(11)

Without loss of generality, and assuming a linear flight path,

we can let the trajectory exist on the positive x-axis and the

target be in the first quadrant. Were we to put the receiver

trajectory on another line, we could transform the coordinates

through rotation or translation so that the trajectory moves to

the x-axis. Since this transformation will not alter the bearing

measurements, it will not change the accuracy of an estimator.

To show the accuracy of an estimator, we’ll use the root

mean squared error (RMSE). The RMSE is calculated as

RMSE(X̂,X) =

√

√

√

√

√





i
∑

j=1

(X̂j −Xj)





2

(12)
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Error versus Target Distance

Fig. 1. Several trials where the target moves logarithmically further from the
receiver plotted on a log-log scale.
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Fig. 2. Several trials where the target moves parallel to the receiver trajectory,
moving from one end to the other. The receiver makes 100 measurements
equally spaced from [0, 0]km to [0, 30] km while the target takes steps from
15km to 40km. RMSE is plotted logarithmically.

We’ll first show a series of simulations where a target is

progressively further from the x-axis. The receiver takes 100

measurements evenly spaced between x = 0km to x = 30km.

The target x location is held at 15km, while the y-value is

swept as shown. In Fig. 1, we can see that, as we’d expect,

the RMSE increases with distance.

Next, we’ll look at the performance of the estimator as a

target is moved in the x direction while the y coordinate is kept

constant. The receiver moves in each simulation as described

above. The target here always has a y value of 15km, while

the x value changes from 15km to 40km. Fig. 2 shows us that

as a target is further from the midpoint of a trajectory, the

RMSE degrades.

Lastly, we’ll see the effect of varying bearing estimator

variance. Here we’ll also look at the OV and TLS estimators,

as well as the CRLB. Fig. 3 shows us that the nonlinear

least squares estimation outperforms the other estimators. In

addition, it nearly attains the CRLB.
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Fig. 3. A comparison of several estimators in the literature, with logarithmic
position RMSE. Orthogonal Vector (OV) and Total Least Squares (TLS) are
prior techniques, while Non-linear Least Squares (NLS) is the technique used
for the rest of this work.
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Fig. 4. A comparison of estimation accuracy versus target orientation. In each
of 18 different simulations, two targets oppose each other while the receiver
attempts to cluster observations for localization. The receiver takes a linear
path parallel to the x-axis. Algorithm 1 is used for this figure. We can see
that when a line through the targets is perpendicular to the flight path, the
clustering technique breaks down.

B. Multi-Target Simulations

Now that we have established the performance of our

estimator against others in the literature, we’ll consider the

capabilities and limitations of the clustering techniques we

described above.

a) Two target orientation: We’ll show that an inherent

weakness in the iterative clustering technique is the ability

of the method to correctly cluster targets which are oriented

perpendicular to the flight path. By this, we mean that a

line intersecting both targets would be normal to the receiver

trajectory. This is important in comparison to the parallel target

orientation case, where a line intersecting both targets would

be parallel to the receiver trajectory. Obviously with a circular

receiver trajectory, these cases would be symmetrical.

So, we can see in Fig. 4 the effect of target orientation on

our clustering algorithm. We know that this increased error
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Fig. 5. A comparison of estimation accuracy versus target orientation. In each
of 18 different simulations, two targets oppose each other while the receiver
attempts to cluster observations for localization. The receiver takes a linear
path parallel to the x-axis. Algorithm 2 is used for this figure.

is due to the clustering algorithm and not the localization

algorithm because the separation between targets is much

much smaller than the distance from the origin to the receiver,

so any rotation effect should not have an impact. In each

of several simulations, two targets are counter-posed on a

circle. Through sequential simulations, the targets remain

counter-posed but rotate around the circle. As the targets come

perpendicular to the receiver, the estimated bearing angles

become closer and closer and appear to cross. At this point the

future clustering labels become reversed, causing the location

estimates to converge.

When we attempt to use the polarization clustering tech-

nique, as in Fig. 5, we can see that this effect disappears.

This is because we’re no longer using an iterative approach,

which relies on the previous location estimate to inform the

next cluster estimate. Instead, once the data is collected, the

polarization information is used to cluster the samples as

belonging to one target or the other. We can see that this

method is superior, as it has fewer requirements on the receiver

trajectory.

Next, we can look at the effect of varying DoA RMSE on

both clustering algorithms. For this simulation, we place two

targets at [14500, 15000] and [20500, 15000] for an angular

separation from the midpoint of the receiver trajectory of

40◦. The polarization parameters for the two targets are also

separated by 40◦. Fig. 6 shows us that at low polarization

RMSE (which corresponds to high SNR), we don’t see much

difference in either clustering technique. Note that this as-

sumes a favorable target positioning.

V. CONCLUSIONS

We have shown that a moving platform collecting bear-

ing measurements can use clustering techniques to localize

multiple targets with high accuracy using a nonlinear least

squares technique. Specifically, we demonstrated two cluster-

ing techniques. The first requires only bearing angles, and can

separate target measurements in a broad variety of situations.
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Fig. 6. Clustering percent error over a range of bearing estimation error.

However, if the targets are more overlapped from the receiver’s

perspective, the clustering technique can fail, causing the target

localization estimates to become closer together.

If instead we also have polarization estimates available,

we can use that information to cluster received samples. We

have shown that this method matches the bearing clustering

approach’s performance in most scenarios, and is superior in

the case that the targets are perpendicular to the receiver’s

trajectory.
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