
DeepCQ+: Robust and Scalable Routing with
Multi-Agent Deep Reinforcement Learning for

Highly Dynamic Networks
Saeed Kaviani∗, Bo Ryu∗, Ejaz Ahmed∗, Kevin Larson†, Anh Le∗, Alex Yahja∗, and Jae H. Kim†

∗EpiSys Science, Inc. : {saeed, bo.ryu, ejaz, anhle, alex}@episci.com
†Boeing Research and Technology : {kevin.a.larson, jae.h.kim}@boeing.com

Abstract—Highly dynamic mobile ad-hoc networks (MANETs)
remain as one of the most challenging environments to develop
and deploy robust, efficient, and scalable routing protocols. In this
paper, we present DeepCQ+ routing protocol which, in a novel
manner, integrates emerging multi-agent deep reinforcement
learning (MADRL) techniques into existing Q-learning-based
routing protocols and their variants, and achieves persistently
higher performance across a wide range of topology and mobility
configurations. While keeping the overall protocol structure of the
Q-learning-based routing protocols, DeepCQ+ replaces statically
configured parameterized thresholds and hand-written rules with
carefully designed MADRL agents such that no configuration
of such parameters is required a priori. Extensive simulation
shows that DeepCQ+ yields significantly increased end-to-end
throughput with lower overhead and no apparent degradation
of end-to-end delays (hop counts) compared to its Q-learning-
based counterparts. Qualitatively, and perhaps more significantly,
DeepCQ+ maintains remarkably similar performance gains un-
der many scenarios that it was not trained for in terms of
network sizes, mobility conditions, and traffic dynamics. To the
best of our knowledge, this is the first successful application of
the MADRL framework for the MANET routing problem that
demonstrates a high degree of scalability and robustness even
under the environments that are outside the trained range of
scenarios. This implies that our MARL-based DeepCQ+ design
solution significantly improves the performance of Q-learning-
based CQ+ baseline approach for comparison and increases its
practicality and explainability because the real-world MANET
environment will likely vary outside the trained range of MANET
scenarios. Additional techniques to further increase the gains in
performance and scalability are discussed.

I. INTRODUCTION

Design of a robust and efficient routing algorithm has
been one of the most challenging problems in communication
and computer networks. This challenge is compounded in
tactical MANETs where the network is highly dynamic and
unpredictable with respect to mobility and topology, interfer-
ence, and possible jamming [1]. These factors significantly
reduce the reliability, and therefore, many traditional MANET
routing protocols require frequent re-computations of end-to-
end routes upon detecting network topology changes, resulting
in a periodic loss in throughput due to traffic not being sent
during the re-computations. This is exacerbated as the rate
of topology change increases. To improve packet delivery
performance via rapid and efficient exploration in these highly
dynamic networks, broadcasting (i.e. transmission of a packet
to all neighbors, also known as flooding) has become a popular

technique [2]–[4]. Traditional MANET routing protocols (e.g.
OSPF and OLSR [3], [4]) perform reliably when the network
is in a stable state but less effectively in highly dynamic
networks. Other traditional adaptive strategies also are not
responsive fast enough for dynamic networks [2].

In this paper, we consider a class of distributed routing
algorithms that only share limited information (i.e. two sin-
gle floating value) through per-hop acknowledgment (ACK)
packets. This method of cooperation is efficient as ACKs
are inherently present in the networking protocols (such as
MAC-layer acknowledgement) and do not require any extra
implementation in the system. The seminal work [5] proposed
Q-routing, which used a reinforcement learning (RL) module
(i.e. Q-Learning [6]) to route packets and minimize delivery
time. Each node uses Q-values representing quality of paths
which are acquired locally to determine the next hop and
shared via ACK messages. Kumar et al. [7] improved Q-
routing for dynamic networks with the addition of confidence
values (i.e. C-values) in their CQ routing protocol. To improve
reliability and exploration speed of the CQ-routing, smart ro-
bust routing (SRR) algorithm [8] was proposed to add selective
broadcasting actions. SRR utilizes heuristic rules on when to
broadcast in order to improve robustness but keep the overall
overhead under control. We refer to this technique as CQ+
routing (also known as Robust Routing for Dynamic Networks,
or R2DN) as it is an extension of CQ routing for balancing
between reliability and overhead. Although CQ+ routing uses
a simple but efficient switching policy to choose between
unicast and broadcast, its decisions depend on a single network
parameter: best-path confidence level. Consequently, it has a
limited snapshot of the entire network that is likely to lead to
a locally optimal solution, since it does not fully account for
the high rate changes in topology and degree of congestion
in likely forwarding paths. Nevertheless, its performance has
been consistently producing high delivery ratios across many
scenarios used in our study, though at a noticeably high cost
of broadcast overhead, and as a result, it serves as a baseline
design for our MADRL framework. The question we posed,
then, is whether an emerging deep learning framework can
help reduce the overhead while maintaining, or exceeding, the
performance of CQ-routing (especially goodput).

Routing decisions such as a next-hop selection are op-
portune targets for employing RL-based techniques, as it

1

ar
X

iv
:2

11
1.

15
01

3v
1

 [
cs

.N
I]

 2
9

N
ov

 2
02

1

was originally introduced and initiated by Boyan’s Q-routing
protocol [5]. Following the Q-routing approach, a flurry of new
techniques and algorithms from the RL community have been
developed and applied to packet routing and scheduling [9]–
[13]. These techniques are often scale poorly when network
sizes increase and system parameters change. To address these
shortcomings, new MADRL-based approaches such as [13]
and [9] have been proposed, but they suffer from limited
scalability due to node-specific policy generated from the
training, requiring a re-training every time a new node needs
to be introduced to the network.

To the best of our knowledge, no study has been reported on
successfully achieving both scalability and robust performance
simultaneously using MADRL in dynamic networks such as
MANET. Our DeepCQ+ is both scalable and robust by allow-
ing MADRL to control the next-hop adaptive flooding deci-
sions while maintaining the CQ+ routing protocol ”structure”.
In this paper, we describe how a single MADRL-based routing
agent is designed and trained to produce a robust and scalable
routing policy for any node in the network regardless of the
network size. More significantly, our DeepCQ+ design and
learning methodology enables network designers to train on a
limited range of environment parameters (e.g. small network
size, selective traffic flow patterns, and limited variations),
and still to be effective even when deployed in scenarios
outside the trained range of network size, traffic profiles, and
mobility patterns. This is an extremely important and unique
benefit of DeepCQ+ since it does not suffer from the curse
of dimensionality due to potentially large network sizes, and
catastrophic forgetting even when trained with a wide range
of scenarios.

II. ROBUST ROUTING FRAMEWORK

A. SRR (CQ+ routing) Protocol

The SRR algorithm [8] uses the network parameters C and
H1 for the routing decisions primarily introduced in seminal
CQ-routing [7]. Each node i has a H-factor, h(i, j, d) (i.e.
i j d), which represents an estimate of the least number
of hops between node i and destination d which passes through
potential next-hop j. To monitor the dynamics of the network,
each node i also have a confidence level or C-value, c(i, j, d),
that represents the confidence in likelihood the packet will
reach its destination h(i, j, d). This C-value is increased with
each packet transmission success (receiving the ACK). Every
packet transmission, the C-value is degraded by a decay factor.
C- and H-factors are updated through the cack and hack which
are propagated by the ACK packets from the receiving node
(e.g. next-hop) to the transmitting node. These ACK values
are computed at the next-hop node j as

hack = 1 + h(j, k̂, d) (1)

cack = c(j, k̂, d) (2)

1We have renamed the original Q-factor in CQ-routing to H-factor to
prevent confusion with the Q in the Q-networks and/or Q-learning in the
RL context.

where k̂ is the best next-hop estimate of node j to destination
d and it is found by k̂ = arg min

k
h(j, d, k) (1− c(j, k, d)) In

other words, C- and H-values are exponential moving average
of the cack and hack, respectively. If a transmission fails or there
is no ACK to update C- and H-levels, then H-level cannot
be updated. However, we degrade the C-level as in cack = 0
to reflect the path failure. The updates of the C- and H-levels
given by

ht+1(i, j, d) = (1− α)ht(i, j, d) + αhack, (3)

ct+1(i, j, d) =

{
(1− λ)ct(i, j, d) failure
(1− λ)ct(i, j, d) + λcack otherwise

(4)

where 0 ≤ α ≤ 1 is a discount factor for the new observation
with an adaptable value of α = max (cack, 1− ct(i, j, d)). λ is
the decay factor for the new observation of cack (or 1−λ is the
decay factor for the old observation). If a packet is received
at the destination d, then cack, and hack are set to 1, indicating
that we have full confidence that we are 1 hop away from
destination. CQ+ routing algorithm consists of the following
three steps: (i) reception of ACK and consequently updating
C- and H-levels; (ii) reception of data packets, detection
and dropping of duplicate packets, and queuing if not the
destination; and (iii) transmission of data packets either via
unicast or broadcast according to the routing policy chosen.
Additional detail of the SRR algorithm (or CQ+ routing) is
provided in [8].

The CQ+ routing policy chooses the next-hop based on the
minimization of the information uncertainty and the expected
number of hops. This is given by

j? = arg min
j

h(i, j, d) (1− c(i, j, d)) . (5)

The next-hop j? is considered by the CQ+ routing policy if it
unicast the packet to a single neighboring node. However, the
CQ+ routing policy triggers broadcast in order to mitigate the
next-hop information uncertainty. The CQ+ routing policy is
probabilistic and it assigns the probability of broadcast as

PBC = ε+ (1− c(i, j?, d))(1− ε) (6)

where a small value ε is used for the minimum probability of
broadcast (defined for exploration purposes). In what follows,
we briefly describe the MADRL framework employed for
replacing the broadcast/unicast decision of the CQ+ routing
protocol with a deep neural network.

III. MULTI-AGENT DEEP REINFORCEMENT LEARNING
FOR CQ ROUTING (DEEPCQ+)

A. Background

Our robust routing design follows the decentralized
partially-observable Markov decision process (Dec-POMDP),
a popular framework for decision-making problems in a team
of cooperative agents [14]. Dec-POMDP tries to model and
optimize the behavior of agents while considering the uncer-
tainties of both the environment and other agents.

2

Fig. 1. Multi-agent network routing environment with shared policy param-
eters between agents. The centralized training and decentralized execution
are also shown. Each agent i, uses the shared policy πθ individually to find
its own action ai(t) based on its own observations oi(t). The multi-agent
environment operates based on the joint-actions decided and taken individually
and transition to next state st+1 and the rewards are pulled out based on that.

1) Policy Optimizations: Policy gradient (PG) method is
another popular choice that is based on the optimization of
the policy directly rather than estimating the expected return
and it optimizes the policy parameters by descending toward
the gradient direction of the expected discounted reward return
[15]. Particularly, we deploy a state-of-the-art policy gradient
algorithm called Proximal Policy Optimization (PPO) [16],
which uses multiple epochs of stochastic gradient ascent to
perform each policy updates with ease of implementation.

2) Centralized Training, Decentralized Execution: In com-
munication networks, partial observability and communication
constraints necessitate the learning of decentralized policies
which rely only on local information at each agent. Decentral-
ized policies also avoid the exponentially growing joint action
space with the number of agents, and therefore, make them
more practical and faster to converge in training. Fortunately,
decentralized policies can be learned in a centralized fash-
ion specially in a simulated or controlled environment. The
paradigm of centralized training with decentralised execution
has already attracted a strong attention in the RL community
[14].

3) Parameter Sharing: A common strategy is to share the
policy parameters among agents that are homogeneous [17]
(parameter sharing). The multi-agent environment for the rout-
ing problem and our proposed framework are summarized in
Fig. 1 where the centralized training, decentralized execution,
and parameter sharing across agents are illustrated.

B. DeepCQ+ Design Framework and Approach

We consider a homogeneous MANET with variable network
size (e.g. 5 ≤ N ≤ 50) with multiple unicast traffic flows
with randomized source and destination pairs. The nodes
are consistently moving at various random velocities and
directions. We employ popular MANET mobility models such
as Gauss-Markov model and random way-point. As these

Routing Protocol C/Q-values Broadcast MADRL
CQ-routing [7] X × ×
SRR (CQ+) [8] X X ×
DeepCQ+ routing (this work) X X X

TABLE I
COMPARISON OF ROBUST ROUTING PROTOCOLS IN DYNAMIC NETWORKS

models are not realistic in general, we enhance these models
to provide much more diverse sets of mobility as discussed
in Section IV-A. Each realization of a network scenario (also
called an episode in the context of RL) has at least T time-slots
(each time step is single packet duration time). For simplicity,
it is assumed that packet duration is fixed in time (i.e., a
slotted system) but data rates can still vary. An episode ends
once it exceeds a maximum traffic length, Tmax and all nodes
complete their transmissions until queues become empty. No
new traffic enters the network after time Tmax. The goodput
is computed as the ratio of the total number of successfully
delivered packets to the total packets that entered the network.
Duplicate packets at the destination are not included. We train
and use the same parameterized policy πθ for every node (one
policy for all), which is found to be key to achieve scalability
and practicality. When the policy function is defined as a Deep
Neural Network (DNN), the parameter vector θ represents
the weights of the neural network. We deliberately choose
to train our DNN policy with a single network size, single
data flow (single source and destination pair), and small range
of dynamic levels, and test for varying network sizes with
multiple data flows and a wide range of mobility.

1) Pre-processing of the policy input features: We select
only the best K (e.g. K = 4) neighbors out of total N − 1
possible neighbors in the network for each node according to
their available C and H values. For the sake of simplicity,
we drop i and destination d from C- and H-levels and use
the next-hop as index (i.e. ct(i, j) := ct(i, j, d)). Now, in our
problem formulation the best K neighbor C and H values are
represented by

ct(i) = [ct(i, i1), ct(i, i2), . . . , ct(i, iK)]

ht(i) = [ht(i, i1), ht(i, i2), . . . , ht(i, iK)]
(7)

where the neighboring nodes i1, ..., iK of i are ordered so that

ht(i, i1)(1− ct(i, i1)) ≤ · · · ≤ ht(i, iK)(1− ct(i, iK)). (8)

2) State/Observations: We use a fully connected neural
network (FCNN) to capture temporal behavior of network pa-
rameters, and add the change rate between current observations
and previous observations as input to the DNN policy. The
input features to the DNN policy at node i are given by

ot(i) = [ct(i),ht(i),∆ct(i),∆ht(i), at−1(i), pt−1(i)] , (9)

where ∆ct(i) = ct(i) − ct−1(i), ∆ht(i) = ht(i) − ht−1(i),
and at−1(j) is the previous action of some node j from which
the current packet is received. The last indicator shows if
the current packet is received as a result of another node’s
broadcast or unicast.

3

C. Reward Definition for DeepCQ+ routing

We consider a stochastic routing policy π(a|st) that sets the
rewards for unicast and broadcast as the probability of those
actions as follows:

rt(st, at) =

{
1− ct(i, i1)ε̃ at = 1(broadcast)
ct(i, i1)ε̃ at = 0(unicast)

(10)

where ε̃ = 1 − ε. We expect that the performance of this
RL problem be close to the CQ+ routing (at least for small
values of γ) as both DeepCQ+ and CQ+ have similar rewards.
We refer to the above reward as a DNN-based version of
the CQ+ routing. Note that different reward designs will
produce different performance objectives, thus providing a
higher degree of design flexibility compared to the baseline
CQ+ routing.

Note that the above reward specification does not neces-
sarily make the CQ+ routing policy learn to minimize the
network overhead. To address this, We first define the overhead
as the ratio of the total number of transmissions in the
communication network, denoted by NTX, to the total number
of packets delivered, denoted by ND for a specific packet data
rate and a window of time. With this, we define the normalized
overhead by the network size, N , as OH = 1

N ·
NTX
ND

. Based on
this, we introduce two types of overhead: (i) overhead defined
as excess transmitted bits per delivered bits (overhead-1); and
(ii) and total transmitted bits (both data and ACK) divided by
the total delivered data bits (overhead-2). In order to ensure
that the learned policy attempts to minimize the overhead, we
define a new reward function as follows:

rt = w11D − w21Z − w3
Nack

N
(11)

where 1D is the reward for packet delivery. If a packet
is delivered successfully to the destination and node i has
contributed to that delivery then it will be rewarded. Also,
1Z is a reward (penalty) indicator which is enabled when we
have not received any ACKs from our transmissions. The next
term in the reward, i.e. Nack/N , is the normalized number of
ACKs received as a result of the action taken and therefore
closely represents the number of copies of a packet at other
nodes and the system overhead. The weights of the reward
components, (i.e. w1, w2, w3), have been tuned according to
the overhead minimization problem. The proposed DeepCQ+
routing technique with tuned reward function is referred to as
DeepCQ+ routing policy. The DeepCQ+ routing algorithms
are summarized in Algorithm 1.

IV. EXPERIMENTS AND NUMERICAL RESULTS

A. Environment Modelling and Training Platforms

We have developed an OpenAI gym [18] environment
in Python for training our DeepCQ+ agents. The python-
based DeepCQ+ environment has all of the original CQ+
routing protocol features, including a plethora of MANET
scenarios consisting of randomly generated dynamic network
scenarios, multiple traffic flows, and mobility configurations.

Algorithm 1: The proposed DeepCQ+ routing
Receive incoming packet at node i:
if Packet is ACK then

Update c and h using (3) and (4)
else

if packet traversed a loop then
Drop packet, do not return ACK

end
if packet is already in queue then

Find best next-hop i1 from (5))
Compute cack and hack from (2) and (1) using j?

Drop packet but return ACK
end
if packet is not duplicate then

Add packet to the queue
else

Do not add packet to the queue
end

end
if ACK Packet is not received then

Do not update c and h, (i.e. no packet is received)
end
if Queue is not empty then

Form the input to the DNN policy using (9) and (8)
DeepCQ+ routing: Choose{

Broadcast with probability πθ(a = 1|ot; θ)
Unicast with probability πθ(a = 0|ot; θ)

end

The environment is interfaced with the ray, which is a pow-
erful distributed DRL platform with RLlib library [19] which
provides scalable DRL training primitives with many built-in
DRL algorithms such as PPO.

Within the MANET research community, there have been
various mobility models proposed along with extensive dis-
cussions on their impact on the routing protocol performance
[20], [21]. At a minimum, a MANET mobility model needs
to have enough degree of randomization to cover corner
cases and extreme scenarios required for extensive training in
MADRL. The random way-point mobility model is often used
in the simulation study of MANET, despite some unrealistic
movement behaviors, such as exhibiting sudden stops and
sharp turns [21]. The Gauss-Markov mobility model, which
has more realistic movement behavior and avoids often sudden
stops and sharp returns, has less sensitivity of the network
performance metrics with respect to the various randomness
[21]. To study the performance of MADRL under realistic
mobility scenarios, our network scenario region is divided into
5 groups symmetrically between the source and destination
nodes. The closer the region is to the center, the faster the
nodes move. The central region has double the speed variance
compard to variance of the mid-left and mid-right regions. The
source and destination regions have half the speed variance
compared to the mid-right/left regions. The mobility of the
MANET nodes is simulated and shown in Fig. 2.

B. Numerical Results

Training and testing range of network parameters are sum-
marized in Table II with the hyperparameters used. Our

4

Fig. 2. Mobility regions and network topology. The movements of the nodes
are shown for a network of size 30 according to the Gauss-Markov model

TABLE II
LIST OF CONFIGURATION PARAMETERS AND TRAINING

HYPERPARAMETERS

Parameters Value in Training Value in Test

Network Sizes 12 5 to 50
Learning Rate 0.00005 -

Discount Factor γ 0.99 -
Episode Length 3000 3000

Region Size Scale 1 2
Dynamic Level Scale 1 5

Policy NN FCNN(16, 8, 8, 4) FCNN(16, 8, 8, 4)
Number of Data Flows 1 1 to 4

training is performed over 50 million steps (approximately
15,000 episodes) and tests (where the results are shown in
Fig. 3) are performed over network sizes between 10 and
30 with larger dynamic level and region scale randomization
compared to the training. Training is performed on single
network size (e.g. N = 12) scenarios. In our simulation
experiments, N = 12 was the smallest size network in which
the training results was extended to N = 30. Fig. 3 also shows
the scalability and robustness of our training framework as the
performance of the designed routing policies are maintained
even with larger network parameters and configurations and
networks of as large as 30 (which are not trained for). As
shown in the figure, DeepCQ+ routing policy improves the
goodput rate (delivery ratio) almost the same as the CQ+
routing but with significantly less overhead (both type 1
and type 2) for DeepCQ+. Indeed, our MADRL framework
can adapt to different deployment tuples of goodput rate,
broadcast rate, and even delay, which was not available in
the CQ+ routing. Our results show that we require 10-25%
less overhead while achieves higher (1-5%) delivery ratio
(goodput rate), which shows significant improvement over the
baseline CQ+ routing algorithm. DeepCQ+ also achieves lower
percentage of broadcast transmissions, leading to network
resource saving. This overhead saving is attributed only to the
policy’s efficient decision on broadcast actions, while the next-
hop is still selected based on the same CQ+ routing algorithm
as in [5].

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have presented and successfully demon-
strated a novel MADRL-based CQ+ routing protocol which
yields a robust, reliable, efficient, and scalable policy for
dynamic wireless communication networks, including for sce-
narios that the algorithm was not trained for. It is shown that
DeepCQ+ is much more efficient than CQ+ routing techniques,
significantly decreasing the required overhead for unit delivery.
Moreover, the policy is scalable and uses parameter sharing for
all nodes obtained during the training, which allows it to reuse
the same trained policy for scenarios with different network
configurations. It is noted that the sharing of parameters for
all the nodes is not required during execution.

We are currently expanding the action space of DeepCQ+
to include next-hop selection for the unicast mode and other
emerging MADRL techniques. Note that the focus of this work
was on broadcast or unicast action selection while the next-
hop was chosen based on the CQ+ routing. We plan to use
recurrent neural network units as policy which is expected to
capture higher gains compared to our current approach.

VI. ACKNOWLEDGEMENT

Research reported in this publication was supported in part
by Office of the Naval Research under the contract N00014-
19-C-1037. The content is solely the responsibility of the
authors and does not necessarily represent the official views of
the Office of Naval Research. The authors would like to thank
Dr. Santanu Das (ONR Program Manager) for his support and
encouragement. Also, we would like to thank the reviewers for
their valuable comments to improve the quality of this paper.

REFERENCES

[1] G. F. Elmasry, “A comparative review of commercial vs. tactical wireless
networks,” IEEE Communications Magazine, vol. 48, no. 10, pp. 54–59,
2010.

[2] C. Danilov, T. R. Henderson, T. Goff, O. Brewer, J. H. Kim, J. Macker,
and B. Adamson, “Adaptive routing for tactical communications,” in
MILCOM 2012 - 2012 IEEE Military Communications Conference,
2012, pp. 1–7.

[3] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler,
A. Qayyum, and L. Viennot, “Optimized link state routing protocol
(OLSR),” 2003.

[4] J. Moy et al., “OSPF version 2,” 1998.
[5] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing

networks: A reinforcement learning approach,” Advances in Neural
Information Processing Systems, 1994.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[7] S. Kumar and R. Miikkulainen, “Confidence-based Q-routing: An on-
line adaptive network routing algorithm,” in Proceedings of Artificial
Neural Networks in Engineering, 1998.

[8] M. Johnston, C. Danilov, and K. Larson, “A reinforcement learning
approach to adaptive redundancy for routing in tactical networks,” in
MILCOM 2018 - 2018 IEEE Military Communications Conference
(MILCOM), 2018, pp. 267–272.

[9] R. E. Ali, B. Erman, E. Baştuğ, and B. Cilli, “Hierarchical deep
double Q-routing,” in ICC 2020-2020 IEEE International Conference
on Communications (ICC). IEEE, 2020, pp. 1–7.

[10] C. Yu, J. Lan, Z. Guo, and Y. Hu, “DROM: Optimizing the routing
in software-defined networks with deep reinforcement learning,” IEEE
Access, vol. 6, pp. 64 533–64 539, 2018.

5

Fig. 3. Comparison of the results of the DeepCQ+ routing trained for a 12-node network only versus CQ+ routing; The results are tested across various
network sizes from 12 to 30. Although the DeepCQ+ routing PPO policy is trained on 12-node networks, it scales perfectly for various network sizes. The
DeepCQ+ routing achieves significantly lower normalized (divided by network size) overhead types 1 and 2 and higher delivery ratio and lower broadcast
rates.

[11] G. Stampa, M. Arias, D. Sánchez-Charles, V. Muntés-Mulero,
and A. Cabellos, “A deep-reinforcement learning approach for
software-defined networking routing optimization,” arXiv preprint
arXiv:1709.07080, 2017.

[12] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning based
resource allocation for V2V communications,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 4, pp. 3163–3173, 2019.

[13] X. You, X. Li, Y. Xu, H. Feng, J. Zhao, and H. Yan, “Toward packet
routing with fully distributed multiagent deep reinforcement learning,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[14] F. A. Oliehoek, C. Amato et al., A concise introduction to decentralized
POMDPs. Springer, 2016, vol. 1.

[15] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[17] J. K. Terry, N. Grammel, A. Hari, L. Santos, B. Black, and D. Manocha,
“Parameter sharing is surprisingly useful for multi-agent deep reinforce-
ment learning,” arXiv preprint arXiv:2005.13625, 2020.

[18] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAi Gym,” arXiv preprint
arXiv:1606.01540, 2016.

[19] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “Rllib: Abstractions for distributed
reinforcement learning,” in International Conference on Machine Learn-

ing, 2018, pp. 3053–3062.
[20] A. K. Gupta, H. Sadawarti, and A. K. Verma, “Performance analysis of

MANET routing protocols in different mobility models,” International
Journal of Information Technology and Computer Science (IJITCS),
vol. 5, no. 6, pp. 73–82, 2013.

[21] J. Ariyakhajorn, P. Wannawilai, and C. Sathitwiriyawong, “A compara-
tive study of random waypoint and gauss-markov mobility models in the
performance evaluation of MANET,” in 2006 International Symposium
on Communications and Information Technologies, 2006, pp. 894–899.

6

	I Introduction
	II Robust Routing Framework
	II-A SRR (CQ+ routing) Protocol

	III Multi-Agent Deep Reinforcement Learning for CQ routing (DeepCQ+)
	III-A Background
	III-A1 Policy Optimizations
	III-A2 Centralized Training, Decentralized Execution
	III-A3 Parameter Sharing

	III-B DeepCQ+ Design Framework and Approach
	III-B1 Pre-processing of the policy input features
	III-B2 State/Observations

	III-C Reward Definition for DeepCQ+ routing

	IV Experiments and Numerical Results
	IV-A Environment Modelling and Training Platforms
	IV-B Numerical Results

	V Conclusions and Future Directions
	VI Acknowledgement
	References

