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Abstract—Intelligent reflecting surface (IRS) has gained
tremendous attention recently as a disruptive technology for
beyond 5G networks. In this paper, we consider the problem of
secrecy rate maximization for an IRS-assisted Gaussian multiple-
input multiple-output multi-antenna-eavesdropper (MIMOME)
wiretap channel (WTC). In this context, we aim to jointly
optimize the input covariance matrix and the IRS phase shifts
to maximize the achievable secrecy rate of the considered
system. To solve the formulated problem which is non-convex,
we propose an iterative method based on the block successive
maximization (BSM), where each iteration is done in closed form.
More specifically, we maximize a lower bound on the achievable
secrecy rate to update the input covariance matrix for fixed phase
shifts, and then maximize the (exact) achievable secrecy rate to
update phase shifts for a given input covariance. We present
a convergence proof and the associated complexity analysis
of the proposed algorithm. Numerical results are provided to
demonstrate the superiority of the proposed method compared
to a known solution, and also to show the effect of different
parameters of interest on the achievable secrecy rate of the IRS-
assisted MIMOME WTC.

I. INTRODUCTION

Due to the broadcast nature of radio links, wireless com-
munications over these channels are highly vulnerable to
eavesdropping. This issue is extremely important for military
applications. Many measures have been taken to mitigate such
vulnerability. Among them, physical layer security (PLS) has
received increasing attention as one of the promising tech-
niques to deliver secure communication with low-complexity
and possibly (cryptographic) keyless transmission. The most
fundamental information-theoretic model for the study of PLS
is so-called the wiretap channel (WTC), where an eavesdrop-
per aims to decode the information intended to be exchanged
between a transmitter and a legitimate receiver [1].

On the other hand, with the recent developments in the
software-controlled hypersurface technology, it is now been
possible to steer the radio waves falling on these hypersurfaces
in a controlled fashion [2]. Therefore, in order to exploit
the benefits of these hypersurfaces, termed as the intelligent
reflecting surface (IRS), in the context of PLS, the problem
of secrecy rate maximization (SRM) was recently considered
in several works including [3]–[6]. The IRS-assisted multiple-
input multiple-output multi-antenna-eavesdropper (MIMOME)
WTC has been studied very recently in [3], where in order to
maximize the secrecy rate of the system under consideration,
the authors presented an alternating optimization (AO) algo-
rithm in combination with minorization-maximization (MM)

algorithm. Also, in [4] the SRM problem for an IRS-assisted
MIMOME WTC was studied for both with and without
the knowledge of eavesdropper’s channel, where the authors
proposed an AO-based algorithm. In [5], the SRM problem for
IRS-assisted MIMOME WTC with both continuous as well
as discrete phase shifts at the IRS was considered, where a
successive convex approximation (SCA) based AO algorithm
was used to find a suboptimal solution.

In this paper, we propose an efficient algorithm to find
the input convariance matrix and the IRS phase shifts to
maximize the achievable secrecy rate of the IRS-assisted
MIMOME WTC using the block successive maximization
(BSM) framework [7]. More specifically, a lower bound on
the achievable secrecy rate is considered when optimizing the
input convariance matrix and exact maximization is performed
for each individual phase shift. In particular, these optimization
steps are done using closed-form expressions. We compare
the convergence speed and average run time of the proposed
solution with an existing method to establish the superiority
of our proposed method. Extensive numerical experiments are
also carried out to demonstrate the effect of different system
parameters, such as the number of reflecting elements at the
IRS, the number of receive antennas at the Eavesdropper and
the power transmitted from the transmitter, on the achievable
secrecy rate of the considered IRS-assisted MIMOME WTC.

Notation: In this paper, we use bold uppercase and lower-
case letters to denote matrices and vectors, respectively. (·)†,
(·)T and (·)∗ represent the Hermitian transpose, ordinary trans-
pose and conjugate operators, respectively. We use CM×N to
denote the space of M × N complex matrices. By Yi,j we
represent the j-th element of i-th row of matrix Y; diag(y)
denotes the diagonal square matrix whose (main) diagonal
elements are taken from y. I and 0 specify identity and zero
matrices respectively, the size of which can be easily inferred
from the context. We denote the trace and determinant of the
matrix Y by tr(Y) and |Y|, respectively. Furthermore, we
represent the expected value of a random variable by E[·]
and the real part of a complex number by <{·}. For y ∈
RN , [y]+ =

[
max(y1, 0), max(y2, 0), · · · max(yN , 0)

]
,

where R denotes the set of real numbers. By A � (resp. �) B
we mean A−B is positive semidefinite (resp. definite). |x| and
∠x denote the modulus and the phase of a complex number
x.
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Figure 1. A block diagram of IRS-assisted MIMOME WTC system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system model and formulate
the problem of maximizing the achievable secrecy rate for the
system under consideration .

A. System Model

Let us consider an IRS-aided MIMOME WTC system
where Alice is the transmitter, Bob is the (legitimate) receiver,
and Eve is the eavesdropper. The numbers of antennas at
Alice, Bob and Eve are Nt, Nr, and Ne, respectively, and the
IRS is made-up of N low-cost passive reflecting elements.
The system model is shown in Fig. 1. The locations of
Alice, Bob and Eve in 3-dimensional Euclidean space are
(0, 0, lt), (D, 0, lr) and (DE , 0, le), respectively. The height
(measured from the X-Z plane) of the top-most antenna at
Alice, Bob and Eve is respectively given by hT , hR, and hE .
The distance between each antenna at Alice is denoted by ιa,
and that between each antenna at Bob and Eve are respectively
denoted by ιb and ιe. The distance of an IRS element to its
immediate neighboring one is denoted by ιi. The complex-
valued channel matrices for the Alice-IRS, IRS-Bob, IRS-Eve,
Alice-Bob and Alice-Eve links are denoted by HAI ∈ CN×Nt ,
HIB ∈ CNr×N , HIE ∈ CNe×N , HAB ∈ CNb×Nt , and
HAE ∈ CNe×Nt , respectively. It is assumed that all these
channel matrices are quasi-static and perfectly known at all of
the nodes.

The received signals at Bob and Eve are, respectively,
expressed as

yb =HABx + HIBZ(θ)HAIx + nb,

ye =HAEx + HIEZ(θ)HAIx + ne,
(1)

where x ∈ CNt×1 represents the transmitted signal from Alice;
nb ∼ CN (0, σ2

b I) and ne ∼ CN (0, σ2
eI) are the additive white

Gaussian noise at Bob and Eve, respectively. In (1), Z(θ) ,
diag(θ), where θ , [θ1, θ2, . . . , θN ]T ∈ CN×1, θi = ejφi ,
i ∈ I , {1, 2, . . . , N}, and φi ∈ [0, 2π) denotes the phase
shift induced by the i-th reflecting element at the IRS.

B. Problem Formulation

Let X , E
{
xx†

}
� 0 be the input covariance matrix. Then

for given X and θ, the following secrecy rate (in nat/s/Hz)

between Alice and Bob is achievable (c.f. [8])
Cs(θ,X) = [CB(θ,X)− CE(θ,X)]+, (2)

where CB(X) and CE(X) denote the achievable rate at Bob
and Eve, respectively, defined as

CB(θ,X) = ln
∣∣I + HB(θ)XH†B(θ)

∣∣ (3a)

CE(θ,X) = ln
∣∣I + HE(θ)XH†E(θ)

∣∣ (3b)
where HB(θ) , H̄AB + H̄IBZ(θ)HAI , HE(θ) , H̄AE +
H̄IEZ(θ)HAI , H̄AB , 1

σb
HAB , H̄IB , 1

σb
HIB , H̄AE ,

1
σe

HAE and H̄IE , 1
σe

HIE .
The problem of SRM under the sum power constraint (SPC)

reads
maximize
X∈X θ∈Θ

Cs(θ,X) (4)

where
X = {X : X � 0 | tr(X) ≤ P0} ,
Θ = {θ : |θi| = 1,∀i ∈ I} ,

(5)

and P0 is the maximum power budget at Alice. Note that
in (5), tr(X) ≤ P0 denotes the transmit power constraint and
|θi| = 1 denotes the unit-modulus constraint.

To appreciate the novelty of our proposed method presented
in the next section for solving (4), we discuss the drawbacks of
existing solutions known to us for solving the same problem.
As mentioned previously in the introduction section, an AO-
based algorithm was presented in [4] that alternately optimizes
X and θ while the other variable is fixed. More specifically,
a barrier method was developed to find X for a given θ, and
then for a given X, each θi was found using Dinkelbach’s
method. Similarly, an AO-like algorithm was proposed in [9]
but an SCA method was derived for finding X for a given
θ, and then each θi is optimized sequentially using a linear
search procedure. It can easily be noted that both the methods
mentioned above incur high complexity to produce a solution.
Motivated by this, in the next section, we propose an efficient
method based on the BSM to find a stationary solution to
problem (4).

III. CLOSED-FORM DESIGN BASED ON BLOCK
SUCCESSIVE MAXIMIZATION

A. Algorithm Description

The proposed method is based on the BSM method [7]
where X and each θi are viewed as individual blocks. We
note that the main principle of the BSM is that a single block
is updated in each iteration using a proper bound or exact
optimization. The BSM method is particularly efficient if the
optimization at each step is computationally cheap. To this end
we propose an iterative method as follows:
• We sequentially update each phase shift θi, while other

variables are fixed and exact optimization is considered.
We derive closed-form expressions for this step, rather
than using Dinkelbach’s method [4] or a line search [9].

• We update X using a lower bound that leads to a water-
filling-like solution. This step is different from the SCA-
based method in [9] where the lower bound is repeatedly
solved. In contrast we only maximize the lower bound



once in each iteration. Despite this, the proposed method
is provably convergent to a stationary point of (4).

The details of the proposed algorithm are given in the follow-
ing subsections.

1) Optimizing θi for given X and other phase shifts θj , j ∈
{I \ i}: The optimization of each θi, while remaining θj , j ∈
{I \ i} and X are held fixed, is formulated as

maximize
θi

C̄s(θi) (6a)

subject to |θi| = 1, (6b)
where

C̄s(θi) = ln
∣∣∣I + θiP

−1
i Qi + θ∗iP

−1
i Q†i

∣∣∣
− ln

∣∣∣I + θiR
−1
i Si + θ∗iR

−1
i S†i

∣∣∣, (7)

and detailed expressions for Pi, Qi, Ri and Si are given in
Appendix A. We now derive a closed-solution for (7) for the
non-trivial case where tr(P−1

i Qi) 6= 0 and tr(R−1
i Si) 6= 0,

and refer the interested readers to [4] for the trivial cases where
tr(P−1

i Qi) = 0 and/or tr(R−1
i Si) = 0.

Let P−1
i Qi = ŨibΣ̃ibŨ

†
ib be the eigenvalue decomposition

(EVD) of P−1
i Qi. Since Qi is a rank-1 matrix we can

write Σ̃ib = diag([γib, 0, . . . , 0]T) where γib is only non-zero
eigenvalue of P−1

i Qi. Similarly, let ŨieΣ̃ieŨ
†
ie = R−1

i Si be
the EVD of R−1

i Si where Σ̃ie = diag([γie, 0, . . . , 0]T) and
γie is only non-zero eigenvalue of R−1

i Si. Furthermore, let
Ai = Ũ†ibPiŨib, and āi denotes the first column of A−1

i ,
and ãT

i denotes the first row of Ai. Similarly, we define
Bi = Ũ†ieiRiŨie, and b̄i denotes the first column of B−1

i ,
and b̃T

i denotes the first row of Bi. We can further rewrite (7)
as (c.f. [10])

C̄s(θi) = ln

(
2<(γibθi) + δib
2<(γieθi) + δie

)
, (8)

where δib = 1 + |γib|2(1 − āi1ãi1), δie = 1 + |γie|2(1 −
b̄i1b̃i1), and āi1 and ãi1 denote the first element of āi and ãT

i ,
respectively. It is easy to see that using (8), problem (6) is
equivalent to

maximize
θi

2<(γibθi) + δib
2<(γieθi) + δie

(9a)

subject to |θi| = 1. (9b)
Let φib = ∠γib, φie = ∠γie and λib = 2|γib| and λie = 2|γie|.
Then (9) is equivalent to

maximize
φi

λib cos(φi − φib) + δib
λie cos(φi − φie) + δie

= f(φi) (10a)

subject to 0 ≤ φi < 2π. (10b)
The derivative of the objective function in (10) is given by

f
′
(φi) =

λibλie sin(φib − φie)− λi sin(φi − ψi)
(λie cos(φi − φie) + δie)

2 , (11)

where
λi ,

√
λ2
ibδ

2
ie + λ2

ieδ
2
ib − 2λibλieδibδie cos(φib − φie), (12)

ψi , arctan

{
−λibδie sin(φib) + λieδib sin(φie)

λibδie cos(φib)− λieδib cos(φie)

}
. (13)

We note that δiu ≥ 1 + λiu for u ∈ {b, e}, which holds due
to their definitions. Thus, the equation f

′
(φi) = 0 has two

possible solutions as follows:

φi1 = arcsin

{
λibλie
λi

sin(φib − φie)
}

+ ψi, (14)

φi2 = π − arcsin

{
λibλie
λi

sin(φib − φie)
}

+ ψi. (15)

Thus, the optimal solution to (6) is found as

θ?i = ejφ
?
i (16)

where1

φ?i = arg max{f(0), f(φi1), f(φi2)}. (17)

Algorithm 1: Block Successive Maximization Method
Input: X0 ∈ X , θ0 ∈ Θ
Output: Xk ∈ X , θk ∈ Θ

1 k ← 1;
2 repeat
3 for i ∈ I do
4 Compute θi according to (16) for fixed Xk−1

5 θi ← θ?i
6 end
7 Find Xk for fixed θk according to (19)
8 k ← k + 1
9 until convergence;

2) Optimizing X for given θ: The next step is to optimize
X for a given θ. Instead of maximizing the secrecy rate
exactly, we consider a lower bound in this step. Let Xk−1 be
the value of X at iteration k − 1. Then, due to the concavity
of the term ln | · | it follows that
C(θk,X) ≤ Ĉs(θk,X) = ln

∣∣I + HB(θk)XH†B(θk)
∣∣

− ln
∣∣I + HE(θk)Xk−1H

†
E(θk)

∣∣− tr
((

Φk−1

)
(X−Xk−1)

)
,

(18)

where Φk−1 = H†E(θ)
(
I + HE(θ)Xk−1H

†
E(θ)

)−1
HE(θ).

Note that (18) is obtained by using a first-order approximation
of the term ln

∣∣∣I + HE(θ)XH†E(θ)
∣∣∣ around Xk−1. Next, we

update Xk as Xk = argmax{Ĉs(θk,X) | X ∈ X} which is
equivalent to

maximize
X�0

ln
∣∣I + HB(θ)XH†B(θ)

∣∣− tr
(
Φk−1X

)
(19a)

subject to tr(X) ≤ P0. (19b)
The aforementioned problem (19) admits a water-filling so-
lution [11]. To lighten the notations we write HB instead of
HB(θ). Let µ ≥ 0 be the Lagrangian multiplier of (19b). Then
the partial Lagrangian multiplier of (19) is
L(X, µ) = ln |I + HBXH†B | − tr

(
Φk−1X

)
− µ

(
tr(X)− P0

)
= ln |I + HBXH†B | − tr

(
Φ̄k−1X

)
+ µP0. (20)

where Φ̄k−1 = Φk−1 + µI. The dual function is given by
g(µ) = max

X�0
ln |I + HBXH†B | − tr

(
Φ̄k−1X

)
+ µP0. (21)

1We can also check the second derivative of these three critical points to
find the optimal solution but comparing their objective values is much simpler.



To evaluate the dual function for a given µ, let X̄ ,
Φ̄

1/2
k−1XΦ̄

1/2
k−1. Then the above maximization is equivalent to

max
X̄�0

L(X̄, µ) = ln
∣∣I+HBΦ̄

−1/2
k−1 X̄Φ̄

−1/2
n−1 H†B

∣∣−tr(X̄). (22)

Denote the eigenvalue decomposition (EVD) of
Φ̄
−1/2
k−1 H†BHBΦ̄

−1/2
n−1 by UΣU† where U ∈ CNt×Nt is

unitary, Σ = diag(σ1, σ2, . . . , σr, 0, . . . , 0), and r is the rank
of Φ̄

−1/2
n−1 HB and let Ẋ = U†X̄U. Then (22) is further

equivalent to
max
Ẋ�0

L(Ẋ, µ) = ln
∣∣I + ΣẊ

∣∣− tr(Ẋ). (23)

It is now easy to see that we can assume Ẋ to be diagonal (due
to Hadamard’s inequality), and the optimal solution to (23)
is given by Ẋ = diag

(
[1− 1

σ1
]+, . . . , [1− 1

σr
]+, 0, . . . , 0

)
. In

summary, the optimal solution to (21) is

X = Φ̄
−1/2
k−1 UẊU†Φ̄

−1/2
k−1 . (24)

The next step is to solve the dual problem min {g(µ) | µ ≥ 0
which can be done efficiently using a bisection search. We
refer the interested readers to [11] for further details.

The overall algorithm to solve (4) is summarized in Algo-
rithm 1.

B. Convergence Analysis

We now show that Algorithm 1 indeed converges to a
stationary point of (4). In particular the following lemma is in
order

Lemma 1. The objective sequence generated by Algorithm 1
is monotonically increasing, i.e.,

Cs(θk,Xk) ≥ Cs(θk,Xk−1) ≥ Cs(θk−1,Xk−1). (25)
Also, the iterate sequence (θk,Xk) converges to a limit point
which is a stationary solution of (4).

Proof: See Appendix B.

C. Complexity Analysis

In this subsection we provide the complexity analysis of
Algorithm 1. In particular we adopt the big-O notation and
present the number of complex multiplications for each it-
eration of Algorithm 1. To compute Pi we use (27a) and
note that P only needs to be computed once for all Pi. The
complexity to obtain P is O(NN2

r ) and to compute each
Pi we require O(N2

t Nr) additional complex multiplications.
In the same way, the complexity to compute each Ri is
O(N2

t Ne). We skip the complexity of obtaining Qi and Si
since it is much less than that of obtaining Pi and Ri. It
is easy to see that the complexity of computing P−1

i Qi and
its EVD is O(N3

r ). Similarly, the complexity of computing
R−1
i Si and its EVD is O(N3

e ). The complexity of computing
āi1, ãi1, b̄i1, and b̃i1 , the closed-form expressions for each
optimal θ?i is much less than that of computing other terms,
and thus is omitted. When θ is fixed, it can be shown that the
complexity for solving (19a) is O(N3

e +N2
t Ne+NtN

2
e +N3

t ).
In summary, the per-iteration complexity of Algorithm 1 is
O(N(N2

r +N2
t Nr +N2

t Ne +N3
r +N3

e ) +NtN
2
e +N3

t ).

IV. NUMERICAL ANALYSIS

In this section, we describe the channel modeling, and
present numerical results and discussions.

A. Channel Modeling

We consider the scenario where the small-scale fading for all
of the wireless links are assumed to follow Rician distribution.
Therefore, Alice-Bob and Alice-Eve links are respectively

modeled as [12], HAB =

√
ζ−1
AB

κ+1

(√
κHAB,LOS + HAB,NLOS

)
and HAE =

√
ζ−1
AE

κ+1

(√
κHAE,LOS + HAE,NLOS

)
,

where HAB,LOS,HAB,NLOS ∈ CNr×Nt , and
HAE,LOS,HAE,NLOS ∈ CNe×Nt . Here HAB,LOS accounts
for the line-of-sight (LOS) components between Alice to
Bob, and the elements in HAB,LOS are defined as e−j2πlr,t/υ

where lr,t is the distance between the t-th antenna of Alice
and the r-th antenna of Bob, and υ denotes wavelength of
the transmitted signal. Moreover, κ = 1 denotes the Rician
K factor, and HAB,NLOS ∼ CN (0, I) accounts for the
non-line-of-sight (NLOS) components between Alice and
Bob. Similarly, HAE,LOS accounts for the LOS components
between Alice and Eve, and the elements in HAE,LOS are
defined as e−j2πle,t/υ where le,t is the distance between
the t-th antenna of Alice and the e-th antenna of Eve, and
HAE,NLOS ∼ CN (0, I) accounts for the NLOS components
between Alice and Eve. In this paper, we consider υ = 15 cm,
which corresponds to the carrier frequency of 2 GHz. We note
that lr,t and le,t are calculated according to the system model
in Fig. 1. Moreover, ζAB and ζAE denote the free-space
path loss (FSPL) coefficients, defined as ζAB , (4π/υ)2lεAB
and ζAE , (4π/υ)2lεAE , respectively [13]. We define
lAB ,

√
D2 + (lt − lr)2 as the distance between Alice

and Bob (i.e., the distance between (0, 0, lt) and (D, 0, lr)),
lAE , D2

E + (lt − le)
2 as the distance between Alice and

Eve (i.e., the distance between (0, 0, lt) and (DE , 0, le)), and
ε = 3 is the path loss exponent.

In a similar fashion, the channel between Alice and
IRS, and that between IRS and Bob are modeled
as HAI =

√
1

κ+1 (
√
κHAI,LOS + HAI,NLOS)

and HIB =

√
ζ−1
IB

κ+1 (
√
κHIB,LOS + HIB,NLOS),

respectively, where HAI,LOS,HAI,NLOS ∈ CN×Nt , and
HIB,LOS,HIB,NLOS ∈ CNr×N . The elements in HAI,LOS

are defined as e−j2πli,t/υ with li,t being the distance between
the t-th transmit antenna of Alice and the i-th reflecting
plate of IRS, and HAINLOS

∼ CN (0, I). Analogously, the
elements in HIB,LOS are defined as e−j2πlr,i/υ with lr,i
denoting the distance between the r-th receiver antenna
of Bob and the i-th reflecting element of the IRS and
HIB,NLOS ∼ CN (0, I). The FSPL coefficient ζIB is
modeled as (c.f. [14]) ζIB =

256π2υ−4D2
tD

2
r

((lt/Dt)+(lr/Dr))2
, where

Dt ,
√

(D/2)2 + l2t and Dr ,
√

(D/2)2 + l2r . Following a
similar line of arguments, the channel between IRS and Eve is

modeled as HIE =

√
ζ−1
IE

κ+1 (
√
κHIE,LOS + HIE,NLOS),where

HIE,LOS,HIE,NLOS ∈ CNe×N . The elements in HIE,LOS
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are defined as e−j2πle,i/υ with le,i being the distance between
the e-th eavesdrop antenna and i-th reflecting plate of IRS, and
HIE,NLOS ∼ CN (0, I). Moreove, the FSPL coefficient for
IRS-Eve links is expressed as ζIE =

256π2υ−4D2
tD

2
e(

(lt/Dt)+
(
le/
√
DE+l2e

))2 ,

where De ,
√

(DE/2)2 + l2e .

B. Numerical Results

In this subsection, we provide numerical results to evaluate
the performance of Algorithm 1, as well as to show the effect
of different parameters of interest on the achieved secrecy rate
of the IRS-assisted MIMOME system under consideration.
The numerical experiments are performed using MATLAB
(R2109a) on a 64-bit Windows machine with 16 GB RAM
and an Intel Core i7 3.20 GHz processor. Moreover, for all the
figures, we assume σ2

n = −95 dBW, hT = 3 m, hR = 2.5 m,
hE = 2 m, hI = 5 m, lt = 20 m, lr = 15 m, le = 35 m,
ιa = 0.05 m, ιb = 0.25 m, ιe = 0.03 m, li = 0.03 m,
D = 50 m and De = 40 m. We also assumed that all of the
reflecting element at the IRS to be a square of size 0.01 m
× 0.01 m, and the gap between each reflecting element to be
0.01 m.

In Fig. 2, we show the convergence performance of Algo-
rithm 1 for one set of randomly generated channels. We also
plot the convergence of [4, Algorithm 3] for comparison. It can
be noted from the figure that our BSM-based proposed method

requires a comparable number of iterations to converge, com-
pared to the algorithm used in [4]. In particular, [4, Algorithm
3] can achieve higher secrecy rates for some initial iterations
which is explained by the fact that the optimization of X is
done exactly, while Algorithm 1 only optimizes a lower bound
of the secrecy rate. However, both methods achieves the same
secrecy rate at the convergence.

The main benefit of Algorithm 1 is closed-form designs in
each iteration, which eventually lead to much lower run-time
to compute a solution. This point is clearly demonstrated in
Fig. 3 where we compare the average run time of Algorithm 1
and [4, Algorithm 3]. It is clearly evident from the figure that
our closed-form-based proposed algorithm to find a stationary
solution to the secrecy maximization problem under consider-
ation requires significantly less time compared to the existing
benchmark solution, which establishes the superiority of our
proposed solution.

In Fig. 4, we show the effect of increasing the number of
reflecting elements, i.e., N , on the average secrecy rate of the
system for different number of antennas at Eve, i.e., Ne. The
average secrecy rates are obtained for 103 channel realizations.
The benefit of using the IRS is clearly evident from the figure,
as the system with IRS achieves a notably higher average
secrecy rate compared to the ones without any IRS. It can
also be observed from the figure that for a fixed value of N ,
the secrecy rate of the system reduces when the number of
antennas at Eve increases since the secure degree-of-freedom
for Bob decreases accordingly. However, for a fixed value of
Ne, an increase in the value of N results in a significant
increase in the secrecy rate of the system. This occurs because
when the number of reflecting plates at IRS is large, the IRS
can perform highly-focused passive beamforming towards Bob
to enhance the secrecy performance of the system.

In Fig. 5, we compare the average achievable secrecy rate of
the IRS-assisted MIMOME WTC system with that of the ones
without IRS, for different values of the transmit power from
Alice. According to [1], as P0 →∞, the slope of the average
secrecy rate approaches zero if rank

(
HE(θ)

)
= Nt, and thus

1We thank the authors of [4] for sharing the source code for their barrier
method



the average secrecy rate is expected to saturate. The purpose
of this numerical experiment is to understand how the IRS can
improve this saturation point. We remark that rank

(
HE(θ)

)
=

Nt for both the cases considered in Fig. 5, i.e., Ne = 8 and
Ne = 12. It can be observed clearly from Fig. 5 that beyond
a certain value of P0, the slope of the average secrecy rate
starts decreasing, which will eventually lead to a saturation in
the achieved secrecy rate for large enough values of P0. The
important observation is that the saturated value for an IRS-
assisted system is significantly larger that that of the system
without IRS, which clearly establishes the superiority of the
IRS-assisted systems even in the large transmit power regimes.

V. CONCLUSION

In this paper, we have proposed an efficient numerical
method to maximize the achievable secrecy rate for an IRS-
assisted Gaussian MIMOME WTC system. We have used
a block successive maximization method to jointly optimize
the transmit covariance matrix and the IRS phase shifts.
The obtained results have confirmed a faster convergence
and lower complexity of the proposed method compared to
an existing solution which uses a combination of barrier
method and bisection search. Furthermore, our results have
also demonstrated the superiority of IRS-assisted systems over
those without IRS, including a significantly higher achievable
secrecy rate of the former in the high transmit power regime.

APPENDIX A
EXPRESSIONS FOR Pi, Qi Ri, AND Si IN (7)

To obtain the expressions for Pi, Qi, Ri, and Si in (7)
we simply group the involved matrices properly. Specifically,
let ĤAB = H̄ABX1/2, ĤAE = H̄AEX1/2, and ĤAI =
HAIX

1/2. Then, following [10], we can write Pi, Qi, Ri
and Si, respectively, as

Pi = I +
(
ĤAB +

∑
j∈{I\i}

θjh̄jĥ
†
j

)
×
(
ĤAB +

∑
j∈{I\i}

θjh̄jĥ
†
j

)†
+ h̄iĥ

†
i ĥih̄

†
i , (26a)

Qi = h̄iĥ
†
i

(
Ĥ†AB +

∑
j∈{I\i}

θ∗j ĥjh̄
†
j

)
, (26b)

Ri = I +
(
ĤAE +

∑
j∈{I\i}

θjh̃jĥ
†
j

)
×
(
ĤAE +

∑
j∈{I\i}

θjh̃jĥ
†
j

)†
+ h̃iĥ

†
i ĥih̃

†
i , (26c)

Si = h̃iĥ
†
i

(
Ĥ†AE +

∑
j∈{I\i}

θ∗j ĥjh̃
†
j

)
, (26d)

where ĥi, h̄i and h̃i are the i-th column of Ĥ†AI , HIB and HIE ,
respectively. Note that we can equivalently rewrite Pi and Qi as

Pi = I +
(
P− θih̄iĥ

†
i

)(
P† − θ∗i ĥih̄

†
i

)
+ h̄iĥ

†
i ĥih̄

†
i (27a)

Qi = h̄iĥ
†
i

(
P† − θ∗i ĥih̄

†
i

)
, (27b)

where P = ĤAB +
∑

j∈{I} θjh̄jĥ
†
j .

APPENDIX B
PROOF OF LEMMA 1

First, from Line 7 of Algorithm 1 we have

Cs(θk,Xk) ≥ Ĉs(θk,Xk)

≥ Ĉs(θk,Xk−1) = Cs(θk,Xk−1). (28)

Note that the first inequality is due to the fact that Ĉs(θk,Xk) is
a lower bound on the secrecy rate, the second inequality is because
Xk = argmaxX∈X Ĉs(θk,X) and the optimal objective is no less
than the objective at a feasible point, and the equality is obvious from
(18). Let θk , [θk,1, θk,2, . . . , θk,N ]T, then Line 4 of Algorithm 1
implies the following sequence of inequalities.

Cs

(
θk,Xk−1

)
= Cs

(
[θk,1, θk,2, . . . , θk,N ]T,Xk−1

)
≥ Cs

(
[θk,1, θk,2, . . . , θk,N−1, θk−1,N ],Xk−1

)
≥ Cs

(
[θk,1, θk,2, . . . , θk−1,N−1, θk−1,N ]T,Xk−1

)
≥ Cs

(
[θk−1,1, θk−1,2, . . . , θk−1,N−1, θk−1,N ],Xk−1

)
= Cs

(
θk−1,Xk−1

)
. (29)

Therefore, combining (28) and (29), we achieve (25).
The second part of Lemma 1 can be proved as follows. Note

the the objective is bounded from above due to the power con-
straint. Due to (25), the objective sequence is convergent. i.e.
limk→∞ Cs(θk,Xk) = Cs(θ∗,X∗). Since the feasible set is com-
pact, there exists a subsequence (θkj ,Xkj ) converging to (θ∗,X∗).
The proof that (θ∗,X∗) is a stationary point of (4) follows the
arguments in [7], which are skipped here the the sake of brevity.
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