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Abstract—The vulnerability of cyber-physical systems
to cyber attack is well known, and the requirement to
build cyber resilience into these systems has been firmly
established. The key challenge this paper addresses is
that maturing this discipline requires the development of
techniques, tools, and processes for objectively, rigorously,
and quantitatively measuring the attributes of cyber re-
silience. Researchers and program managers need to be
able to determine if the implementation of a resilience
solution actually increases the resilience of the system.
In previous work, a table top exercise was conducted
using a notional heavy vehicle on a fictitious military
mission while under a cyber attack. While this exercise
provided some useful data, more and higher fidelity data
is required to refine the measurement methodology. This
paper details the efforts made to construct a cost-effective
experimentation infrastructure to provide such data. It also
presents a case study using some of the data generated by
the infrastructure.

I. INTRODUCTION

Researchers have demonstrated the vulnerabilities of
modern vehicles to cyber attacks [1, 2, 3, 4, 5, 6].
Many realize that perfect security is impractical, and that
resilience is necessary [7, 8, 9, 10, 11]. In order for the
field of cyber resilience to mature, there must be "tech-
niques, tools, and processes for objectively measuring
the attributes of phenomena occurring in the systems of
that discipline” [12].

This work was partially funded by Cyber Technologies, Deputy CTO
for Critical Technologies/Applied Technology, Office of the Under
Secretary of Defense Research and Engineering. Contributions from
Dr. Vandekerckhove were accomplished under Cooperative Agreement
Number W911NF-21-2-0284 with ARL. Mr. Ellis completed this work
while a contractor with ICF International, and has since transitioned
to a civilian role within ARL.

Here, we ask if we can construct an inexpensive ex-
perimental environment that produces data of sufficient
quality to demonstrate a quantitative measurement of
cyber resilience. The development of a cyber resilience
measurement methodology does not require high fidelity
experimental environments at this time; it is enough to
reasonably approximate the performance of a generic
military ground vehicle (MGV).

This paper describes an inexpensive experimental en-
vironment that may be used to test various malware
and bonware (the totality of physical and cyber features
that allow a system to resist and recover from cyber
compromise) on the Controller Area Network (CAN) bus
of a modern vehicle. A case study is presented, and the
data from that case study is used to measure the cyber
resilience of the simulated vehicle.

In Section II, we begin by reviewing the categories of
methods used in researching vehicle cybersecurity. The
various components of the experimental infrastructure
are described in Section III. An illustrative case study
is presented in Section IV. In Section VI, we provide
discussion and concluding remarks.

II. PRIOR WORK

Much of the early work on the cybersecurity of auto-
mobiles was done using actual vehicles [1, 2, 13, 14, 15].
This provides the highest fidelity; however, it is very ex-
pensive to conduct research in this fashion. The number
of runs required to generate the data necessary to validate
a quantitative measurement of cyber resilience would be
prohibitively expensive.

Some researchers conducted research by connecting
multiple electronic control units (ECUs) together on a
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CAN bus independent of a vehicle [16, 3, 17]. These do
indeed provided an inexpensive method to test malware
and bonware in a vehicular network; however, they
cannot capture impacts on the vehicle’s key performance
parameters (KPPs).

Shikata et al. [18] developed a Digital Twin: a system
to reproduce real-world events in a digital environment.
A virtualized vehicle with realistic virtual performance
would provide high fidelity at low cost in terms of time
to test and measure cyber resilience. However, construct-
ing a virtual vehicle would be prohibitively expensive
unless it was constructed by the vehicle manufacturer to
facilitate design.

III. COMPONENT DESCRIPTIONS

Multiple technologies have been integrated together
to facilitate the generation of vehicle data. In our ex-
perimentation setup, these include the Toyota Portable
Automotive Security Testbed with Adaptability (PASTA)
by Toyota Motor Corporation, the Unity game develop-
ment platform, the Active Defense Framework (ADF)
developed in-house here at the DEVCOM Army Re-
search Laboratory, and the OpenTAP test automation
framework by Keysight Technologies. In general, Unity
generates messages via the Message Queue Telemetry
Transport (MQTT) publish-subscribe network protocol.
ADF ingests these messages and translates them to CAN
format, which are then injected onto the appropriate
CAN bus within PASTA. Data flowing in the opposite
direction is handled in a similar manner, but in reverse.
Figure 1 illustrates the flow of data between components.

Figure 1. A high-level overview of the data flow between components.
Portions are derived from [19].

A. The PASTA Testbed

PASTA, created by Toyota, is a vehicle security
testbed designed to allow researchers the ability to
develop and evaluate new security technology and ap-
proaches on realistic “white-box” ECUs [19]. There are
three vehicle ECUs within the testbed, each encom-
passing a family of functionality and sitting on their
own CAN bus: powertrain, body, and chassis. These
three ECUs are responsible for their respective group of

messages, each generating and responding to traffic on
their bus. A fourth ECU, the central gateway (CGW),
acts as a junction between the three previously men-
tioned buses. Based on the message and source bus, the
CGW ferries messages to their appropriate destination
bus. The firmware for all ECUs is open-source, and is
accompanied by an integrated development environment
(IDE) from Toyota to promote ease of customization.

PASTA has integrated simulation boards which cal-
culate how the current CAN messages on the buses
would physically influence a commercial sedan. These
boards then update the vehicle ECUs with appropriate
values. For example, when acceleration pedal operation
is inputted, the chassis ECU sends a message with
the indicated value. The simulation boards observe this
message and calculate the physics that would result from
the input. The results are used to update the values
reported by the powertrain ECU, which it outputs onto
its bus. In this instance, the powertrain ECU would send
messages indicating the new engine throttle position,
revolutions per minute (RPM), and vehicle speed. The
simulation boards are connected directly to the vehicle
ECUs via a serial port on each ECU board, so the physics
data is not mixed with messages on the CAN bus.

An issue with the simulation boards is that they are
essentially “black-boxes” and closed-source. We cannot
alter, for instance, the parameters involving the engine
(e.g., torque and horsepower), the weight of the vehicle,
or the terrain that the boards are assuming is being
traversed. To counteract this issue, we integrated a sim-
ulation engine that would allow for user-defined vehicle
details as well as a custom terrain. In this configuration,
PASTA becomes hardware-in-the-loop for the simulation
engine. Attacks or defenses that affect the ECUs present
in PASTA will also affect the vehicle within simulation.
This is essential to observe realistic threats and defenses
and their effects on vehicle performance.

B. Unity

Unity is a widely used multi-platform game develop-
ment platform implemented in C# [20]. It includes out-
of-the-box tools, assets, and an IDE to aid developers
in creating 3D designs and models. In particular, Unity
provides built-in assets and classes regarding vehicle
physics, which we leverage to model interactions be-
tween our simulated vehicle and custom terrain.

1) Simulated Light Military Ground Vehicle: We
implemented a light MGV within Unity, inspired by
the Joint Light Tactical Vehicle (JLTV), designed to
interface with data inputs from the white-box ECUs
within PASTA. In general, the vehicle produces inputs in
response to the simulated terrain. These inputs are sent to
the corresponding ECUs within PASTA as if they were
generated by PASTA itself. We then gather responses to



these inputs from the ECUs and send them back to the
simulated vehicle, which it uses to calculate parameters
like torque and fuel consumption. For example, assume
that the vehicle reports that the accelerator is set to
50%. This message is injected into PASTA as if the
chassis ECU had generated it. The powertrain ECU
responds to the message with the corresponding amount
of engine throttle. A message with the engine throttle is
sent back to Unity, which is then applied to engine power
calculations. With this flow, any attacks present on the
ECUs within PASTA will affect the simulated vehicle.

An automated driver is responsible for generating
steering, acceleration, and braking inputs as the vehicle
traverses the simulated terrain. Steering is guided by
the use of a waypoint system. Both acceleration and
braking inputs are calculated via a proportional-integral-
derivative (PID) controller. The controller reliably re-
sponds to sudden changes in the terrain or vehicle per-
formance, and maintains the target vehicle speed while
preventing speed oscillation.

Engine performance is calculated through the use of
torque, horsepower, and brake-specific fuel consumption
(BSFC) curves. Engine RPM is derived using the vehicle
speed, wheel circumference, and effective gear ratio.
Using this RPM value, the curves are evaluated to
discern the corresponding torque, horsepower, and BSFC
value. Torque is multiplied by the throttle and the current
effective gear ratio to obtain the total amount of torque
that can be applied to the wheels. Since our vehicle is
all-wheel drive (AWD), each wheel receives the total
amount of torque divided by the number of wheels on
the vehicle, which is six in this case. Horsepower and
the BSFC value are used in conjunction to calculate
the amount of fuel that has been used. Based upon the
torque curve as a whole, gear shift points were calculated
manually. The resulting shift points, being optimal in
terms of torque output, confer an aggressive acceleration
profile for the vehicle.

The vehicle is capable of providing sensor information
that is either not present in PASTA or needs its func-
tionality altered for our purposes. Currently, this applies
to the engine coolant temperature. Engine temperature
is present in PASTA, but is aligned to the temperature
characteristics of a commercial sedan. Within Unity,
we implemented a basic temperature model that can be
controlled by an external fan controller ECU described
in a later section. The fan controller monitors the coolant
temperature reported by the vehicle and dictates the
operation of a simulated fan on the vehicle. The fan itself
takes around 50 horsepower to operate, which results in
an approximate 25% drop in the available torque that
can be applied to the wheels.

2) Terrain: The simulated vehicle within Unity tra-
verses a custom terrain map that is roughly 81.8 km by

100 km with altitudes up to 910 m. We crafted a course
approximately 151 km in length across the map that
encompasses multiple terrain types: flat main road, float
off-road, hilly, prolonged incline, and prolonged decline.
We placed trigger points on the map that set the target
speed of the vehicle depending on the terrain type. If
on a flat main road, the target speed is 60 km per hour.
Otherwise, the target speed is 40 km per hour.

C. Active Defense Framework

ADF is a government-developed framework used to
rapidly prototype network-based active cyber-defense
techniques. ADF currently supports Internet Protocol
(IP) networks and vehicle control networks, namely the
CAN bus and Society of Automotive Engineers (SAE)
J1708 bus. The framework itself is written in Python and
C programming languages, while active cyber-defense
plugins can be written in Python. The framework acts
as an intermediary for network traffic, as depicted in
Figure 1, allowing it to control network message flow,
as well as inspect, modify, drop, or generate network
messages. Essentially, the plugin developer has free
reign to prototype any network-based cyber-defense or
detection technique they can imagine.

ADF is used here to provide a system/software-in-the-
loop capability, and to provide simulated components.
It allows communication between PASTA and Unity
by translating CAN messages to and from MQTT, a
standard publish-subscribe IP-based messaging protocol.
ADF plugins are also used to provide simulated ECU
hardware, and to implement attack and defense methods
on the CAN bus via ADF’s ability to monitor, modify,
inject, or drop CAN traffic.

1) Unity-to-PASTA Message Translation: ADF runs
on a standalone laptop and is connected to PASTA
via two universal serial bus (USB) CAN over Serial
(SLCAN) interface modules. One module is connected
to the powertrain CAN bus, and the other module is
connected to the chassis CAN bus. The PASTA CGW is
disconnected from the CAN buses for our experiments,
and the body CAN bus and body ECU are not used.
ADF is configured to serve as a CGW between Unity
and PASTA. Since Unity does not natively communicate
with CAN interfaces, ADF translates CAN messages
in real-time to MQTT messages and back. Unlike the
PASTA CGW, ADF does not relay messages between
the powertrain and chassis CAN buses themselves. ADF
relays powertrain CAN messages between Unity and
PASTA, and sends vehicle parameters from Unity to the
chassis CAN bus for display on the PASTA instrument
cluster. All communication channels are two-way.

2) Virtual ECUs within ADF: The PASTA platform
does not simulate a controllable cooling fan or provide
a fan controller ECU. Therefore, we simulate a fan



controller ECU using an ADF plugin. The fan controller
engages the engine cooling fan on the simulated vehicle
when the engine coolant temperature reaches a defined
upper limit, and disengages the fan when temperature
drops below a lower limit. For the purposes of our
experiments, the fan controller ECU plugin can simulate
an attack on its own firmware, stop the simulated attack,
or reset/“re-flash” itself (i.e., replace the ECU firmware).
During a reset, the fan controller is offline for 20 s.

We can create other simulated ECUs using ADF. For
instance, a Central Tire Inflation System (CTIS) module
is not implemented within PASTA. This functionality
could be captured and controlled by a plugin to extend
the attack surface of the simulated vehicle.

3) Attack Possibilities via ADF: The simplest attack
on a vehicle bus is to inject messages. Messages are
broadcast on a CAN bus, so one injected at any point
on the bus will reach all ECUs on the bus. While in-
jection attacks cannot block or modify normal CAN bus
traffic, they can impact vehicle performance if we inject
messages to cause constant undesired vehicle behavior.

If an attacker can physically sever the CAN bus wiring
at a strategic point and place additional hardware there,
it is possible to block or modify the normal bus traffic.
Attacks that block or modify messages can prevent ECUs
from controlling the vehicle or falsify vehicle data.

As a man-in-the-middle between PASTA and Unity,
ADF can execute any of these bus-level attack types.

Attacks on ECU firmware, by embedding malware, are
also feasible. Malware on the fan controller is simulated
by sending a trigger event to the ADF plugin.

4) Defensive Capabilities via ADF: Defending
against message injection, blocking, and modification
at the bus-level requires detecting and filtering injected
messages before they reach the ECU. The CAN bus can
be split at potential access points and hardware placed
in-line, hardware can be placed between the CAN bus
and critical ECUs, or defenses can be integrated into
the ECUs themselves. Examples of these defenses im-
plemented previously using ADF include cryptographic
watermarking and modeling observable vehicle states to
compare current parameters to the model’s prediction.

Attacks on ECUs themselves must be approached
differently. If an ECU is compromised, measures need
be taken to restore proper ECU function. Many ECUs
can be re-flashed while the vehicle is operational. The
ECU may or may not be functional for some duration
while being reset or re-flashed, and the impact this will
have to vehicle performance depends on the function
of the ECU. For the ECUs simulated by ADF plugins,
the behavior is to make the ECU unresponsive for a set
duration, after which normal ECU operation is restored.

D. OpenTAP

OpenTAP is an open-source test automation frame-
work developed by Keysight Technologies [21]. It pro-
vides a test sequencer to promote test repeatability,
a customizable plugin facility capable of integrating
plugin classes implemented in C# or Python, and result
listeners responsible for capturing test data for further
analysis. OpenTAP is used to automate the execution of
experiments and provide a GUI for testing practitioners
to configure experiment steps.

E. Reportable Data

Data can be captured from two different yet related
perspectives: the simulated vehicle or the PASTA CAN
buses. Both views have their respective formats: a CSV
containing multiple columns of data delineated by times-
tamp from the vehicle, or a CAN-formatted capture of
traffic from the PASTA buses.

Within our infrastructure, there are multiple param-
eters that can be configured to generate varied data
captures. Currently, these include experiment duration,
attack start time, terrain type(s), starting location, ending
location, target vehicle speed, and attack-defense pairing.

IV. ILLUSTRATIVE CASE STUDY

A. Scenario Description

We created and ran an experiment scenario wherein
malware has infected the fan controller ECU present
on the vehicle. The malware, once active, removes the
ability to disengage the engine coolant fan from the fan
controller ECU. This causes the vehicle to enter a state of
prolonged degraded performance. Note that we did not
employ actual malware in this experiment. We simulated
the effects of such a malware and applied them to the
fan controller ECU implemented within ADF.

The experiment runs for 800 s. Simulated bonware
present on the vehicle monitors the engine coolant tem-
perature for any abnormalities. From this sensor reading,
it will notice the effect of the malware and attempt to
recover after a period observation to ensure the behavior
is not a short-lived anomaly. Recovery from this attack
consists of re-flashing the firmware on the fan controller
ECU.

B. Quantitative Measures of Cyber Resilience

In [22] we develop a model for the behavior of a
system’s functionality over the course of an incident
where it is being attacked by malware and defended
by bonware. First, we assume that there is an observ-
able, sufficiently smooth function representing mission
accomplishment, and we define functionality to be its
time derivative. Thus,

F (t) =
dA
dt
, A(t) =

∫ t

t0

F (τ) dτ.
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Figure 2. Top row: Fuel efficiency curves under baseline (cyan) and attack (red) scenarios, with the effect of malware shaded orange. Bottom
row: Observed (blue) and inferred (black) functionality curves for the time series model. A change in the timing of the attack (t = 283 vs,
t = 619) results in a simple translation of the functionality curve.

The normal functionality, when the system performs
normally and does not suffer a cyber attack, may, in
general, vary with time. For simplicity, throughout the
paper, we assume the normal functionality to be constant
in time, F0(t) = FN.

To be able to compare measures of cyber resilience for
multiple missions, we normalize the measure by dividing
by the total mission time.

R =
1

T − t0

∫ T

t0

F (τ) dτ =
A(T )

T − t0
.

Often there are multiple objectives to a mission. Given
a vector of resiliences, R = (R1, R2, . . . , Rn), we
define the overall cyber resilence to be the root-mean-
square resilience of our mission.

R = ||R||2 =
1

T − t0

 n∑
j=1

(∫ T

t0

Fj(τ) dτ

)2
1/2

.

Because each mission accomplishment may have a dif-
ferent relative importance, we may account for this by
weighting the normal functionalities FNj . To enforce
an overall mission resilience in the range [0, 1], we
renormalize to obtain normalized resilience R.

R = R
/√√√√ n∑

j=1

FN
2
j .

V. CASE STUDY ANALYSIS

Figure 2 (top) shows the observed fuel efficiency
plotted over the mission duration. The light blue line
represents the observed fuel efficiency under the baseline
scenario during which no attacks took place. The red
line represents the fuel efficiency under two separate
attack scenarios, with attacks occurring at 283 s and
619 s, respectively. The effects of the attacks can be

seen starting around 307 s and 669 s, when the blue
and red lines diverge. The loss in fuel efficiency, shaded
orange, is the net effect of the attack on fuel efficiency.
The magnitude of the effect, calculated as the decrease
in area under the curve (AUC) over the interval where
the attack curves deviate from the baselines, was 10.76%
in the first scenario and 11.42% in the second.

The experimental data were then analyzed using the
novel mathematical framework detailed in a companion
paper [22]. Briefly, the framework is used to express the
functionality of a vehicle over mission time in terms of
a parameterized change process. The key parameters are
the magnitudes of the impact M0 of malware and the
impact B0 of bonware (the totality of physical and cyber
features that allow a system to resist and recover from
cyber compromise). Since the effect of malware is not
immediate, the effective onset of malware is modeled as
an additional free parameter tm.

The process model is governed by the differential
equation dF

dt = (FN − F (t))B(t) − F (t)M(t), where
M(t) =M0 Πtm,t?(t) and Πα,β = u(t−α)− u(t− β)
is the boxcar function, the difference of two unit step
functions (resulting in a step from zero to one at time α
and from one to zero at time β). Bonware impact,
B(t) = B0u(t − t?) activates at the switching time.
Normative functionality, FN, is set to 1 in this example.

The process is applied to the functionality F (t) of
the vehicle over mission time. Functionality at time t is
defined as the ratio of a vehicular performance metric
(here, fuel efficiency) at time t in the attack scenario
divided by the same metric at time t in either the baseline
scenario or the attack scenario, whichever is lower. Note
that due to the high variability of fuel efficiency over
short time intervals, the time series was first smoothed
with a 72 s moving average window before taking the



ratio (Figure 2, top).
The parameters of the model can be estimated from

data using standard model fitting tools. Our implementa-
tion relied on the estimation of a hidden Markov model
as described in [22]. For the current data, we estimated
M0 = 0.008, B0 = 0.048, tm = 307 s, and t? = 408 s
for the first scenario and M0 = 0.008, B0 = 0.046,
tm = 669 s, and t? = 774 s for the second. These
model-based results allow us to quantify the relative
impact of malware and bonware among different mission
scenarios, vehicles, or attack and defense modalities.

Figure 2 (bottom) shows the functionality over time
(solid light blue line) for the two case studies. Also
shown is the functionality predicted by the three-
parameter differential equation model (black line). The
model captures the salient aspects of the data well.

VI. DISCUSSION AND CONCLUSIONS

The illustrative case study demonstrates that the ex-
perimental infrastructure described generates data with
sufficient fidelity to progress our model for the quanti-
tative measurement of cyber resilience. Analysis of the
data by subject matter experts confirm that it is similiar
to data that would be generated by real-world systems.

The measurement of resilience is restricted to only
those KPPs that the system is able to produce [23].
In future work, components will be added to simulate
different vehicles and more KPPs. This data may then
be used to further refine our measurement methodology.
Also, similiar experiments will be conducted with an
actual MGV. These results will be compared to the sim-
ulated results to establish the fidelity of the infrastructure
and validity of the methodology.
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