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Abstract—To improve the utility and scalability of distributed
radio frequency (RF) sensor and communication networks, re-
duce the need for convolutional neural network (CNN) retraining,
and efficiently share learned information about signals, we ex-
amined a supervised bootstrapping approach for RF modulation
classification. We show that CNN-bootstrapped features of new
and existing modulation classes can be considered as mixtures
of truncated Gaussian distributions, allowing for maximum-
likelihood-based classification of new classes without retraining
the network. In this work, the authors observed classification
performance using maximum likelihood estimation of CNN-
bootstrapped features to be comparable to that of a CNN trained
on all classes, even for those classes on which the bootstrapping
CNN was not trained. This performance was achieved while re-
ducing the number of parameters needed for new class definition
from over 8 million to only 200. Furthermore, some physical
features of interest, not directly labeled during training, e.g.
signal-to-noise ratio (SNR), can be learned or estimated from
these same CNN-derived features. Finally, we show that SNR
estimation accuracy is highest when classification accuracy is
lowest and therefore can be used to calibrate a confidence in the
classification.

Index Terms—radio frequency machine learning (RFML), su-
pervised bootstrapping, truncated Gaussian discriminant analysis
(TGDA), maximum likelihood estimation (MLE)

I. INTRODUCTION
A. Motivation

HE proliferation of wireless communication devices and

increasing complexity of the radio frequency (RF) en-
vironment are creating unprecedented strains on the ability
of communication networks to maintain requisite situational
awareness. Ex post shared spectrum approaches, for example,
require awareness of participating transmitters for deconflic-
tion and identification of non-compliant actors [1], a task
exacerbated as the number of transmitters increases. To reduce
the resource demands of establishing and maintaining large
RF communication or sensor networks, it is necessary to keep
down the size, weight, and power requirements, as well as cost
(SWAP-C) of each network node while minimizing collabo-
rative transmission requirements. For the purposes of signal

J.B. Persons is a Ph.D. student of the Department of Electrical and
Computer Engineering, Virginia Tech, Blacksburg, VA, 24061 USA e-mail:
persons@vt.edu.

Lauren Wong is a deep learning data scientist with Intel Corporation, San
Jose, CA, USA.

William “Chris” Headley and Michael Fowler are research faculty with the
Hume Center for National Security and Technology, Virginia Tech.

classification, this may mean utilizing automated classification
methods that do not require excessive pre- or post-processing
and that can be updated with new classes of interest without
large-scale data transfer. An automated classification system
should also be able to integrate additional information that was
not available or relevant at the time of network establishment
and training into its classification decisions.

The goal of the research outlined in this paper is to investi-
gate one promising approach to signal classification that would
reduce the need for retraining neural networks when adding
classes, allow classes of interest to be concisely characterized,
and facilitate the incorporation of additional data sources into
classification decisions.

B. Overview

Adapting a CNN approach previously used for signal classi-
fication [2], we started with the assumption that classes could
be represented by mixtures of multivariate Gaussian distribu-
tions across the learned feature set. We initially attempted un-
supervised clustering of BPSK, QPSK, QAM16, and QAM64
signals using intermediate layer outputs of a CNN as features,
with the intent of learning mixture parameters for inference;
however, the clustering algorithm would consistently subdivide
the BPSK and QPSK signal classes many times before finding
any meaningful distinction between the QAM signal classes.
The lack of useful clustering in this approach led us to turn
to a supervised method instead.

While our initial intuition that classes could be represented
by Gaussian mixtures was partially validated, we discovered
that mixture components were better modeled as mixtures
of point masses and truncated Gaussians. Using truncated
Gaussian discriminant analysis (TGDA) , we drew empirical
distributions of features from labeled sets, then conducted
maximum likelihood estimation (MLE) for each class. Despite
being trained only to infer modulation classes, we discovered
that the CNN-derived features used for modulation classi-
fication could also be used for signal-to-noise ratio (SNR)
and samples-per-symbol (SPS) estimation. We repeated this
process using networks trained on different types and numbers
of training classes in order to examine the effects of the base
network on TGDA performance.

In accordance with our goals, this approach offers several
advantages over a purely CNN-based system. Once sensors
are equipped with the trained neural network, new class
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descriptions can be shared among the classes using only
200 parameters, rather than the several million that would
be required to characterize a retrained neural network. By
inputting signals with known physical characteristics into the
feature extraction network, we can learn the network feature
representation of those physical features. As we are using MLE
for classification, we inherently have a measure of confidence
built into our approach. Because the classification algorithm
uses the neural network only to generate features, there is an
opportunity to include other information as additional features
the MLE calculation, though we do not explore that possibility
in this work.

We discuss our training and inference approach in Section
III] compare the performance of this approach to a baseline
CNN in Section and assess how changing training data
classes affects the classification performance and generaliz-
ability of TGDA MLE in Section [V]

II. RELATED WORK

Previous research in radio frequency machine learning
(RFML) [3]] demonstrated the efficacy of using convolutional
neural networks (CNNSs) to determine the modulation classifi-
cation of a signal based on received in-phase and quadrature
(I/Q) data. Follow-on work applied the concept of supervised
bootstrapping, in which the final (softmax) layer of a trained
neural network classifier is discarded, and the remainder of
the network is used for feature extraction [2l], [4]. These
works then applied unsupervised clustering algorithms to the
features derived from the bootstrapping approach, demonstrat-
ing the feasibility of identifying new classes from unlabeled
data. Wong, et al. also observed indications that CNNs learn
different features from different training signal bandwidths, a
fact that will be expanded upon within this work [4]. Later
research showed that CNNs could use I/Q data for specific
emitter identification or separation of interfering signals [,
[6] and measured the effects of frequency and sample rate
offsets on CNN performance [7].

Subsequent RFML approaches primarily have been aimed at
improving classification accuracy. Katra, et al. used multiple
neural networks in a hierarchical approach to determine data
type, modulation class, and modulation order [8]. This work
also noted the limitations imposed by small “snapshot” size
- what we will refer to in this work as signal snippets, or
the I/Q input to the neural network - and recommended using
longer snapshots when available for better feature extraction.
In [9], the authors employed multiple CNNs with both I/Q
and frequency domain (fast Fourier transform (FFT)) inputs
in a multitask learning scheme to improve classification ac-
curacy in the modulation classes that showed higher levels
of confusion in [3]. The authors of [[10] applied CNNs in
a more conventional sense by conducting spectral analysis
with FFTs, then feeding the spectrogram image into a CNN
for modulation classification, achieving higher classification
accuracies than in [3] at the cost of higher memory and training
time requirements. Though Youssef er al.’s focus was the
introduction of a multi-stage training approach, the authors
also noted the improved performance of CNNs relative to
conventional deep neural networks as input size increased [[11]].

As with the original RFML work, some insight may be
gained from techniques being applied in the computer vision
field. The authors of [12]] used 60 CNNs to extract visual fea-
tures, represented these features as sums of Gaussian variables,
and then performed facial verification by the Joint Bayesian
technique. Other computer vision work fused CNN-derived
features with “traditional” features from medical imaging, then
used these new features as inputs into a multi-layer percep-
tron classifier to achiever higher levels of accuracy than the
CNN could achieve alone [13]]. Encouragingly for our work,
Donahue, et al. demonstrated that the later layers of neural
networks were able to capture the high level features required
for both semantic classification and subclass recognition [14].

III. TECHNICAL APPROACH
A. Data Generation

To obtain signals for training, validation, and testing, we
first generated a random bitstream, then used GNU Radio
to create 2048-sample snippets of I/Q data of desired signal
types, and each snippet was passed through a root-raised
cosine filter with a roll off factor of 0.35, without loss
of generality. Additive white Gaussian noise (AWGN) was
added to achieve the desired signal-to-noise ratio (SNR). For
simplicity in exploring this approach to signal classification,
no frequency or sample rate offsets were imposed.

B. Neural Network for Feature Extraction

The CNN architecture used for feature extraction in this
work is shown in Figure [I] and is based loosely off of that
given in [3]]. However, the overall size of the network was
reduced to accommodate a simpler classification problem with
fewer output classes (and be trained on an older GPU with
limited memory), and batch normalization was used in place
of dropout as the already reduced layer size did not offer much
tolerance for additional sparsity. Additionally, input size was
increased to allow a larger number of samples of I/Q data
to give the network more information with which to make
decisions, and the hyperbolic tangent activation function was
used instead of the ReLU activation function following the
two convolutional layers to encourage a smoother distribution
of features and allow for negative outputs from each layer.
Though this network is less complicated than state-of-the-
art image networks at 8,551,642 trainable parameters, it is
sufficiently robust to achieve test accuracy of greater than 98
percent across all four original training classes at 20 dB SNR.
Additionally, its relatively small memory requirement makes
it a better surrogate for the type of neural network that might
see deployment on low-SWAP-C sensors.

In this work, five networks were trained for comparison
purposes using this architecture in order to stress the gener-
alizabilty of the develop approach. Each network was trained
on 16,000 2048-sample 1/Q signal snippets of each modulation
class at random float-valued SNRs from a uniform distribution
of range 0 to 20 dB, then validated on 4,000 signal snippets of
each class pulled from the same SNR distribution. The training
classes in each of the five models are depicted in Table [I|
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Figure 1: Structure of CNN used for classification of original
modulation classes, as defined in Keras. Features used for
distribution-based classification are drawn from the outputs
of the batch-normalized dense layer.

Model 1 BPSK, QPSK, QAM16, QAM64 at 4 sps

Model 2 BPSK, QAM16, QAM64, GFSK at 4 sps

Model 3 BPSK, QPSK, QAM16, QAM64, GFSK at 4 sps

Model 4 | BPSK, QPSK, QAM16, QAM64, GFSK at 2, 4, and 8 sps

Model 5 BPSK, QPSK, QAMI16, QAM64, VT, GFSK, GMSK at
2, 4, and 8 sps

Table I: Model names and training classes used in this work.

C. Feature Distributions

Despite the network’s performance, it still suffers from the
inherent limitations of a CNN in that it must be retrained if
new classes are added. We circumvented this weakness of the
CNN by first training normally, then discarding the classifica-
tion layer (layer 8) of the trained network and using outputs
from the normalized first dense layer (layer 7) as features
for classification, termed supervised bootstrapping, as in [2].
It was apparent to the authors that the different modulation
classes have distinct feature distributions at 20dB SNR, though
these distinctions diminish at lower SNRs - QAMI16 and
QAMO64 distributions are nearly indistinguishable to the eye at
5dB SNR. Also, our assumption that class mixture elements
could be represented as multivariate normal distributions (or
“spikes” in the limiting case) appeared reasonable for only
about half of the features in a given class mixture element.
Upon closer examination, we found that class features actually
appear as mixtures of point masses, Gaussians, and truncated
Gaussians as depicted in Figure [2] To characterize each class
of interest, we fed 5,000 signal snippets of each class through
the neural network and extracted four parameters for each of
the 50 nodes of layer 7: s, the value of the lowest element
in the feature (or spike); p, the percentage of the probability
mass in the spike; and the location and scale parameters
of the (truncated) Gaussian. We were able to estimate these
parameters efficiently using available software packages due
to the helpful observation that the probability spikes, when
present, are equal in mass to the truncated portion of the
Gaussians for any given feature.

(a) Probability point mass “spike.”

(b) Spike with truncated Gaussian.

Node 4

(c) Gaussian distribution.

Figure 2: Example empirical distributions of modulation class
features.

D. Inference Approach

Once parameters for the feature distributions of each class
of interest were determined, inference was performed through
maximum likelihood estimation using

50
class(z) = argmaxz log {1(pe; > 0.01)pe;[L(x = s¢;)
¢ =1
+ 1(pe; > 0.01)(1 — pe;) TruneN (aes, loce;, scaleg;)| ., ]
+ 1(pe; < 0.01)N (loce, scalec;)|x,. }

1
where a.; = (s, — loce;)/scale.; is required to convert
clip values from those of a truncated standard normal to
the appropriate mean and standard deviation [15]. The 0.01
threshold was established arbitrarily as the minimum percent-
age of probability mass which may constitute a spike. Using
the log likelihood is helpful for numerical stability, and if
we wished to include additional features in our classification
process, we could do so simply by adding the (weighted)
log likelihood of these additional features. Note that for
the purposes of minimizing parameters and computation, we
assume independence among features in this exploratory work.
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IV. SINGLE-NETWORK EXPERIMENTS

We conducted several experiments to determine the efficacy
of our approach. We first tested performance of truncated
Gaussian discriminant analysis against the original network
in classifying the four base modulation classes on which
the network was trained. We next attempted classification of
modulation classes on which the network had not been trained.
Then, we tested the utility of our approach in determining
physical features of the signals for which the network was
not designed to classify: signal-to-noise ratio and samples per
symbol.

For a performance metric, we elected to use the balanced
F measure, or F) score, as it better captures the interplay
between inputs in a multi-class classifier than accuracy alone.
While F} score varies with class size in unbalanced datasets
[16], we structured our experiments in such a way that
all classes were equally represented, avoiding this potential
problem. We calculate the F score using

Fi =2+ precision * recall @)

precision + recall’

where

. true positive
precision = — — 3)
true positive + false positive

and .
true positive

“4)

recall = — —,
true positive + false negative

A. Modulation Classification - Model 1

1) Classification of Trained Classes: To assess baseline
performance of TGDA in this application, we calculated mean
vectors and covariance matrices for each class using 5,000
signal snippets of each class taken at SNRs varying uniformly
from O to 20 dB. We then tested both the baseline network
and the TGDA approach against 1000 signal snippets per
class at SNRs varying uniformly randomly from 0 to 20dB
(4,000 snippets in total). The results of this assessment can
be seen in the 4-Class column of Table For reference,
the F} score for a random classifier in this case would be
0.25. As the reader can see, the performance of the TGDA
approach is comparable to that of the baseline network even
without employing mixtures of SNR-specific distributions for
each class.

2) Classification with Additional Classes - Model 1: We
next calculated feature parameters for each class using the
same method in Section [[V-A1] except we added a fifth class,
the 64-VT modulation, created in liguid-dsp and displayed in
Figure E] [L7]. The 64-VT modulation, while not practical, is
phase- and amplitude-modulated like the training set and has
the added benefit of displaying the Virginia Tech logo in the
I/Q plane. The neural network had not been trained on this
waveform, so the base network had no means to correctly
classify this class. However, using TGDA, we were able to
achieve classification accuracies of the new class comparable
to those in the original test without significantly reducing
performance among the four original classes - though we did
see confusion between the QPSK and the VT signals of 2.5%.

Quadrature

In-phase

Figure 3: The 64-VT modulation scheme, while impractical
for communications, is a phase- and amplitude-modulated
signal similar to those used to train Model 1. Here its 1/Q
representation is displayed at 20dB SNR, the highest SNR
used in these experiments.

Table II: F; Scores for 4- and 5-Class Classification of Base
Network and TGDA with Single Component Per Class in
Classifying 1000 Signals Between 0 and 20 dB SNR

Mod Class | Base Network | 4-Class | 5-Class
TGDA TGDA
BPSK 1.000 1.000 0.997
QPSK 0.929 0.949 0.917
QAMI16 0.680 0.703 0.674
QAMO64 0.715 0.716 0.691
VT N/A N/A 0.967

Results are displayed in the 5-Class column in Table [[Il For
reference, the F) score for a random classifier in this case
would be 0.2.

While using the TGDA approach with a single component
per modulation class to classify new classes was validated, its
performance on the original classes was somewhat dissatisfy-
ing, though comparable to the base network, as can be seen in
Figure |4l This motivated us to try a modified approach: using
multiple components per modulation class.

B. Modulation Classification Using SNR-Enhanced Compo-
nents - Model 1

Inputting signals with labeled SNR values into our trained
Model 1 network, we visualized the Layer 7 outputs and dis-
covered that the distributions of a modulation class’s outputs
were different at different SNRs. Because of this, it made
sense that we could achieve better classification accuracy by
breaking down each modulation class into subclasses based on
SNR.

Armed with this knowledge, we then created empirical
distributions for each modulation class at 0, 5, 10, 15, and 20
dB SNR using 5,000 signal snippets for each component, and
pulled feature TGDA parameters. One can view these feature
distributions as conditional likelihood distributions of modula-
tion classes given SNR. The F} scores using TGDA MLE with
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Mod Class |SNR (dB) | Base Network| TGDA Mod Class |SNR (dB) | Base Network| TGDA
0 0.999 0.998 0 0.999 0.999
5 1.000 1.000 5 1.000 1.000
BPSK 10 1.000 1.000 BPSK 10 1.000 1.000
15 1.000 1.000 15 1.000 1.000
20 1.000 1.000 20 1.000 1.000
E==_Imms== =
5 0.951 5 0.951
QPSK 10 1.000 1.000 QPSK 10 1.000 1.000
15 1.000 1.000 15 1.000 1.000
20 1.000 1.000 20 1.000 1.000
0 0.404 0 0.404
5 0.522 5 0.522
QAM16 10 0.580 QAM16 10 0.580
15 0.934 15 0.934
20 0.999 20 0.999
0 0.430 0 0.430
5 0.545 5 0.545
QAMB4 10 0.695 QAMB4 10 0.695
15 0.940 0.947 15 0.940
20 0.998 0.995 20 0.998
Average 0.811 0.807 Average 0.811

Figure 4: F} scores of base Model 1 network and TGDA with
single component per modulation class in classifying 1000
signals at each SNR. F; within 0.01 of baseline is displayed
in yellow, while higher or lower scores are green or red,
respectively. While class confusion is apportioned differently
in high noise cases, average performance between the base
CNN and TGDA MLE are similar.

these components can be seen in Figure [5] For reference, the
F score for a random classifier in this case would be 0.25. Of
note, we chose to use the maximum joint (modulation class,
SNR) likelihood for classification rather than the marginal
SNR likelihood to avoid biased distributions in the event that
modulation classes were unequally represented across SNRs
- not a concern for our controlled experiment, but potentially
the case in real-world situations.

Using distinct components within each modulation class for
each SNR, we see comparable or superior performance in
classification relative to the base Model 1 network, with the ex-
ception of 0dB and 5dB QAM64, which each scored more than
0.05 worse than the baseline. QPSK classification performance
at 0dB was significantly better with TGDA MLE than the base
network, as the base network classified most of the QPSK
snippets as QAM16 or QAMG64. Some insight into the TGDA
performance in classifying QAM signals can be gleaned from
looking at the 0dB confusion matrices in Table [Tl Due to
the way the Fj score is constructed, models which divide
uncertainty equally receive higher scores than those which
bias towards one class. At 0dB SNR, the base network can

Figure 5: I scores of base model 1 network vs five component
per modulation class TGDA MLE in classifying 1000 signals
at each SNR. I} within 0.01 of baseline is displayed in yellow,
while higher or lower scores are green or red, respectively.
TGDA MLE outperforms the base network on average and
significantly outperforms in low-SNR QPSK. We again see
different apportionment of confusion in high noise QAM
signals, but almost exactly opposite the single component per
modulation class case.

distinguish QAM signals from PSK signals, but it’s essentially
a coin flip between QAM16 and QAMO64. Single component
TGDA MLE has similarly poor results, with a significant
bias towards QAM®64, but discriminates QAM signals from
other classes just as well. Five component TGDA MLE also
does a poor job distinguishing between QAM signals, with
a bias towards QAM 16, and adds some confusion with
QPSK signals; this is likely because the 0dB QAM signals are
being compared to the 0dB QPSK distribution, rather than the
less-similar average QPSK distribution across SNRs. Though
there is still confusion between QAM signals at low SNR,
the TDGA approach with distinct SNR-based subcomponents
outperforms the base network on average and does much
better at distinguishing QPSK in high-noise environments.
This superior performance is expected, as we are giving our
TGDA MLE method more information in the form of SNR
labels on distributions.
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Table III: Confusion Matrices for QAM Signals at O dB.

Mod Class | SNR (dB) 2SPS 4 SPS 8 SPS
0 0.984 0.783 0.854
Base_Network | 1 Comp. TGDA | 5 Comp. TGDA 5 0.991 0.680 0616
Mod Class | QAM16 | QAM64 | QAM16 | QAM64 | QAM16 | QAM64 BPSK 10 0.995 0.773 0.721
BPSK 0.000 0.001 0.000 0.000 0.000 0.000 15 1.000 0.926 0.924
QPSK 0.010 0.010 0.005 0.007 0.259 0.255 20 0.999 0.969 0.968
QAM16 0.461 0.439 0.176 0.172 0.555 0.572 0 0.847 0.718 0.864
QAM64 0.529 0.550 0.819 0.821 0.186 0.173 5 0.877 0.623 0.403
(Correct classification probabilities shaded in gray.) QP3SK 10 0.935 0.805 0.702
15 0.982 0.914 0.930
Table TV: SNR Confusion Matrix for Model 1-Based TGDA. 20 0973 | 095 | 0980
. 0 0.853 0.616 0.831
Zero-confusion values are not shown. 5 0.695 0382 0.490
QAM16 10 0.744 0.626 0.459
Mod Class 15 0.877 0.763 0.528
Actual SNR | Predicted SNR | BPSK | QPSK | QAM16 | QAM64 20 0.973 0.829 0.771
0 0 1| 0.999 0.997 0.999 0 0.856 0.623 0.837
5 0| 0.001 0.003 0.001 5 0.677 0.350 0.484
5 0 0| 0.004] 0.002 0 QAMG4 10 0.730 0.544 0.368
51 0961 0.979 0.989 0.996 15 0.893 0.663 0.534
10| 0.037| 0.017 0.009 0.004 20 0.955 0.652 0.669
15| 0.002 0 0 0 Average 0.892 0.710 0.697
10 5| 0.12| 0.007 0.004 0.001
10) 0.822] 0936 0.939| 0.846 Figure 6: F; Scores of Model 1-Based TGDA MLE in
15| 0.058] 0.057| 0.057| 0.138 Estimating Samples Per Symbol (SPS).
20 0 0 0 0.015
15 10| 0.054| 0.113 0.064 0.108
15] 0817] 0.771] 0.739] 0468 somewhat different problem from the SNR prediction, as the
20| 0.129| 0.116 0.197 0.424 . . .
30 10 ol o001 o ooz bas.e network was only tra1.ned on 4 SPS s'1gn:f:11 §n1ppets and
57032 01721 0272 0197 logically would not have included SPS discrimination as a
201 0.674| 0827] 0728| 0791 useful ability for classification. F scores of this distribution-

(Correct classification proportions shaded in gray.)

C. Signal-to-Noise Ratio

Despite these somewhat mixed results in modulation clas-
sification, a surprising result emerges from the data: TGDA
allows us to use our trained network to estimate SNR. This
ability arises because, as noted in the previous section, the
feature distributions of the modulation classes are quite distinct
at certain SNRs. Accuracies for signals at varying SNRs can
be seen in Table with the rows of the correct SNR shaded
in gray. Even when the SNR is misjudged, primarily in the
15-20 dB regime, accuracy within +/- 5dB never falls below
98%. SNR predictions are most accurate at lower SNRs, which
is when this information would be of the most benefit, as this
is the region with the most confusion between modulation
classes. When taken in conjunction with the modulation class
prediction’s logarithmic likelihood, knowledge of the SNR
value allows us to further calibrate our confidence in the
predicted class. Knowing the conditional probabilities of a
modulation class given a predicted class and SNR is of value
in a distributed sensor environment, as it allows us to weight
the predictions of sensors which receive higher-SNR signals,
rather than treat all sensor predictions equally.

D. Samples Per Symbol

Next, we applied GDA MLE to the problem of predict-
ing samples per symbol (SPS) of a given signal. This is a

based approach can be seen in Table [6] For reference, the
F'; score for a random classifier in this case would be 0.333.
None of the 75 values in this table fall below the random
threshold, and 58 are more than twice this value. Performance
is generally better at higher SNRs and fewer samples per
symbol, with few exceptions; intuitively, a clearer signal (high
SNR) and more observed symbols (low SPS) would provide
the classifier with better quality information.

V. DISSIMILAR MODULATION CLASSIFICATION AND
NETWORK COMPARISON EXPERIMENTS

The results from our first set of experiments raised some
interesting questions, which we explore here. For example,
we demonstrated that a phase- and amplitude-modulated signal
class could be learned using a network trained on other phase-
and amplitude-modulated signal classes; here we assess the
performance of TGDA MLE with new modulation types, e.g.
frequency shift keyed (FSK) signals. We also assess how
changing the type of training data affects subsequent TGDA
MLE effectiveness, with regard to modulation, SNR, and SPS
classification. Finally, we compare the performance of TGDA
MLE based on more narrowly-trained networks to that of a
convolutional neural network trained on all classes of interest
at varying signal-to-noise ratios and samples per symbol.

A. Performance vs FSK Signals

To stress the utility of TGDA MLE in classifying new
modulation classes, we added Gaussian frequency shift keying
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(GFSK) and Gaussian minimum shift keying (GMSK) signal
types to the test data. Parameters were extracted for these new
classes in the same manner as previously, and we attempted
classification using an equal mix of each of the seven signals
at 0, 5, 10, 15, and 20dB SNR. All signals in this case were
sampled at 4 SPS. Results can be seen in Figure [/| Despite
having no FSK-type signals in the data on which the CNN was
trained, the network has clearly learned features that not only
allow it to identify FSK-type signals but also to distinguish
between generic GFSK signals and GMSK signals. However,
note the degradation in performance of GFSK at 15 and 20dB
SNR, and a similar reduction in performance of QAMI16 at
the same SNRs relative to our four- and five-class scenarios:
there is actually significant confusion between QAMI16 and
GFSK at these SNRs. We see this as a cautionary tale: if the
types of features which characterize new modulation classes
are not seen in the CNN’s training data, there is a greater risk
for confusion when using the CNN'’s feature space to classify
these modulation classes.

B. Modulation Classification Comparison

To see how variations in the types of data used to train the
CNN can affect TGDA MLE based on this CNN, we trained
four other networks as described in Table [I| and repeated our
experiments using these new networks. We also tested against
signals sampled at 2 and 8 samples per symbol.

For a baseline comparison, F scores for the base networks
in classifying signals at 2, 4, and 8 SPS from their respective
training modulation classes are shown in Figure [8| Because
Models 1, 2, and 3 were only trained on 4 SPS signals, we
would expect their performance in this evaluation to suffer
relative to Models 4 and 5, which were trained on 2, 4, and
8 SPS signals. While this was generally true for the 2 SPS
signals, Models 1, 2, and 3 actually performed comparably
to the better-trained models in classifying 8 SPS signals. Note
that Model 5’s performance in classifying GFSK is lower than
other models - interestingly, this is because of confusion with
GMSK (not present in other models), but only at 2 and 8 SPS.
It is unclear why Model 5 learned to distinguish these classes
at only 4 SPS when it was trained on all SPS levels.

The TGDA MLE results are shown in Figure 0] Differences
in average F} scores of TGDA MLE and the base CNNs in
classifying training modulation classes are shown in Table
Note that the comparison is between the CNNs classifying the
original classes and TGDA MLE classifying all classes, so the
TGDA MLE data is subjected to additional opportunities for
confusion. From this data, interesting trends emerge.

First, and most obviously, training data matters. It is ap-
parent from these results that the presence of QPSK in the
training data is critical for learning the features which distin-
guish signals with quadripolar / quadrature characteristics, as
TGDA MLE using the model without QPSK in the training
data, Model 2, performs considerably worse in these classes.
Average performance also increases in the models with more
training classes (Models 3-5) relative to those with fewer,
though this performance improvement is constrained by using
the same architecture in all models (i.e. at some point adding

Model 1
0.067

Model 2
-0.081

Model 3
0.060

Model 4
0.064

Model 5
0.156

Table V: Difference in average F; scores of TGDA MLE
relative to CNN classification of training classes. Positive
values indicate superior performance of TGDA MLE. TGDA
MLE scores are from the seven modulation class problem in
all cases, while CNN scores are from only the training classes
of each model.

training classes will saturate the CNN’s capacity for learning
discriminant features).

Second, while we would expect performance across the
board to suffer slightly due to confusion with added classes,
this is not always the case. For example, while almost the
entire difference in BPSK performance in Model 1 and 2
TGDA MLE is the result of confusion with the added VT
signal at 0 and 5 dB SNR, QPSK classification in all models
improves significantly using TGDA MLE, despite the added
classes.

Third, when we control for the addition of new signal types,
the performance improvements from TGDA MLE are notable:
GFSK classification performance diminishes in Models 2, 3,
and 4 due to confusion with the GMSK class, which wasn’t
present in the training data; however, the improvement in
Model 5 TGDA MLE in distinguishing these classes is signif-
icant. In fact, while there is a slight reduction in classification
of QAMO64 relative to the base CNN, Model 5 TGDA MLE
otherwise shows improvement across all classes.

Fourth, compare the average F scores of Model 5 in figure
[§ to the values of all models in Figure 9] Even though Model
2’s TGDA MLE performance is substandard in QAM and
QPSK, the average F score across all modulation classes still
exceeds that seen for the base CNN of Model 5. Other models
fare even better, demonstrating the effectiveness of TGDA
MLE in modulation classification.

While not reflected in the figures, our results also echoed
the observation made in [§] regarding the favorability of longer
input snippets. Across all models tested, the I} scores of the 8
SPS signals were almost always significantly worse than those
of the 2 and 4 SPS signals. Because all snippets comprised the
same number of samples, higher SPS signals effectively gave
the network fewer symbols to analyze, effectively shortening
the “snapshot” and increasing the potential for confusion.

C. SNR Estimation Comparison

Next we examined the effect of training data on SNR
estimation. As before, we use accuracy instead of Fj scores,
first showing accuracy within 5dB SNR in Figure then
looking for an exact match (at 5dB intervals) in Figure
We see that in both the +/- 5dB and exact cases, adding
modulation classes to, and varying the SPS rate of, the training
data does not have a significant effect on SNR estimation.
We also see that across all models, the ability to predict
the SNR of FSK signals is poor relative to other modulation
types. Even when both GFSK and GMSK are present in the
training data (thus necessitating differentiating between the
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Figure 7: F1 scores for classification of seven modulation classes at 4 SPS using Model 1-based TGDA MLE.

Network Model
Model 3

Mod Class
BPSK
GFSK
GMSK
QAM16
QAMB4
QPSK
VT
Average

Model 1 Model 2 Mcodel 4 Mcodel 5

Network Model

Figure 8: Average F scores for CNN classification of seven
modulation classes at 2, 4, and 8 SPS and 0-20dB SNR for
each model.

Network Model
Model 3

Mod Class

Model 1 Model 2 Model 4 Model 5

Figure 9: F; scores for TGDA MLE classification of seven
modulation classes at 2, 4, and 8 SPS and 0-20dB SNR for
each model.

signals in the CNN), it seems the network does not identify
SNR as a useful characteristic in discriminating between these
modulation classes. Clearly, the mere presence of information
in training data is not sufficient to ensure that this information
will be encoded as a feature. However, when we remove the
GMSK and GFSK results, we see that +/- 5dB SNR estimation
accuracy averages above 96% across each model, and the
exact SNR is estimated correctly at least 63% of the time.
As we saw with the Model 1 four- and five-class experiments,
SNR estimation accuracy is highest at lower SNRs. In fact,

W/O FSK:

Figure 10: +/- 5dB SNR estimation accuracy for TGDA MLE
classification by class at 2, 4, and 8 SPS.

disregarding the FSK classes, the +/-5 dB SNR accuracy at
0 and 5 dB was at least 94.3% for all models tested at all
samples per symbol.

When we compare SNR results among the various models,
few clear trends emerge. Simply including more classes in test
data does not ensure better results: though Model 5’s +/- 5dB
accuracy is marginally higher than the other models, Model
4’s is lower than that of Model 3 (trained with the same
classes but only 4 SPS) and even that of Model 1 (trained
with only 4 SPS and without GFSK). Seeing GFSK in training
seems to improve SNR accuracy for that modulation class, but
despite no FSK exposure in training, Model 1’s GMSK noise
estimation exceeded all other models tested.

D. SPS Estimation Comparison

Noting the success of using TGDA MLE to estimate SNR,
we next sought to see how our five trained models per-
formed in classifying samples per symbol. As in the four-
class problem discussed in subsection we tested TGDA
MLE’s ability to discriminate between 2, 4, and 8 SPS signals;
however, we did this for all models and all seven test classes.
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Exact Network Model

‘Mod Clas{Model 1 Model2 Model3 |Model4 Model 5
BPSK 0.748 0.765 0.795 0.698 0.771
GFSK 0.367 0.446 0.362 0.400 0.402
GMSK 0.507 0.442 0.465 0.441 0.503
QAM16 0.637 0.725 0.748 0.625 0.756
QAME4 0.621 0.693 0.714 0.606 0.731
QPSK 0.734 0.713 0.773 0.631 0.742
VT 0.625 0.725 0.695 0.607 0.677
Avg 0.605 0.644 0.650 0.573 0.655
W/O FSK:| 0.673 0.724 0.745 0.633 0.736

Figure 11: SNR estimation accuracy for TGDA MLE classi-
fication by class at 2, 4, and 8 SPS.

Average results by model and class are displayed in Figure
[12]

Network Model
Model 2 Model 3 Model 4

Mod Class| Model 1
BPSK

Model 5

GMSK

QAM16 0.671 0.845

QAM64 0659 | 0.835

QPSK 0.828 | 0836

VT 0726 | 0833 | 0771 0706 | 0.849
Avg: 0708 | 0806 | 0789 | 0697 | 0819
W/0 GFSK:| 0778

Figure 12: Average Fj scores in classifying samples per
symbol by model and modulation class at 0-20dB SNR.

While results by SNR are not shown, SPS classification
performance was lowest at 0dB SNR and increased with SNR
- so as with modulation classification, confidence in SPS
classification results can be calibrated with SNR estimation.
Comparisons of models based on neural network training
data are inconclusive: Model 5 performs the best, as we
would expect, given its neural network was trained on all
classes and SPS; however, Model 4, which was also trained
on all samples per symbol, performed worse than Models 1-
3, which were trained on narrower data sets. It is not clear
why SPS classification of GFSK signals was so consistently
poor, as these signals’ physical characteristics have much
in common with GMSK. Much like the four-class problem,
we saw significantly better performance in classifying 2 SPS
signals (greater than 0.85, with the exception of GFSK) than
4 or 8 SPS signals across all models. Results by SPS are
displayed in Figure [T3]

VI. CONCLUSION
A. Summary

By using a distribution-based classification approach, we are
able to share information about new classes among sensors
by sending only 200 parameters per class, whereas sending
a retrained CNN would require 8,551,642 parameters (the
retrained trainable parameters from the original network), plus
50 additional parameters (the final dense layer’s weights) for

Model 1, 2 SPS

Model 5,85ps 1 Model 1, 4 SPS

Model 5, 4 SPS Model 1, 8 SPS

—o—BPSK

Model 5,2 SPS Model 2, 2 SPS

o— QAM 16
QAM64
QPSK

Model 4, 8 SPS Model 2, 4 SPS

—o—VT

Model 4, 4 SPS Model 2, 8 SPS

Model 4, 2 SPS
Model 3, 8 SPS

Model 3, 2 5PS
Model 3, 4 SPS

Figure 13: I} scores in classifying samples per symbol by
SPS, model, and modulation class at 0-20dB SNR. TGDA
MLE for all models is generally good at identifying 2 SPS
signals but has a harder time differentiating between 4 and 8
sps signals.

each added class - assuming no additional convolutional filters
or features are added to the retrained network. This advantage
can be obtained while enjoying classification accuracies com-
parable to - and in many cases better than - those of a CNN
trained on the new class. We also saw that information about
physical features of interest - SNR and SPS - was captured in
the learned features, despite not explicitly training the CNN
to discriminate between these features.

Ultimately, there are two primary takeaways of this work.
First, TGDA MLE, or a comparable distribution-based ap-
proach, can be used to learn classes similar to those of
the training data without retraining the network - saving
time, reducing hardware requirements, and supporting a low-
bandwidth, low-power sensor network. As more information
becomes available about training signals (such as SNR labels),
more detailed subclasses and conditional probability distribu-
tions can be formed, providing more accurate classification
along with measures of confidence in classification results.
Second, as we saw with SNR estimation of FSK signals
in Model 2, the mere presence of information in training
data is no guarantee of seeing it encoded as meaningful
features, so any ability to discriminate features of interest
beyond modulation classification using the current TGDA
MLE approach should be seen as a potential benefit rather than
a primary capability. The best way to utilize distribution-based
approaches may be to have the CNN learn relevant physical
features, rather than classes, then use distributions across these
features to define the classes, much as a human expert would
do. Such an approach would allow classification, meaningful
description of features, and generation of hypothetical signals
using new combinations of known features.

B. Future Work

The results in this paper were achieved without any dimen-
sionality reduction or feature weighting. It would be useful to
see if these results could be replicated or improved upon after
applying principal components analysis or feature selection to
the 50 nodes of Layer 7. In addition to speeding inference,
such processing might identify and quantify correlation of
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nodes to specific attributes (such as SNR), increasing accu-
racy and allowing regression of features for classification of
attributes with values outside the training set.

A key element of the TGDA MLE process is the convenient
distribution of signal features as mixtures of truncated Gaus-
sians, enabling characterization of classes by a small number
of parameters. While all models tested in this work presented
features of this type, success of TGDA MLE in other contexts
requires determining which network architectures or elements
result in these types of feature distributions, or at the very
least that these distributions are present before continuing with
MLE.

TGDA MLE provides likelihood values for each feature,
which, while used in this work for classification, might also
be used to identify outlier signals. However, we have not
validated novel signal detection and characterization using
TGDA MLE. Identifying and characterizing new signals in
the field using this approach would first require thresholding
feature likelihood values, so research should be conducted into
robust methods for selecting these thresholds.

Though the data generated for this paper was simulated, it
would be interesting to assess the performance of TGDA MLE
on real-world signals. Using signals from different emitters,
one might determine specific emitter effects on signal feature
distributions. While training the network on and classifying
physical signals would be a validation of the approach gener-
ally, successful inference of physical signals with a system
trained on simulated signals (perhaps with the addition of
frequency offset and sample mismatch) would allow us to
anticipate real-world signals of interest by creating a greater
variety of prior feature distributions.

Finally, this paper looked at additional modulation classes,
SNR, and samples per symbol; what other signal attributes
might be inferred using this approach? The success of maxi-
mum likelihood estimation in estimating SNR may be a result
of training the original network on a range of SNRs; if we
trained the base network on a narrower range of SNRs, or
even a single SNR, would the trained network still be able to
discriminate this attribute? If we could qualify what physical
features are represented in the trained network based on the
data used to train it, we could ensure that future training
sets are sufficiently diverse to allow the network to capture
all features of interest. Additionally, with high confidence of
which features might be learned from a training set, we could
minimize the training samples required to learn the necessary
features, thus reducing training time and data burden.
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