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Abstract— We identify quantitative characteristics of
responses to cyber compromises that can be learned from
repeatable, systematic experiments. We model a vehicle
equipped with an autonomous cyber-defense system and
which also has some inherent physical resilience features.
When attacked by malware, this ensemble of cyber-physical
features (i.e., ‘“bonware”) strives to resist and recover from
the performance degradation caused by the malware’s
attack. We propose parsimonious continuous models, and
develop stochastic models to aid in quantifying systems’
resilience to cyber attacks.

I. INTRODUCTION

Resilience continues to gain attention as a key prop-
erty of cyber and cyber-physical systems, for the pur-
poses of cyber defense. Although definitions vary, it is
generally agreed that cyber resilience refers to the ability
of a system to resist and recover from a cyber compro-
mise that degrades the mission-relevant performance of
the system [1]. Resilience should not be conflated with
risk or security [2].

To make the discussion more concrete, consider the
example of a military ground logistics vehicle, possibly
unmanned, which performs a mission of delivering heavy
supplies along a difficult route. The adversary’s malware
successfully gains access to the Controller Area Net-
work (CAN bus) of the vehicle [3]. Then, the malware
executes cyber attacks by sending a combination of
messages intended to degrade the vehicle’s performance
and diminish its ability to complete its delivery mission.
We assume that the malware is at least partly successful,
and the vehicle indeed begins to experience a degradation
of its mission-relevant performance.

At this point, we expect the vehicle’s resilience-
relevant elements to resist the degradation and then to
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recover its performance to a satisfactory level, within an
acceptably short time period. These “resilience-relevant
elements” might be of several kinds. First, because the
vehicle is a cyber-physical system, certain physical char-
acteristics of the vehicles mechanisms will provide a de-
gree of resilience. For example, the cooling system of the
vehicle will exhibit a significant resistance to overheating
even if the malware succeeds in misrepresenting the
temperature sensors data. Second, appropriate defensive
software residing on the vehicle continually monitors
and analyzes the information passing through the CAN
bus [4]. When the situation appears suspicious, it may
take actions such as blocking or correcting potentially
malicious messages. Third, it is possible that a remote
monitoring center, staffed with experienced human cyber
defenders, will detect a cyber compromise and will
provide corrective actions remotely [5].

For the purposes of this paper, we assume that the
remote monitoring and resilience via external interven-
tion is impossible [6]. This may be the case if the vehicle
must maintain radio silence for survivability purposes, or
if the malware spoofs or blocks communication channels
of the vehicle. Therefore, in this paper we assume that re-
silience is provided by the first two classes of resilience-
relevant elements. Here, by analogy with malware, we
call these “bonware” — a combination of physical and
cyber features of the vehicle that serve to resist and
recover from a cyber compromise.

A key challenge in the field of cyber resilience is quan-
tifying or measuring resilience. Indeed, no engineering
discipline achieved significant maturity without being
able to measure the properties of phenomena relevant to
the discipline [5]. Developers of systems like the notional
vehicle in our example must be able to quantify the
resilience of the vehicle under development in order to
know whether the features they introduce in the vehicle
improve its cyber resilience, or make it worse. Similarly,
buyers of the vehicle need to know how to quantitatively
specify and test resilience in order to determine whether
the product meets their specifications.

In this paper, we report some of the results of a project
called Quantitative Measurement of Cyber Resilience



(QMoCR) in which our research team seeks to identify
quantitative characteristics of systems’ responses to cy-
ber compromises that can be derived from repeatable,
systematic experiments. Briefly, we have constructed
a test-bed in which a surrogate vehicle is subjected
to controlled cyber attacks produced by malware. The
vehicle is equipped with an autonomous cyber-defense
system [6, 4] and also has some inherent physical
resilience features. This ensemble of cyber-physical fea-
tures (i.e., “bonware”) strives to resist and recover from
the performance degradation caused by the malware’s
attack. The test bed is instrumented in such a way
that we can measure observable manifestations of this
battle between the malware and bonware, especially the
mission-relevant performance parameters of the vehicle.

The details of the test bed and the experiment are
given in a companion paper [7]. The focus of this
paper is different -— here we concentrate on construct-
ing mathematical models that can be used to describe
the dynamics of the malware-bonware battle. We seek
models that are parsimonious in the number of empirical
parameters and allow us to easily derive parameters of
the model from experimental data.

The remainder of the paper is organized as follows.
In the next section, we briefly describe prior work
related to quantification of cyber resilience. We provide
formal definitions of accomplishment and functionality.
We propose a class of parsimonious models in which
effects of both malware and bonware are approximated
as deterministic, continuous differentiable variables, and
we explore several variations of such models. In the
following section we propose a different class of models
— stochastic models, and we show how this class is
related to the previously proposed class of determin-
istic models. Then we show how these models are
used to approximate experimental data obtained with
our surrogate vehicle. We show how to determine the
parameters of the models from experimental data. We
discuss whether these parameters might be considered
quantitative characteristics (i.e., measurements) of the
bonware’s cyber resilience.

II. PRIOR WORK

A growing body of literature explores quantification
of resilience in general and cyber resilience in particular.
Very approximately, the literature can be divided into
two categories: (1) qualitative assessments of a system
(actually existing or its design) by subject matter experts
(SMEs) [8], [9] and (2) quantitative measurements based
on empirical or experimental observations of how a
system (or its high-fidelity model; [10]) responds to a
cyber compromise [1, 11]. In the first category, a well-
cited example is the approach called the cyber-resilience
matrix [12]. In this approach, a system is considered as

spanning four domains: (1) physical (i.e., the physical
resources of the system, and the design, capabilities,
features and characteristics of those resources); (2) in-
formational (i.e., the system’s availability, storage, and
use of information); (3) cognitive (i.e., the ways in which
informational and physical resources are used to compre-
hend the situation and make pertinent decisions); and (4)
social (i.e., structure, relations, and communications of
social nature within and around the system). For each of
these domains of the system, SMEs are asked to assess,
and to express in metrics, the extent to which the system
exhibits the ability to (1) plan and prepare for an adverse
cyber incident; (2) absorb the impact of the adverse cyber
incident; (3) recover from the effects of the adverse cyber
incident; and (4) adapt to the ramifications of the adverse
cyber incident. In this way, the approach defines a 4-
by-4 matrix that serves as a framework for structured
assessments by SMEs.

Another example within the same category (i.e., qual-
itative assessments of a system by SMEs) is a recent,
elaborate approach proposed by [13]. The approach is
called Framework for Operational Resilience in Engi-
neering and System Test (FOREST), and a key method-
ology within FOREST is called Testable Resilience Effi-
cacy Elements (TREE). For a given system or subsystem,
the methodology requires SMEs to assess, among others,
how well the resilience solution is able to (1) sense or
discover a successful cyber-attack; (2) identify the part
of the system that has been successfully attacked; (3)
reconfigure the system in order to mitigate and contain
the consequences of the attack. Assessment may include
tests of the system, although the methodology does not
prescribe the tests.

Undoubtedly, such methodologies can be very valu-
able in finding opportunities in improvements of cyber-
resilience in a system that is either at the design stage
or is already constructed. Still, these are essentially
qualitative assessments, not quantitative measurements
derived from an experiment.

In the second category (i.e., quantitative measurements
based on empirical or experimental observations of how
a system, or its high-fidelity model, responds to a cyber
compromise), most approaches tend to revolve around
a common idea we call here the area under the curve
(AUC) method [14, 15]. In an experiment/test, a system
is engaged into a performance of a representative mis-
sion, and then is subjected to an ensemble or sequence of
representative cyber attacks. A mission-relevant quantita-
tive functionality of the system is observed and recorded.
The resulting average functionality, divided by normal
functionality, can be used as a measure of resilience.

However, AUC-based resilience measures are inher-
ently cumulative, aggregate measures, and do not tell us
much about the underlying processes. For example, is it



possible to quantify the resilience impact of the bonware
of the given system? Similarly, is it possible to quantify
the impact of malware? In addition, is it possible to
gain insights into how these values of impactfulness vary
over time during an incident? We offer steps toward
answering such questions.

III. QUANTITATIVE MEASURES OF CYBER
RESILIENCE

Every mission has a goal, and we postulate that
for a given mission, there exists a function .A(t) that
represents accomplishment and is cumulative from the
mission start time up until the present time t. We define
functionality, F'(¢), to be the time derivative of mission
accomplishment. Thus,

F(t):%, A(t):/t F(rydr. (1)

The normal functionality, when the system performs
normally and does not experience effects of a cyber
attack, may, in general, vary with time. For simplicity,
throughout this paper, we assume the normal function-
ality to be constant in time, Fx(t) = Fy. Thus, the
functionality of our system prior to an attack or other
malfunction is normal at the start time: F'(¢y) = Fx.

In the following sections we develop models for the
behavior of a system’s functionality over the course of
a mission during which it is being attacked by malware
and defended by bonware.

In the first set of models, we assume that there is
an observable, sufficiently smooth function representing
mission accomplishment, and we define functionality to
be its time derivative. Then, we motivate a parsimonious
model for the differential equation governing functional-
ity, give the general solution, and discuss a few specific
cases. We then develop a stochastic model and show its
relationship to the continuous model. Finally, we show,
both analytically and empirically, that with sufficiently
many instantiations, the average of an ensemble of
stochastic curves will approximate the solution to the
continuous model differential equation.

IV. CONTINUOUS MODEL

For the first set of models, we make the assumption
that mission accomplishment is twice continuously dif-
ferentiable: A € C?, and thus F' € C1.

As a first approximation, we let the impact of malware
on the derivative of functionality be linear. The impact of
bonware is similarly defined and proportional to the level
of functionality below normal. Malware degrades the
system while bonware aims to increase functionality over
time. Malware impact and bonware impact are assumed
to be continuous functions of time, M,B € C°. The

impact on functionality is the sum of the impacts of
malware and bonware, and
dF

a + Q(t)F(t) = FnB(t), 2)

where Q(t) = M(t)+B(t). Since we expect bonware to
help (or at least not harm) and malware to not help, we
assume B(t) > 0 and M(t) > 0. We also assume normal
functionality is positive, Fy > 0, and functionality is
always nonnegative and less than or equal to normal
functionality, 0 < F(¢t) < Fy. This first-order linear
differential equation has the following solution:

t
F(t)=e" JEap) dp (F(O) + FN/ elo 2@ de(T) dT) )
0
3)
To help us understand how the model works, we find
explicit solutions for a number of examples.

A. Constant model
Assuming M, B, and Q are constant, we have

3
Cth + QF(t) = FyB. @

1) No bonware: If B = 0, then Equation 4 reduces
to 2€ + MF(t) = 0 and F(t) = F(0)e"M! If also
M = 0 (no bonware and no malware), then ‘Z—f =0and
F(t) = F(0).

2) Bonware: With bonware present, the solution is

_ FNB:| eiQt FNB

3 3 ®)
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Figure 1. Normalized functionality, F'(¢)/Fn, is shown for various
values of M (malware attacking) and B (bonware defending) and
at initial conditions F'(0)/Fy € {0.0,0.5,1.0}. The functionality
over time depends on the relative strengths of bonware and malware
and on the intial condition. When the system initially is at normal
functionality and when malware overpowers bonware, functionality
exhibits exponential decay. When functionality initially is low, and

when bonware overpowers malware, the system recovers (via Eq. 5)
B
o X8

If F(0) > IxB/g, then F(t) will initially, at time
t = 0, be at F(0) and decrease to f8/g. If F(0) >
B/g, then the function F'(t) = F'(0) will be constant.
If F(0) < ¥B/g, the function will start at F' = F'(0)
and increase to 'v8/g. Examples of these situations are
shown in Figure 1. The plot of (M > 0) in Figure 1
shows that even in the presence of bonware, malware
will still have an impact on the system. The steady-state
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Figure 2. The smooth line is an example functionality curve with
piecewise constant malware and bonware impacts. The notional data
and piecewise constant model fit are described below in Section VI-A.

of the system is obtained either by setting (Z—f =0 in
Equation 4 or letting t — 0o :
B

i M+B ©
so that the antidote to malware is to overwhelm it with
bonware. The exponent, —Qt = (—M — B)t in the
solution given by Equation 5 indicates that increasing
the impact of either malware or bonware will cause the
system to more quickly approach steady-state. At steady-
state,

Fy = lim F(t) =

t—o0

N-F., M 7
F — M+B
Equation 7 gives us further insight into the trade-off
between impacts of both malware and bonware. The rel-
ative decrease of the function from normal functionality
is equal to the ratio of malware impact to the sum of
malware and bonware impacts.

B. Piecewise constant model

If either malware’s or bonware’s impact diminishes at
some point in the incident, the model may switch from
one set of constants defining malware and bonware to
another set of constants. The differential equation (Eq. 2)
may now be expressed as

daF =
P > (B = F(1)B;(t) — F(t)M;(t),  (8)
j=0

where the vectors M = (Mg, My, - Mpy—_1) and
B = (By,B1, - ,By_1) contain the malware impact
and bonware impacts within time windows whose end
points are defined by {to, %1, -+ ,tn}. The solution will
be a function which, in each time interval, is the solution
found in Equation 5. The purple curve in Figure 2 is a
realization of this model.

C. Linear model

The impacts of malware and bonware may also be
linear functions of ¢, so that M(t) = v — ut, B(t) =
a — ft, and Q(t) = A\ — wt, where A = « + v and
w = B+ . Under this linear model, Equation 2 becomes

% + (A —wb)F(t) = Fy(a — B1) ©)

M = max(0.5-0.1t,0)
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Figure 3. Normalized functionality, F'(t)/FN, for piecewise linear
models. Impacts of malware and bonware are linear functions of time.

The solution can be expresged in terms of the error
function erf(z) = % Joe T dr:
F(t 1 F(0
®) { ()—é(l—Q(t))—k(aw—B)\)

FN w

o Q)

x \{E/e: [erf(A) t erf (\72% - A)”

where Q(t) = e}~ 2% and A = */vzs.

(10)

D. Piecewise linear model

Both malware and bonware impacts may initially
be linear, but if the situation changes and a different
linear model holds after a time, the model should be
able to account for it. In particular, if malware impact
is decreasing over time, at some point we will reach
M = 0 and the model switches to a new linear model.
Equation 9 can be written

N-1
‘% = 3 [y —wit)F(t) — Falay — B;1)].
§=0

The solution follows from Equation 10. Example real-
izations of the piecewise linear models are shown in
Figure 3. The shapes of the curves resemble experimental
data discussed in [7].

V. STOCHASTIC DIFFERENTIAL EQUATION MODEL

In this section, we extend the previously defined dif-
ferential equation (DE) model to a stochastic differential
equation (SDE) model. The extension is motivated by the
discontinuous nature of the notional data in Figure 2.
Whereas the DE model assumed a smooth functionality
curve, our stochastic version allows for a more punctu-
ated attack-and-restoration pattern.

In the SDE model, both malware and bonware may
be active at random (or a priori unknown) times with
random (or a priori unknown) effectiveness. Let malware
activity A™(¢) € {0,1} indicate whether malware was
successful at time ¢, bonware activity A%(t) € {0,1}
indicate whether bonware was successful at time ¢, mal-
ware effectiveness E™(t) € [0, 1) express the proportion
of functionality reduced by the malware’s success at time



t, and bonware effectiveness E°(t) € [0,1) express the
proportion of damage undone by the bonware’s success
at time ¢. The SDE analog to Equation 2 is then

W (= F) A1) — F) A" (1) E™ (1)

dt (11

Rather than changing deterministically over time,
these model parameters are assumed to vary stochasti-
cally according to these distributions:

A™(t) ~ Bern(6™(t)), (12)
Ab(t) ~ Bern(0°(1)), (13)
E™(t) ~ Unif(0,4™(t)), (14)
Eb(t) ~ Unif(0,7°(%)), (15)

where Bern(6) indicates the Bernoulli distribution with
rate 6§ and Unif(0,~) indicates a uniform distribution
with lower bound 0 and upper bound . Hence, 6™ (t) €
[0, 1] is the probability that malware is successful at time
t, 0°(t) € [0,1] is the probability that bonware is suc-
cessful at time ¢, v (¢) € (0, 1] is the maximum fraction
of damage inflicted by malware, and 7°(t) € (0, 1] is the
maximum fraction of damage undone by bonware.

Like the ordinary differential equation (ODE) model,
the SDE model allows for a number of interesting
variants. In the remainder of this section, we introduce
some useful simplifications and extensions.

A. Constant parameters

In the simplest version of the SDE model, we assume
that the rate of malware attacks and their maximum
efficiency are constant in time, and that the rate of
bonware restoration and its maximum efficiency are both
constant in time. Specifically, under this model it is
assumed that 0™ (t) = 0™, 6°(t) = 0°, 4y™(t) = ™,
and 7°(t) = 4° (cf. Egs. 12-15).

This version of the model is parsimonious, with only
four free parameters, each with a useful interpretation.

B. Piecewise constant parameters

In a first extension of the SDE model, we assume that
malware and bonware have an activity rate of O until
they activate at time points ¢ and ¢, respectively. After
activation, both activity rates are constant. Additionally,
both efficiency parameters are assumed to be constant
in time. Specifically, 0™ (t) = 6™u(t —t™), 6°(t) =
0°u(t —t°), y™(t) =~™, and °(t) = +". Here u(-) is
the unit step function.

The piecewise constant formulation here is particu-
larly apposite for our experiments, in which the timing of
malware attacks is known. The analyst can then choose
between considering ¢ and t® as known, and retain the
parsimony of a four-parameter model, or considering
them unknown and estimate them from data in a six-
parameter model. The difference between the known

onset time of an attack and the estimated ¢t™ may then
be interpreted as the time it takes for an attack to take
effect. Similarly, the difference between that onset time
and the estimated t* may be interpreted as the delay until
bonware begins to restore functionality after an attack.

C. Parameter expansion of the SDE model

The SDE model can be conveniently stated as a hidden
Markov model and implemented as a directed acyclic
graph [16] for efficient parameter estimation with a
general-purpose Bayesian inference engine (e.g., JAGS;
[17]). Our implementation relied on a sequential defini-
tion for the likelihood function: (F'(t + 1) | F'(¢),...) ~
Unif(L(t), U(t)), with L(t) = F(t)— A™(t)E™(t)F(t)
and U(t) = F(t) + A () Eb(t) (1 — F(1)).

Since this likelihood function depends on the unknown
stochastic parameters A™(t), A’(t), E™(t), and E°(t),
we applied a parameter expansion approach [18, 19]
using Equations 12-15.

D. Relationship between continuous and SDE model

With the parameters of the stochastic model selected
appropriately, we show that as the number of stochastic
realizations increases, the expectation of the solution
to the stochastic differential equation model approaches
that of the ODE model. We show this for the simple
constant parameter case. The general result follows by
extension.

Theorem. Let y* ~ Bern(2M), y? ~ Bern(2B),
2™ ~ Unif (0, Fy), 22 ~ Unif(0, Fy — F},), and
(k=1,...,K).

Fip1 = Fy —y 2 + ybzb, (16)

Let Fi,, = sz, (j=1,...,n), then

Fr = E(Fy) = lim, o Fi, and Fi, = F(k), for
large k, where F(t) is the solution to the initial value
problem given by Equation 4 with F(0) = Fy.

Proof. Take the expectation of Equation 16. Then
Fr — Fi—1+ M+ B)Fir—1 = ExB. With Fy,, = Fo,
the solution is Fj, = [Fo — M] (1—Q)F+ 58 which

O

Q Q7
approximates Equation 5 for large k.

VI. AN APPLICATION OF THE MODEL
A. Obtaining model parameters

Given notional data that represents a typical curve
of functionality over the course of an incident where
malware and bonware are active, we develop a fast
method to estimate the continuous model parameters
for a curve that approximates the data, and use these
parameters to generate further realizations based on this
model. In Figure 2 an example of such notional data is
plotted (in light blue). In this section, we illustrate our
method to extract the model parameters from this curve.



The set P = {to,...,tx} partitions the mission
timeline and malware and bonware are constant in each
interval (t;-1,t;), ¢ = 1,...,K. In each interval,
Q; = M, + B; and the differential equation governing

Continuous Model I is dl‘zit) +Q,;F(t) = Fx(t)B;. Thus,

in each interval (¢;_1,¢;), the solution is
:| e~ Qilt=ti—1) + FNBi.

FxB;
{F(t“) B it o

T
We compute the effectiveness, E™, and activity, A™,
of malware and of bonware (E?, A%), in each interval:
M; = EmA", B; = E?AL.

We observe that there is a unique switching time t*
where the functionality’s trend reverses, and thus we take
K = 2. Before the switch, the impact of malware is
greater than that of bonware. From the time of the switch
until the end of the mission, bonware is stronger. To
estimate the switching time t*, we find the minimum
of the data to occur over the interval from 64 s to
75 s. There, the minimum value of the data curve is
m = 0.27. Taking the midpoint, our estimate for t*
is 69.5 s. We estimate the activity of malware before
switching to be the number of times the data curve
decreases divided by the switching time. Similarly, our
estimate of bonware activity is the number of times the
data curve increases prior to the switching time. We thus
have AT ~ 7/69.5 ~ 0.101 and A% ~ 2/69.5 ~ 0.014.

To determine the remaining parameters, we numeri-
cally solve this system of equations:

F(t) =

B
am = Fy—,
Yo,
Bl —Qt* 81
m=F(0) — Fn—e =' + Fy—.
) N9, Yo,

The first equation says that where the curve meets the
minimum of the data, it has experienced exponential
decay of o toward the asymptotic minimum. We take
a to be & =1 — 1/e. The second equation says that the
minimum occurs at the switching time (the time when
the model switches from malware dominating bonware,
to bonware dominating malware. Solving this system of
equations yields (with M, = @y — By), M1 =~ 0.025
and B; ~ 0.005, so that E* = Mi/a7 ~ 0.503 and
EY = Bi/ab ~ (0.362.

To the right of ¢*, we fit an exponentially increas-
ing function. Similar to before the switching time, we
compute the activities of the malware and bonware:
AP~ 15555 ~ 0.033 and AS & 55te5 ~ 0.131.

To determine the remaining parameters, we numeri-
cally solve this system of equations:

B F(0)Bs
C - QQ I
. B2\ ([ —a,a25-1%) FN52>
al = (m o )(e + o .

Stochastic Approximation: 5 Realizations
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Figure 4. (Top) Five realizations of the stochastic model generated with
the parameters obtained by fitting the notional data shown in Figure 2.
Each realization is different but each roughly follows an exponential
decay when ¢t < t* = 69.5 s and an exponential recovery for ¢t > ¢*.
(Bottom) Averages of n stochastic runs for n € {5, 50,500, 5000}.
As n increases, the average of the ensemble approaches the fitted curve
as predicted in the theorem of Section V-D.

We have found that @ = 1 — e~ and ¢ = 0.95 are
satisfactory values to use for these hyperparameters.

We compute M3 = 0.005 and Bs = 0.088, so that
B = Mi/am ~0.201 and EY = Bi/ab ~ 0.957.

B. Generating stochastic realizations

Using the parameters found in Section VI-A, we can
now generate stochastic realizations. In Section V-D, we
showed that for large sample sizes, the average of our
ensemble will approach the solution to the continuous
ODE model. We show empirically that this is indeed the
case. To illustrate, we generated five realizations (Figure
4) of the stochastic model with parameters found from
the notional data of Section VI-A. By averaging n curves
when n € {5,50,500,5000} we see how the ensemble
average approaches the solution of the corresponding
differential equation as predicted in the Theorem of
Section V-D.

VII. DISCUSSION AND CONCLUSION

We have presented a broadly applicable framework for
the analysis of the cyber resilience of military artifacts.
Our framework relies on the construction of a custom
differential equation time series model that shows good
qualitative correspondence to the functionality of ve-
hicles performing missions. Seeking to move beyond
the use of area-under-the-curve quantifications of cyber
resilience, our proposed models have the advantage that
their parameters have domain-relevant interpretations
such as the activity of malware and the effectiveness



of bonware. Such interpretable parameters can provide
a more nuanced interpretation of cyber resilience data
being experimentally obtained in our lab.

Our formal models come in two families with com-
plementary advantages. A series of continuous models
is parsimonious, mathematically convenient, and easy
to fit. A series of discrete, stochastic models shows
greater verisimilitude but is slightly less parsimonious
and requires more computationally onerous parameter
estimation techniques.

Both types of models can be extended to a large
variety of custom circumstances, including the case
where model parameters change gradually, abruptly, or
predictably as a result of experimental manipulation.
Future work will include an extension to the cases
of multiple simultaneous objectives and to the case of
multiple vehicles to be analyzed jointly.
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